
Principles of Collaborative Coordination: An Agenda for Furthering
Interactive Computational Intelligence

Derek Brock

Naval Research Laboratory
4555 Overlook Ave., S.W.

Washington, DC 20375
brock@itd.nrl.navy.mil

Abstract
In the past two decades, the underlying interaction model
for most software use has arguably remained unchanged
and is little more than an expedient design based on certain
superficial features of face-to-face communication that not
only fails to accommodate an important range of users’
native interaction skills, but also devotes few computational
resources to a useable artificial understanding of the
process, progress, and products of the implied collaboration.
This short paper examines how principles at work in
people’s collaborative activities with each other play out in
software use and takes the position that computational
implementation of these fundamental human interaction
concepts continues to be a relevant agenda for the artificial
intelligence and human-computer interaction communities.

Introduction
Human interaction with computational systems is aptly
characterized by Susan Brennan as “a kind of coordinated
action that bears many similarities to conversational
interaction” (Brennan 1998). In making this comparison,
Brennan goes on to say that the kind of coordinated action
she is referring to is collaborative action, or more
specifically, purposeful coordination between two or more
actors. Between people, this simply means doing things
together. In many respects, conversation is an epitome of
this process, but so too are ostensibly nonverbal
interactions such as shaking hands, passing food around a
table, or executing a double play. In each of these
undertakings, a core set of set of principles can be seen to
be at work that make it possible for each party in the
collaboration to coordinate his or her part in accomplishing
their social purposes. Ideally, software user interfaces are
conceived as designs for the coordination of information
processing, and so, are implicitly collaborative in
interactive settings in the rudimentary sense that they make
it possible for users to engage in purposeful activities with
them that facilitate goals that might otherwise be difficult
for people to achieve on their own. But while the means
and conventions for interacting with computational
systems may be verbal or nonverbal or some mix of the
two, the interaction model underlying a given interface is

rarely more than an expedient, ad hoc design that not only
fails to accommodate an important range of users’ native
interaction skills, but also devotes little or no
computational resources to a usable artificial
understanding of the process, progress, and products of the
collaboration. The goal of this short position paper, then, is
to examine how the principles at work in people’s
collaborations with each other function in software use and
continue to be a relevant agenda for the artificial
intelligence and human-computer interaction communities.
 People ordinarily take it for granted that they are
essentially alike in their abilities to perceive, recall, and
reason about activities they participate in alone or together.
As a consequence, when they set out to do something
together, they rely on an important set of expectations
about these abilities. They presume that each other’s
participatory experiences in their collaboration will be
largely the same in terms of what each attends to and what
each understands or believes has transpired. They also
count on each other to possess and coordinate a range of
complementary interaction skills that is made up of
procedures for orienting each other’s focus and attention in
various ways. Underlying these skills are the
complementary notions of speaker’s meaning and
addressee’s understanding, which in turn rely on common
ground, a term of art for the collective body of knowledge
that speakers and addressees take to be justifiably shared.
People rely on each other to express their intentions with
means that are easily worked out and, in turn, depend on
each other to provide evidence that their intended meaning
has either been understood or needs further elaboration.
This process is called grounding, and without each other’s
functional cooperation, the coordination of content and
process in their social interactions would present
insurmountable difficulties and ultimately foil their
collaborative purposes.
 These and other conceptualizations of the interrelated
factors that play a role in the mechanics of people’s
interactions with each other have, in recent years, become
increasingly well-articulated, particularly through the work
of Herbert Clark and his colleagues. Although Clark’s
work has grown out of what he calls an “action tradition”
in the study of language he traces to the philosophical

