
Intent Inferencer-Planner Interactions

K. Brock Stitts
John M. Hammer

Applied Systems Intelligence, Inc.

11660 Alpharetta Highway
Suite 720

Roswell, GA 30076

bstitts@asinc.com
jhammer@asinc.com

Abstract

Interaction between automated planners and intent
inferencers is a difficult problem that is not always well
understood. This problem can be framed in terms of a number
of key issues: shared ontology, human interaction, and display
of proposals.

Shared ontology is a key issue from both practical and
theoretical perspectives. Without sharing, intent inference
outputs must be interpreted by the planner into its own
representations, and, of course, the intent inferencer must do the
same with the planner outputs. Furthermore, absent a
commitment to a shared ontology, it is unclear practically
whether there is any commitment between the design teams to
interact in any way whatsoever that would support true
collaborative interaction between the human operator and the
intelligent system. Committing to a shared ontology is no
panacea. Ontologies are hard, and shared ontologies are even
harder. Given that knowledge based processing is often
embedded within elements of the ontology, the representational
needs of planning and intent inference place considerable
demands on the shared ontology.

Interaction with a human operator is a difficult
problem generally in software and especially so for planners.
One of the most difficult problems for the planner is that the
human operator is nearly always correct. Consequently, the
plans that the planner wants to pursue may not be the plans of
the human operator. This has several implications. First, the
planner must follow the human’s lead, which is, at first glance, a
modification to the very essence of planning: selecting courses
of action. In other words, the planner will have to activate plans
that it has already decided are not the best course of action.
This may mean that the planner would be required to override
its own knowledge to follow the human’s lead. All of the
preceding assumes that the planner is truly going to follow this
lead. Another possibility is that the human has chosen an
erroneous plan. If the planner has any interest in intervening, it
would need to differentiate between adequate choices and
erroneous choices (a design choice that seems to be infrequently
chosen). A third possibility, and not necessarily a bad one, is to
follow the operator’s lead silently. If the planner were
following the lead of another automated planner, a request for

rationale could be appropriate. This request might well be
inappropriate for a human operator under circumstances in

which intelligent systems are currently being deployed. A final
difficulty with human operator is individual differences, in
which human operators choose make choices for strictly
preference reasons. It would be poor for the planner to
repeatedly suggest option A when the human always chooses
option B.

Display of proposals is another key issue and another
opportunity to solve problems that are difficult to address in the
preceding issues. The need for and availability of rationale may
be as important as the proposed plan. In situations where
sufficient time is readily available, the human operator will
likely want to examine the rationale that supports the plan.
Rationale is clearly related to the plan itself but is something the
planner’s designers may not have considered to be important. In
many operational contexts, the operator has insufficient time for
a comprehensive review, and thus the plan itself is displayed.
The human operator’s visualization of the proposed plan,
supported by human pattern recognition, and trust (or lack of
trust) in automation will likely determine whether the plan is
followed.

Introduction
The basic mechanisms for interaction between an intent
interpreter and a dynamic planner have been spelled out
in several publications such as Geddes (1989) and Geddes
and Hoshstrasser (1989). The purpose here is to extend
this work by providing potential solutions to certain
problems that arise due to these interactions. These
potential solutions will be tested out in work such as the
U.S. Army’s Vetronics Technology Insertion (VTI)
program.

We begin with a description of the knowledge structures
and intent interpretation process borrowed from Geddes
and Lizza (2001).

Knowledge representations The intent interpreter uses
knowledge representations derived from the natural
language processing work of Schank, Cullingford and
Wilenski (Schank and Abelson 1977; Schank and
Riesbeck 1979). Interpreting the intentions of active

From: AAAI Technical Report FS-02-05. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved.

entities in a strongly causal environment has many
characteristics common to interpreting narrative stories.

Actions. Entities must interact with the environment by
performing actions. Actions are chosen to represent the
primitive manipulations of the environment that will
serve as the directly observable inputs to the intent
interpreter.

Scripts. Scripts represent procedural knowledge as
weakly ordered sequences of events. Events are
composed of actions and constraints. Scripts are
segmented to provide serial and parallel execution paths.

