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Abstract 

Interaction between automated planners and intent 
inferencers is a difficult problem that is not always well 
understood.  This problem can be framed in terms of a number 
of key issues: shared ontology, human interaction, and display 
of proposals.   

Shared ontology is a key issue from both practical and 
theoretical perspectives.  Without sharing, intent inference 
outputs must be interpreted by the planner into its own 
representations, and, of course, the intent inferencer must do the 
same with the planner outputs.  Furthermore, absent a 
commitment to a shared ontology, it is unclear practically 
whether there is any commitment between the design teams to 
interact in any way whatsoever that would support true 
collaborative interaction between the human operator and the 
intelligent system.  Committing to a shared ontology is no 
panacea.  Ontologies are hard, and shared ontologies are even 
harder.  Given that knowledge based processing is often 
embedded within elements of the ontology, the representational 
needs of planning and intent inference place considerable 
demands on the shared ontology. 

Interaction with a human operator is a difficult 
problem generally in software and especially so for planners.  
One of the most difficult problems for the planner is that the 
human operator is nearly always correct.  Consequently, the 
plans that the planner wants to pursue may not be the plans of 
the human operator.  This has several implications.  First, the 
planner must follow the human’s lead, which is, at first glance, a 
modification to the very essence of planning: selecting courses 
of action.  In other words, the planner will have to activate plans 
that it has already decided are not the best course of action.  
This may mean that the planner would be required to override 
its own knowledge to follow the human’s lead.  All of the 
preceding assumes that the planner is truly going to follow this 
lead.  Another possibility is that the human has chosen an 
erroneous plan.  If the planner has any interest in intervening, it 
would need to differentiate between adequate choices and 
erroneous choices (a design choice that seems to be infrequently 
chosen).  A third possibility, and not necessarily a bad one, is to 
follow the operator’s lead silently.  If the planner were 
following the lead of another automated planner, a request for  

rationale could be appropriate.  This request might well be 
inappropriate for a human operator under circumstances in 

which intelligent systems are currently being deployed.  A final 
difficulty with human operator is individual differences, in 
which human operators choose make choices for strictly 
preference reasons.  It would be poor for the planner to 
repeatedly suggest option A when the human always chooses 
option B.   

Display of proposals is another key issue and another 
opportunity to solve problems that are difficult to address in the 
preceding issues.  The need for and availability of rationale may 
be as important as the proposed plan.  In situations where 
sufficient time is readily available, the human operator will 
likely want to examine the rationale that supports the plan.  
Rationale is clearly related to the plan itself but is something the 
planner’s designers may not have considered to be important.  In 
many operational contexts, the operator has insufficient time for 
a comprehensive review, and thus the plan itself is displayed.  
The human operator’s visualization of the proposed plan, 
supported by human pattern recognition, and trust (or lack of 
trust) in automation will likely determine whether the plan is 
followed.   

Introduction 
The basic mechanisms for interaction between an intent 
interpreter and a dynamic planner have been spelled out 
in several publications such as Geddes (1989) and Geddes 
and Hoshstrasser (1989). The purpose here is to extend 
this work by providing potential solutions to certain 
problems that arise due to these interactions.  These 
potential solutions will be tested out in work such as the 
U.S. Army’s Vetronics Technology Insertion (VTI) 
program. 
 
We begin with a description of the knowledge structures 
and intent interpretation process borrowed from Geddes 
and Lizza (2001). 
 
Knowledge representations The intent interpreter uses 
knowledge representations derived from the natural 
language processing work of Schank, Cullingford and 
Wilenski (Schank and Abelson 1977; Schank and 
Riesbeck 1979). Interpreting the intentions of active 
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entities in a strongly causal environment has many 
characteristics common to interpreting narrative stories.  
 
Actions. Entities must interact with the environment by 
performing actions. Actions are chosen to represent the 
primitive manipulations of the environment that will 
serve as the directly observable inputs to the intent 
interpreter.  
 