work of Austin, Grice, and Searle (Clark 1992), he has
come to the conclusion that language use in its
conventional, linguistic sense is simply a class or form of a
larger and more basic social phenomenon, namely, jointly
coordinated actions between people that involve meaning
and understanding through the use of signals (Clark 1996).
Taking the position, then, that all forms of functional
signaling between people can be construed as language
use, Clark’s framework provides a range of useful insights
about people’s collaborative skills and the coordination of
meaning.
 As a result, much has been made of the value of models
of language use for the design of human-computer
interaction. Brennan, for instance, has focused on what she
calls the grounding problem in computer user interfaces
and makes the point that “electronic contexts are often
impoverished” in terms of what they interactively convey
to users (Brennan 1998). The idea is that interfaces should
always be able to indicate to users whether or not their
inputs are accomplishing what they are intended to do. She
argues that the current dominance of so-called direct
manipulation interfaces is not as much due to their
graphical idiom and use of familiar workplace metaphors
as to the way, in certain respects, they represent and
provide verifiable evidence of the effects of users’ actions.
Her concern, though, turns on the fact that interface
designs generally lack an underlying, structured model of
the grounding process, and so, fail in unanticipated ways to
reliably indicate their processing state in response to
command interactions. In this view, user inputs should be
modeled as jointly grounded contributions to what is
functionally a dialogue. Just as human addressees indicate
the strength and state of their understanding of what has
been said to them with their responses, so too should an
interface coordinate its acceptance and uptake of a user’s
input by responding with appropriately positive or negative
evidence of its state of understanding, which can vary from
attending or not attending through acting on an input and
reporting the result. Similarly, according to this model, an
interface that is capable of treating the user as an addressee
should allow the user to coordinate with it on the degree
his or her understanding through a range of response
options. Not only does this provide users with better
information for diagnosing when their actions have
unintended effects the underlying system is not designed to
evaluate, but it also, when properly implemented, gives
users of mixed initiative systems better opportunities to
correct misunderstandings and more fully direct the course
and purpose of the interaction.

Viewing Human-Computer Interaction as an
Instance of Language Use Between People

In another example of how models of language use are
relevant to the design of human-computer interaction,
Brock argues that software use must be viewed as a true
instance of language use, not because of any similarity
between its interaction model and human discourse, but

because user interfaces are design artifacts that function as
a means for coordinating a particular class of collaborative
activities between people (Brock 2002). In this view, the
real participants are not the user and the machine, but
people acting as themselves in the roles of designer and
user.
 Several important insights are made possible by this
perspective. First, working with computer software in this
view is properly characterized as an activity with at least
two conceptual layers of action. In language use, layers are
conceptual domains of meaning and action that arise
above, outside of, or beyond the immediate domain of
activity. All interactions involve a primary layer in which
the parties involved coordinate the direct business of their
activity as themselves. In the primary layer of software
use, the designer and the user proceed by grounding the
designer’s meaning on the basis of the presentation,
arrangement, and actions of artifacts and other signals in
the interface. Secondary layers and beyond are identified
by references to entities, settings, and meanings that are
not necessarily understood to be present in the layer or
layers that lie below. In human-computer interaction, a
secondary layer is always present in the sense that users
take part in a collaborative activity that is designed to
imply that the computer, rather than the designer, is the
user’s real counterpart.
 Another issue that arises when software use is viewed as
an instance of language use is the notion of interaction
settings. The setting or circumstance in which a particular
interaction takes place has substantial consequences for
how its participants coordinate meaning and understanding
and any related actions. In particular, the kind of access a
setting, along with its medium and other constraints,
affords people to each other largely determines the sorts of
communication skills they will need and how difficult it
will be to accomplish their ends. For people, face-to-face
settings are generally viewed as the most basic and written
settings as possibly the most demanding. Software use
might seem at first to be an activity that takes place in a
face-to-face setting, but this, in fact, is only the case in its
second layer of activity, not in its first. Instead, the primary
layer of software use must be understood to take place in a
written setting because the interface design has been
entirely worked out and produced in advance of its
presentation, which users then take up at a later time. In
most respects, this is no different than the design of a web
page or, more to the point, the writing of an essay or a
book. Just as printed material requires a reader’s
collaboration to be understood and to achieve its social
purpose, so too, a user interface design requires a user’s
collaboration for it to be engaged properly, its
computational functions exercised, and the social result its
designer intended—facilitating the user’s computational
goals—achieved.
 If human-computer interaction, then, is a collaboration
between users and designers, albeit in a written setting, it
should be possible to examine how a range of language use
principles function in the joint coordination of this activity.
In Clark’s framework, the coordination of meaning and