Plans. Plans represent abstract methods that might be
expected to achieve one or more goals. While a plan may
have a script associated with it that defines its nominal
execution, this is not required.

Goals. Goals represent desired states of the environment
that may be achieved at some time in the future as a result
of performance of a plan.

These knowledge entities are combined in a structure
called a plan-goal graph (PGG), in which a plan’s
children are the set of subgoals or actions needed to
complete it, while the goal’s children are plans that can be
performed to satisfy the goal.

Interpretation process
The first step in interpretation of an input primitive action
is to determine if the action is a part of an ongoing
procedural sequence, represented by an active script. If it
is found to be an appropriate part of an active script, the
input action is explained. If all active scripts are evaluated
and the action is not appropriate for any of the scripts,
interpretation using the PGG is attempted. PGG
interpretation is an abductive process that traverses the
PGG until a successful path is found from the input action
to an active instance of a plan or a goal. The simplest case
is when the action is directly linked to an active plan
instance, and is simply the continued execution of a plan
that was already active. If the input action is the start of
new intended activity, the search through the PGG will
identify hypothetical plans that the action might be a part
of and hypothetical goals that might be being pursued.
This search may terminate in a path from the action
through a series of lower level plans and goals until
reaching an active plan or goal instance at a higher level
of abstraction. The resultant path is the explanation of the
action, and all plan and goal instances on the path are
now promoted to active. In addition, truth maintenance
processing is performed and any scripts associated with
any of the new plan instances are promoted to active. The

entities whose behavior is being interpreted are not
assumed to be completely consistent or correct.

In addition, the knowledge in the intent interpreter is not
assumed to be perfect. As a result, an input primitive
action may not be explained. Unexplained inputs provide
a mechanism for both causal error analysis and for
machine learning.

Decomposition Planner
Dynamic planning is the capability to continuously plan
or replan activities in real-time, adapting behavior as the
situation unfolds. The decomposition planner, described
in Elmore et al. (2000), implements dynamic planning. It
does this by working in the opposite direction as the
intent interpreter. Beginning with the highest-level plan
in the PGG, the planner attempts to decompose the graph
until it has reached leaf-level plans. These plans are
associated with scripts that generate actions. Because the
graph is only decomposed as events dictate, there is no
master plan. Planning is “just in time.”

The planner and the intent interpreter are part of an
associate system, which is a real-time decision aid that
can act in concert with users to perform complex tasks. It
is described in Geddes (1997).

Shared Ontology
Some shared ontology is needed. Ideally, the ontologies
for both the planner and the intent interpreter would be
identical. This is typically the goal when building
associate systems. But for virtually every problem, there
is some degree of mismatch between how a
decomposition planner would solve the problem and how
a human would. At least in some cases, a decomposition
planner will use some numerical recipe that a human
would not. Suppose, for example, there is some
computation made to determine whether to use Plan A or
Plan B. This algorithm may not be one a human would
actually use. But as long as there exists a similar decision
made by the human, the intent interpreter can cope with
differences between the human and the planner. To
continue the example, suppose the planner picks Plan A,
but the human operator later selects Plan B (by
performing an action that the intent interpreter can
explain with Plan B, but not with Plan A). Through
appropriate design of the PGG, Plan A will be revoked
once Plan B is instantiated by the intent interpreter. The
associate system still has a general understanding of the
situation and can plan and act accordingly.

This indicates at what level knowledge should be
represented. A computation could in many cases be
represented as a set of PGG nodes. But if such a set does
not correspond to an operator’s plans and goals, there is

no reason to represent it as a PGG. At the other end of
the spectrum, if a planner represents with a single plan a
set of the operator’s plans and goals, the planner will not
be able to react appropriately when the operator’s plans
and goals differ from the planner’s. For example, if the
planner were a resource allocator using an operations
research approach, there would be a single plan that took
in all the relevant data and produced a global schedule for
use of the resources. If an operator wants to modify a
portion of such a schedule, he or she would have to input
new data and rerun the entire planning process again.
Localized replanning is not possible.