Scripts. Scripts represent procedural knowledge as 
weakly ordered sequences of events. Events are 
composed of actions and constraints. Scripts are 
segmented to provide serial and parallel execution paths.  
 
Plans. Plans represent abstract methods that might be 
expected to achieve one or more goals. While a plan may 
have a script associated with it that defines its nominal 
execution, this is not required.  
 
Goals. Goals represent desired states of the environment 
that may be achieved at some time in the future as a result 
of performance of a plan. 
 
These knowledge entities are combined in a structure 
called a plan-goal graph (PGG), in which a plan’s 
children are the set of subgoals or actions needed to 
complete it, while the goal’s children are plans that can be 
performed to satisfy the goal. 
 

Interpretation process  
The first step in interpretation of an input primitive action 
is to determine if the action is a part of an ongoing 
procedural sequence, represented by an active script. If it 
is found to be an appropriate part of an active script, the 
input action is explained. If all active scripts are evaluated 
and the action is not appropriate for any of the scripts, 
interpretation using the PGG is attempted. PGG 
interpretation is an abductive process that traverses the 
PGG until a successful path is found from the input action 
to an active instance of a plan or a goal. The simplest case 
is when the action is directly linked to an active plan 
instance, and is simply the continued execution of a plan 
that was already active. If the input action is the start of 
new intended activity, the search through the PGG will 
identify hypothetical plans that the action might be a part 
of and hypothetical goals that might be being pursued. 
This search may terminate in a path from the action 
through a series of lower level plans and goals until 
reaching an active plan or goal instance at a higher level 
of abstraction. The resultant path is the explanation of the 
action, and all plan and goal instances on the path are 
now promoted to active. In addition, truth maintenance 
processing is performed and any scripts associated with 
any of the new plan instances are promoted to active. The 

entities whose behavior is being interpreted are not 
assumed to be completely consistent or correct.  
 
In addition, the knowledge in the intent interpreter is not 
assumed to be perfect. As a result, an input primitive 
action may not be explained. Unexplained inputs provide 
a mechanism for both causal error analysis and for 
machine learning.  

Decomposition Planner 
Dynamic planning is the capability to continuously plan 
or replan activities in real-time, adapting behavior as the 
situation unfolds. The decomposition planner, described 
in Elmore et al. (2000), implements dynamic planning.  It 
does this by working in the opposite direction as the 
intent interpreter.  Beginning with the highest-level plan 
in the PGG, the planner attempts to decompose the graph 
until it has reached leaf-level plans.  These plans are 
associated with scripts that generate actions.  Because the 
graph is only decomposed as events dictate, there is no 
master plan.  Planning is “just in time.” 
 
The planner and the intent interpreter are part of an 
associate system, which is a real-time decision aid that 
can act in concert with users to perform complex tasks.  It 
is described in Geddes (1997). 

Shared Ontology 
Some shared ontology is needed.  Ideally, the ontologies 
for both the planner and the intent interpreter would be 
identical.  This is typically the goal when building 
associate systems. But for virtually every problem, there 
is some degree of mismatch between how a 
decomposition planner would solve the problem and how 
a human would.  At least in some cases, a decomposition 
planner will use some numerical recipe that a human 
would not.  Suppose, for example, there is some 
computation made to determine whether to use Plan A or 
Plan B.  This algorithm may not be one a human would 
actually use.  But as long as there exists a similar decision 
made by the human, the intent interpreter can cope with 
differences between the human and the planner.  To 
continue the example, suppose the planner picks Plan A, 
but the human operator later selects Plan B (by 
performing an action that the intent interpreter can 
explain with Plan B, but not with Plan A).  Through 
appropriate design of the PGG, Plan A will be revoked 
once Plan B is instantiated by the intent interpreter.  The 
associate system still has a general understanding of the 
situation and can plan and act accordingly. 
 