understanding is idealized as a coordination problem that
one person poses for another and then both set out together
to solve. To do this, and do it efficiently, they require
certain ingredients and certain principles. The ingredients
are signals and the pair’s common ground, and the
principles apply to how these ingredients are used.
Common ground is taken to be built in part through shared
experience and in part through the process of grounding
knowledge and meaning in people’s interactions. As a
consequence, between collaborators, it can be roughly
conceptualized as a three-part, mutual idea of their activity
together: their common ground at the start, the state of
their activity now, and what has openly happened so far.
People expect each other to maintain an awareness of this
mutual knowledge so they can justify and refer to it with
signals, and so, use it to introduce and coordinate what
they decide to do together next. In posing coordination
problems for each other, they look for premises to be met
that will help them quickly converge on viable solutions
and reduce their combined effort. In particular, an idea of
the solution should already be in mind given what is
common ground, all of the information needed to reach the
solution should be provided (with the signals involved
functioning as a basis or device for indicating the
coordination itself), and the solution in this context should
be conspicuous and readily apparent. In written settings,
meeting these premises of solvability, sufficiency, and
joint salience is even more important because addressees
come to the discourse after its presentation has been
designed and have little recourse if something proves to be
incomprehensible. Writers intuitively know this and work
hard to find the right devices to coordinate the grounding
of their message. Capitalizing on devices that are likely to
be salient and familiar to addressees is one of the most
important considerations in this process since the inherent
immediacy of this type of information substantially
reduces the effort needed to work out intended meanings.
Two kinds of devices that readily serve this purpose, and
are often found together, are external representations and
conventions. Making use of external representations
involves the placement or appropriation of relevant items
or artifacts in a physical setting to indicate how
coordination should proceed. Conventions have an
analogous procedural function. They instantly signal how
to move forward because they are, in effect, settled and
reliable courses of action for commonly occurring
coordination problems in people’s dealings with each
other. Written settings epitomize the use of these devices.
Books and magazines are entirely composed of external
representations, which in turn, are mostly organized as
systematic, linear streams of conventional signals. An
important strength of this organizational convention is its
straightforward correspondence to the common ground
notion of what has happened so far, which makes the
knowledge established through this medium easy to review
when misunderstandings or other problems occur.
 Most of the features of language use outlined above can
be readily found in the first layer of software use. Like the
media of any written setting, its message is predominantly

coordinated with the user through set of external
representations and conventions that function as
coordination devices. The user grounds the designer’s
meaning through actions that he or she decides to
coordinate on the basis of the presentation, and, as is the
case in most written settings involving specialized
representations and procedures, the activity presupposes a
certain degree of literacy, which, in this case, concerns
computers and means for interacting with them. In
coordinating the software’s use, both the designer and the
user rely heavily on each other’s language use skills.
Designers strive to create interfaces whose functions are
self-evident on their face, and users expect to be able to
converge on viable coordination strategies for their
projects with little or no effort beyond what they would
need in any other written setting.
 A significant difficulty for the smooth function of this
collaborative process, though, lies in how the organization
of information in first layer of software use differs from
that of conventional written media. Almost all user
interface designs provide users with a large number of
interaction starting points and are consequently organized
in a fundamentally nonlinear manner. This first layer
content presentation idiom arguably has its basis in the
second layer ideal of face-to-face communication, but it
has unintended consequences for the process of meeting
the collaborative premises of solvability, sufficiency, and
joint salience. Since this organizational scheme
intentionally gives opportunistic control of the activity to
the user, the designer must relinquish his or her control
over the process of building a structured body of common
ground in the careful manner of a linear presentation. The
result is that users, through no fault of their own, are
inevitably led into coordination problems they have been
given insufficient information to solve due to a contingent
branching of their focus that few if any nontrivial interface
designs can fully anticipate. The problem is further
compounded for users by this written medium’s essential
lack of an intuitive representational correspondence with
the notion of what has openly happened so far in the
collaboration. Evidence of interactions is often
underrepresented, evanescent, or, far more often, simply
put away as the work moves forward, and there are
generally no provisions for indexing or reviewing a linear
history of the activity.