Human Operator Interactions
One of the principle problems in simultaneous planning
and intent interpretation involves overriding the planner’s
plans with an operator’s plans. Once a plan has been
overridden, there needs to be some mechanism to
guarantee that a planner capable of dynamically
replanning will not simply override the operator’s
override upon receiving a trigger to replan. One way of
preventing such an override is to tag the operator’s plan
as having been “operator initiated.” The decision logic
for determining whether to replan or not then must
include information about this tag. A difficulty occurs
here if there are some cases in which it makes sense to
override the operator’s plans because the context in which
the operator made these plans has sufficiently changed.
This is dealt with by monitoring for such conditions.
When the condition is detected, the planner replans and
presents a new proposal.

For example, suppose a driver’s associate system has a
plan to get to a location by a certain time. Initially, the
planner suggested taking a route using interstate
highways. The driver, however, overrode the plan and
selected a route that used back roads. Suppose further
that the driver is halfway there, but has made such slow
progress that the current route would no longer permit
him to get to the location on time. At this point, the
associate system can detect this problem and propose a
new plan.

Asymmetries in planning and intent
interpretation
As the planner decomposes the graph, it performs
computations to determine which branch to take and/or
what parameter values to use. Having the intent
interpreter perform these computations does not make
sense; at the very least, the inverse of the computation
(with the inputs and outputs of the computation reversed)
should be performed. But since the purpose of these
computations is to aid the planner in making a decision,
and the intent interpretation process involves trying to
explain a decision that has already been made, there is no

need for the intent interpreter to perform these
computations.

Referring back to the driving example, if the planner has
a computation that tells it to use interstate highways, there
is no need for the intent interpreter to perform such a
computation, as the driver has already decided to use back
roads.

What to do when the wrong explanation is picked
Intent interpretation, as an abductive reasoning process, is
not logically valid. Unless the knowledge is designed in
such a way that only one interpretation is possible at any
one time, the intent interpreter will sometimes pick the
wrong explanation. For real-world knowledge, it is
difficult to avoid such situations. As an example, intent
interpretation accurately explained operators’ actions
90% of the time (see Geddes and Hoshstrasser (1989)).
But what happens in those 10% of cases in which an
action is incorrectly explained? Does the planner become
hopelessly lost because it does not know the correct
situation? If the knowledge is designed well, subsequent
intent inferences can correct previous mistakes. If script
A was selected instead of script B, but a further operator
action is only explained by script B, script A is revoked
and the mistake overcome.

In the knowledge design process, situations where
incorrect inferences are possible should be identified.
The consequences of an incorrect inference need to be
evaluated. If these consequences can lead to serious
errors, a knowledge design problem exists, and the PGG
should be reorganized.

Continuing the driving example, if the driver applies the
brakes at a stop sign, then the intent interpreter takes this
action to be a step in a script for stopping the car and
activates this script (which has as a next step to turn off
the engine), disastrous results ensue. This poor design
can be corrected by simply removing the next step in the
script; in this case it is better to restrict the intent
interpreter’s capability to understand the situation.

Error Monitoring
Error monitoring involves evaluating the consequences of
operator actions to determine if there are adverse
consequences. If a driver has accelerated to 70 mph, and
the associate knows the speed limit is 40 mph, it can warn
the operator of a potentially dangerous (or costly)
situation. In general, if the operator’s action has
dangerous consequences, it is flagged as an error. In
contrast, because an action cannot be explained does not
imply necessarily that it is an error; the intent interpreter
may not have access to sufficient information to explain

the action. For further discussion of error monitoring see
Hammer and Geddes (1987).

Following the operator’s lead
One way to avoids conflicts between the operator and the
planner is to let the operator take the lead at all times.
The planner would not generate any actions to be
performed by the system. This would still permit the
associate system functions of error monitoring and
information management (see Howard, Hammer, and
Geddes (1988) for a discussion of information
management).

Dealing with individual differences between
operators
Suppose Joe likes to take back roads on his trips. His
driving associate has been built so that it gives him route
plans that use these back roads. But one day Bill tries out
this driving associate software and it drives him nuts
because it never picks the interstate routes. He ends up
overriding the associate every time, and so the associate
becomes useless. The general problem is this: how do
you accommodate differences between operators?

One way of dealing with this is to identify key parameters
associated with each planner decision. A set of user
preferences is then made available via a user interface.
This, as it turns out, is not much different than traditional
software applications.