This indicates at what level knowledge should be 
represented.  A computation could in many cases be 
represented as a set of PGG nodes.  But if such a set does 
not correspond to an operator’s plans and goals, there is 



no reason to represent it as a PGG.  At the other end of 
the spectrum, if a planner represents with a single plan a 
set of the operator’s plans and goals, the planner will not 
be able to react appropriately when the operator’s plans 
and goals differ from the planner’s.  For example, if the 
planner were a resource allocator using an operations 
research approach, there would be a single plan that took 
in all the relevant data and produced a global schedule for 
use of the resources.  If an operator wants to modify a 
portion of such a schedule, he or she would have to input 
new data and rerun the entire planning process again.  
Localized replanning is not possible. 

Human Operator Interactions 
One of the principle problems in simultaneous planning 
and intent interpretation involves overriding the planner’s 
plans with an operator’s plans.  Once a plan has been 
overridden, there needs to be some mechanism to 
guarantee that a planner capable of dynamically 
replanning will not simply override the operator’s 
override upon receiving a trigger to replan. One way of 
preventing such an override is to tag the operator’s plan 
as having been “operator initiated.”  The decision logic 
for determining whether to replan or not then must 
include information about this tag.  A difficulty occurs 
here if there are some cases in which it makes sense to 
override the operator’s plans because the context in which 
the operator made these plans has sufficiently changed.  
This is dealt with by monitoring for such conditions.  
When the condition is detected, the planner replans and 
presents a new proposal. 
 
For example, suppose a driver’s associate system has a 
plan to get to a location by a certain time.  Initially, the 
planner suggested taking a route using interstate 
highways.  The driver, however, overrode the plan and 
selected a route that used back roads.  Suppose further 
that the driver is halfway there, but has made such slow 
progress that the current route would no longer permit 
him to get to the location on time.  At this point, the 
associate system can detect this problem and propose a 
new plan. 

Asymmetries in planning and intent 
interpretation 
As the planner decomposes the graph, it performs 
computations to determine which branch to take and/or 
what parameter values to use.  Having the intent 
interpreter perform these computations does not make 
sense; at the very least, the inverse of the computation 
(with the inputs and outputs of the computation reversed) 
should be performed.  But since the purpose of these 
computations is to aid the planner in making a decision, 
and the intent interpretation process involves trying to 
explain a decision that has already been made, there is no 

need for the intent interpreter to perform these 
computations. 
 
Referring back to the driving example, if the planner has 
a computation that tells it to use interstate highways, there 
is no need for the intent interpreter to perform such a 
computation, as the driver has already decided to use back 
roads. 

What to do when the wrong explanation is picked 
Intent interpretation, as an abductive reasoning process, is 
not logically valid.  Unless the knowledge is designed in 
such a way that only one interpretation is possible at any 
one time, the intent interpreter will sometimes pick the 
wrong explanation.  For real-world knowledge, it is 
difficult to avoid such situations.  As an example, intent 
interpretation accurately explained operators’ actions 
90% of the time (see Geddes and Hoshstrasser (1989)).  
But what happens in those 10% of cases in which an 
action is incorrectly explained?  Does the planner become 
hopelessly lost because it does not know the correct 
situation?  If the knowledge is designed well, subsequent 
intent inferences can correct previous mistakes.  If script 
A was selected instead of script B, but a further operator 
action is only explained by script B, script A is revoked 
and the mistake overcome. 
 
In the knowledge design process, situations where 
incorrect inferences are possible should be identified.  
The consequences of an incorrect inference need to be 
evaluated.  If these consequences can lead to serious 
errors, a knowledge design problem exists, and the PGG 
should be reorganized. 
 
Continuing the driving example, if the driver applies the 
brakes at a stop sign, then the intent interpreter takes this 
action to be a step in a script for stopping the car and 
activates this script (which has as a next step to turn off 
the engine), disastrous results ensue.  This poor design 
can be corrected by simply removing the next step in the 
script; in this case it is better to restrict the intent 
interpreter’s capability to understand the situation. 

Error Monitoring 
Error monitoring involves evaluating the consequences of 
operator actions to determine if there are adverse 
consequences. If a driver has accelerated to 70 mph, and 
the associate knows the speed limit is 40 mph, it can warn 
the operator of a potentially dangerous (or costly) 
situation.  In general, if the operator’s action has 
dangerous consequences, it is flagged as an error.  In 
contrast, because an action cannot be explained does not 
imply necessarily that it is an error; the intent interpreter 
may not have access to sufficient information to explain 



the action.  For further discussion of error monitoring see 
Hammer and Geddes (1987). 

Following the operator’s lead 
One way to avoids conflicts between the operator and the 
planner is to let the operator take the lead at all times.  
The planner would not generate any actions to be 
performed by the system.  This would still permit the 
associate system functions of error monitoring and 
information management (see Howard, Hammer, and 
Geddes (1988) for a discussion of information 
management). 

Dealing with individual differences between 
operators 
Suppose Joe likes to take back roads on his trips.  His 
driving associate has been built so that it gives him route 
plans that use these back roads.  But one day Bill tries out 
this driving associate software and it drives him nuts 
because it never picks the interstate routes.  He ends up 
overriding the associate every time, and so the associate 
becomes useless.  The general problem is this: how do 
you accommodate differences between operators? 
 
One way of dealing with this is to identify key parameters 
associated with each planner decision.  A set of user 
preferences is then made available via a user interface.  
This, as it turns out, is not much different than traditional 
software applications. 
 
Another method would be for the associate to learn 
operator preferences.  This could use an algorithm similar 
to the intent interpretation algorithm.  Given operator 
selection of plans, what set of system preferences is 
compatible with those selections?  For example, Bill 
picks a route from point A to point B that uses interstates 
maximally.  There are alternative routes that use back 
roads.  Therefore the associate infers that Bill ‘prefers 
interstates’ and stores that fact in Bill’s user preferences. 
 
A more difficult situation occurs for multi-operator, 
multi-vehicles scenarios.  For example, in VTI the battle 
team is envisioned to have two operators in a single 
manned vehicle controlling as many as ten unmanned 
vehicles.  The operators can divide up control in any 
manner they deem appropriate.  But what if each operator 
has different preferences?   
 
If a set of user preferences is defined for each operator, 
one operator can be “in charge,” and so his or her 
preferences will be used.  Clearly this is inadequate for 
plans and goals that the “subordinate” operator is 
managing.  What is needed is for the associate to know, 
for a given plan, which operator is responsible for it.  If 
the intent interpreter inferred the plan, the operator that 

performed the action that lead to activation of the plan 
can be marked as the responsible operator.  If one uses the 
rule that all children of the plan inherit its responsible 
operator, then that operator’s preferences can be used 
with respect to the child plans and goals.  Another means 
of assigning a responsible operator is by having the 
operator who accepts a plan proposal be assigned the 
responsible operator for it and all its children (unless a 
child plan is proposed and accepted by a different 
operator).  These two methods provide almost full 
coverage concerning a responsible operator.  Only high-
level plans that are automatically accepted are not 
covered.  But by making an initial default designation of 
the responsible operator, full coverage can be obtained.  
See Geddes (1986) for additional research concerning 
individual differences and intent interpretation. 

Display of Plan Proposals 
There are two sets of additional information that can be 
provided with a planner’s proposal.  First, alternative plan 
proposals can be presented.  Second, rationale for picking 
a particular plan and its associated parameters can be 
displayed. 
 