Another method would be for the associate to learn
operator preferences. This could use an algorithm similar
to the intent interpretation algorithm. Given operator
selection of plans, what set of system preferences is
compatible with those selections? For example, Bill
picks a route from point A to point B that uses interstates
maximally. There are alternative routes that use back
roads. Therefore the associate infers that Bill ‘prefers
interstates’ and stores that fact in Bill’s user preferences.

A more difficult situation occurs for multi-operator,
multi-vehicles scenarios. For example, in VTI the battle
team is envisioned to have two operators in a single
manned vehicle controlling as many as ten unmanned
vehicles. The operators can divide up control in any
manner they deem appropriate. But what if each operator
has different preferences?

If a set of user preferences is defined for each operator,
one operator can be “in charge,” and so his or her
preferences will be used. Clearly this is inadequate for
plans and goals that the “subordinate” operator is
managing. What is needed is for the associate to know,
for a given plan, which operator is responsible for it. If
the intent interpreter inferred the plan, the operator that

performed the action that lead to activation of the plan
can be marked as the responsible operator. If one uses the
rule that all children of the plan inherit its responsible
operator, then that operator’s preferences can be used
with respect to the child plans and goals. Another means
of assigning a responsible operator is by having the
operator who accepts a plan proposal be assigned the
responsible operator for it and all its children (unless a
child plan is proposed and accepted by a different
operator). These two methods provide almost full
coverage concerning a responsible operator. Only high-
level plans that are automatically accepted are not
covered. But by making an initial default designation of
the responsible operator, full coverage can be obtained.
See Geddes (1986) for additional research concerning
individual differences and intent interpretation.

Display of Plan Proposals
There are two sets of additional information that can be
provided with a planner’s proposal. First, alternative plan
proposals can be presented. Second, rationale for picking
a particular plan and its associated parameters can be
displayed.

Display of alternate proposals can to some degree help
with the problem of user preferences. If Jane tends to
disagree with the planner’s decision concerning the best
plan, Jane can simply select her favorite from the list of
alternatives. An even more flexible method, however, is
to present the plan proposal in a dialog box that lists all
the appropriate parameters and allows modification of
those parameters. The user could either modify specific
parameters or, by selecting an alternative plan, have those
parameters adjusted in the dialog box. A more complex
situation occurs when part of the plan includes
information best represented graphically, such as a route.
There needs to be some means of connecting the
graphical information with the dialog box information. A
plausible option is to highlight or flash the related
graphical information when the dialog box pops up and/or
have a button on the dialog that does this.

Displaying rationale for the proposal is a more complex
problem. In traditional rule-based systems, one might try
displaying the chain of logic that lead to the proposal.
Likewise, one might show the PGG parent instances that
lead to the proposal. But for typical users, who probably
don’t know what a PGG is, or at least how it works, such
information is unlikely to provide value. A simple “plain
English” description of a decision algorithm the planner
uses would allow users to have some idea of the rationale
for the proposal. Since decision algorithms are typically
originally described in plain English by a domain expert
(e.g., how a driver decides what route to take), this
description could be provided to the user upon request

(input parameter values used by the algorithm might also
be included).
A further consideration involves when to display rationale
and/or alternatives. There are three factors that would aid
in determining this: the nature of the particular plan being
proposed, the context in which the plan is being proposed,
and the time criticality of the situation.

As users become familiar with the associate system,
providing rationale for a particular plan may be useless;
the user already knows what the planner is doing. For
example, if a planner is providing a route that makes the
most use of interstates, there is no useful rationale to be
given. Likewise, would it be of any benefit to display an
alternate route that made slightly less use of interstates?

Time factors can also influence whether or not to display
rationale or alternatives. In a highly dynamic
environment, there won’t be enough time for the operator
to ponder the rationale used by the associate.

The associate needs to be able to identify situations when
displaying additional information is not beneficial.
Further, it should be able to know when not to display the
proposal at all. For example, if the anti-lock brakes on a
car have engaged and the gas tank is getting low, it is not
a good time to propose stopping at the nearest gas station.
This implies that knowledge concerning the overall status
of operations needs to be maintained and that plans
should have a criticality factor assigned to them to
prevent situations such as the one described above.

As is the case with issues regarding operator preferences,
multi-operator situations require careful knowledge
engineering. One way of handling the situation is to
display all proposals to each operator. The problem here
is that operators will be distracted by proposals for which
they are not concerned. Another is to only display
proposals to the operator designated as responsible for
that plan. There is a problem here, too. Once a plan has
been assigned to an operator, and the assignment of
responsibility algorithm describe above is used, the other
operator will see no proposals for any of the child plans
(unless that operator performs an action which leads the
intent interpreter to activate one of these plans). It is
almost an “all or nothing” situation. A compromise is to
use the criticality factors discussed above. Rules such as
the following can be used: if the non-responsible operator
is not busy, go ahead and display all plan proposals to
him or her. Otherwise, show only those proposals whose
plans have been assigned to that operator. As above,
overall status of the system must be assessed so that it can
be determined if the operator is busy.

Summary
In the associate work done by Applied Systems
Intelligence, Inc. and others over the past 14 years, many
of the problems concerning planner-intent interpreter
interaction have been dealt with including: knowledge
representation issues, asymmetries in planning and intent
interpretation, and error monitoring. At this stage, it is a
matter of refining the overall process of building
associate systems. What have been outlined here are
various methods of doing this: methods for handling
operator differences and plan proposals. Future work in
associate systems in areas such as unmanned systems and
supply chain management will provide a testbed for these
new methods as well as an opportunity to refine the old
ones.

References
Geddes, N.D. and Lizza, C.S. (2001) Practical
Applications of a Real Time, Dynamic Model of
Intentions. Intent Inference for Collaborative Tasks.
Papers from the 2001 AAAI Fall Symposium. Benjamin
Bell and Eugene Santos, Cochairs. Technical Report FS-
01-05.

Elmore, W., Dunlap R., Campbell R. and Perkins, D.
(2000) Intelligent Control of Automated Vehicles: A
decision Aiding Method for Coordination of Multiple
Uninhabited Tactical Aircraft. Final Report for DARPA
Order No. G178 under contract #MDA972-98-C-0011.

Geddes, N.D. and Lizza, C.S. (1999) Shared plans and
situations as a basis for collaborative decision making in
air operations. 1999 World Aeronautics Conference,
Anaheim, CA SAE Paper 1999-01-5538

Geddes, N. D. (1997) Associate Systems: a framework
for human-machine cooperation, Human Computer
Interaction, San Francisco September 20-23, 1997.

Geddes, N.D. and Hoshstrasser, B.H. (1989) Operator
Intent Inferencing for Intelligent Operator support
Systems. Proceeding of the IJCASI-89 Workshop on
Integrated Human-Machine Intelligence in Aerospace
Systems.

Geddes, N.D. (1989) Understanding Human Operator’s
Intentions in Complex Systems (Doctoral Dissertation,
Georgia Institute of Technology), Atlanta, GA

Hammer, J.M. and Geddes, N.D. (1989) Design of an
Intelligent Monitor for Human Error in a Complex
System. Proceedings of the 1987 American Institute of
Aeronautics and Astronautics Computers in Aerospace
Conference. Boston, MA.

Howard, C.W., Hammer, J.M. and Geddes, N.D. (1988).
Information Management in a Pilot’s Associate.
Proceedings of the 1988 Aerospace Applications of
Artificial Intelligence Conference, 1, 339-349.

Geddes, N.D. (1986). The Use of Individual Differences
in Inferring Human Operator Intentions. Proceedings of
the Second Annual Aerospace Applications of Artificial
Intelligence Conference, Dayton, October 1986.

Geddes, N.D. (1985) Intent inferencing using scripts and
plans. Proceedings of the First Annual Aerospace
Applications of Artificial Intelligence Conference, 160-
172.

Schank R. S. and Riesbeck, C. (1979) Inside Computer
Understanding, Lawrence Earlbaum Associates,
Hillsdale, N.J. 1979

Schank, R.S. and Abelson, R. (1977) Scripts Plans Goals
and Understanding. Lawrence Earlbaum Associates,
Hillsdale, NJ 1977.

	Abstract