Display of alternate proposals can to some degree help 
with the problem of user preferences.  If Jane tends to 
disagree with the planner’s decision concerning the best 
plan, Jane can simply select her favorite from the list of 
alternatives.  An even more flexible method, however, is 
to present the plan proposal in a dialog box that lists all 
the appropriate parameters and allows modification of 
those parameters.  The user could either modify specific 
parameters or, by selecting an alternative plan, have those 
parameters adjusted in the dialog box.  A more complex 
situation occurs when part of the plan includes 
information best represented graphically, such as a route.  
There needs to be some means of connecting the 
graphical information with the dialog box information.  A 
plausible option is to highlight or flash the related 
graphical information when the dialog box pops up and/or 
have a button on the dialog that does this. 
 
Displaying rationale for the proposal is a more complex 
problem.  In traditional rule-based systems, one might try 
displaying the chain of logic that lead to the proposal.  
Likewise, one might show the PGG parent instances that 
lead to the proposal.  But for typical users, who probably 
don’t know what a PGG is, or at least how it works, such 
information is unlikely to provide value. A simple “plain 
English” description of a decision algorithm the planner 
uses would allow users to have some idea of the rationale 
for the proposal.  Since decision algorithms are typically 
originally described in plain English by a domain expert 
(e.g., how a driver decides what route to take), this 
description could be provided to the user upon request 



(input parameter values used by the algorithm might also 
be included). 
A further consideration involves when to display rationale 
and/or alternatives.  There are three factors that would aid 
in determining this: the nature of the particular plan being 
proposed, the context in which the plan is being proposed, 
and the time criticality of the situation. 
 
As users become familiar with the associate system, 
providing rationale for a particular plan may be useless; 
the user already knows what the planner is doing.  For 
example, if a planner is providing a route that makes the 
most use of interstates, there is no useful rationale to be 
given.  Likewise, would it be of any benefit to display an 
alternate route that made slightly less use of interstates? 
 
Time factors can also influence whether or not to display 
rationale or alternatives.  In a highly dynamic 
environment, there won’t be enough time for the operator 
to ponder the rationale used by the associate. 
 
The associate needs to be able to identify situations when 
displaying additional information is not beneficial.  
Further, it should be able to know when not to display the 
proposal at all.  For example, if the anti-lock brakes on a 
car have engaged and the gas tank is getting low, it is not 
a good time to propose stopping at the nearest gas station.  
This implies that knowledge concerning the overall status 
of operations needs to be maintained and that plans 
should have a criticality factor assigned to them to 
prevent situations such as the one described above. 
 
As is the case with issues regarding operator preferences, 
multi-operator situations require careful knowledge 
engineering.  One way of handling the situation is to 
display all proposals to each operator.  The problem here 
is that operators will be distracted by proposals for which 
they are not concerned. Another is to only display 
proposals to the operator designated as responsible for 
that plan.  There is a problem here, too.  Once a plan has 
been assigned to an operator, and the assignment of 
responsibility algorithm describe above is used, the other 
operator will see no proposals for any of the child plans 
(unless that operator performs an action which leads the 
intent interpreter to activate one of these plans).  It is 
almost an “all or nothing” situation.  A compromise is to 
use the criticality factors discussed above.  Rules such as 
the following can be used: if the non-responsible operator 
is not busy, go ahead and display all plan proposals to 
him or her.  Otherwise, show only those proposals whose 
plans have been assigned to that operator.  As above, 
overall status of the system must be assessed so that it can 
be determined if the operator is busy. 

Summary 
In the associate work done by Applied Systems 
Intelligence, Inc. and others over the past 14 years, many 
of the problems concerning planner-intent interpreter 
interaction have been dealt with including: knowledge 
representation issues, asymmetries in planning and intent 
interpretation, and error monitoring. At this stage, it is a 
matter of refining the overall process of building 
associate systems.  What have been outlined here are 
various methods of doing this: methods for handling 
operator differences and plan proposals.  Future work in 
associate systems in areas such as unmanned systems and 
supply chain management will provide a testbed for these 
new methods as well as an opportunity to refine the old 
ones. 
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