The picture that emerges in the first layer of software
use, then, is one of inherently incomplete common ground
between designers and users. However, the knowledge that
is successfully grounded in the first layer of this
collaboration is wholly relevant to the second layer’s
notion of face-to-face collaboration with the computer.
Without it, the purposes involved in software use would be
incomprehensible and interactions with computers would
be opaque exercises—as, in fact, some are. Difficulties that
arise from incomplete common ground are seldom show-
stoppers, but they nevertheless have a withering effect on
collaborative strategies users might wish to employ in the

second layer. In particular, it can be readily argued that
users ordinarily keep track of a running idea of their
interaction with the computer that corresponds in all
respects to the rough, three-part characterization of
common ground given earlier, albeit with the important
understanding that their implicit collaborator is an
information processing machine. However, since there is
generally no provision for the computer to maintain a
corresponding representation of this knowledge and,
further, since there are few if any affordances for the user
to participate in the coordination of such a representation,
users are left to justify their own notion of events and some
of their most important face-to-face language use skills go
largely unused.

Interactive Coordination of Artificial
Understanding in Software Use

As the preceding material has attempted to suggest, many
of the difficulties that arise in human-computer interaction
are due to presentation idioms that only attempt to honor
certain surface features of face-to-face collaborations such
as straightforward turn taking and the use of numerous
starting points for interaction. Although these conventions
of design are well-intentioned, they necessarily lead to
violations of language use principles that are essential for
meeting users’ collaborative expectations in the
coordination of software information processing tasks. At
a minimum, giving users access to a contextual record of
task events that have transpired so far would alleviate one
confound of nonlinear designs by making it possible for
users to reconcile their own conception of the activity with
what in fact has happened. A more sophisticated
implementation of a representation such as this would also
allow users to index and selectively return to, or make
forward use of, past computational products and states.
However, even remedies of this sort still leave the burden
of comprehension on the user, as it is for addressees in all
written settings. Hence, the broader intention here is to
emphasize the essential role that the technical notion of
common ground must play in the design of software user
interaction if collaborative activities with computers are to
move to a new and sustained level of utility.

Representation of common ground in human-computer
interaction is an important paradigm for current research in
both software user interface design and artificial
intelligence for at least two reasons. First, it is an
inherently hard problem. People’s notion of their common
ground is far more than a body of shared conventions and
a mutual record of events. For it to provide genuine
collaborative utility in the second layer of software use, it
must also entail a substantial range of computational
adjuncts whose ancillary roles include common sense
reasoning, functional awareness of how grounding events
relate to the purpose and goals of activities in the task
domain, the conception, bounding, revision, and

generalization of representations, and providing access to
the products of this artificial cognition in ways that
appropriately meet the expectations and needs of users. All
of these considerations involve issues that are prominent
themes in artificial intelligence and, indeed, all of the
collaborative principles of language use Clark describes
have become central concerns in computational linguistics.
Arguably, though, very little has changed in the basic
interaction model of software use in the past two decades,
and the advent of intelligent user interfaces appears to be
waiting for a unified approach. Such an approach could
begin with a standard contextual representation, such as
the record of events proposed above, that would then serve
as a basis for the application of computational techniques
designed to reason about this information and provide
access to it in ways that are intended match the
expectations of users in the normal exercise of their face-
to-face interaction skills. In the near term, implementation
of artificial understanding is likely to require an integrated
mosaic of computational techniques whose products can be
reconciled across a range of representations, such as the
approach developed in Polyscheme (Cassimatis 2002).
Managing the process of grounding (e.g., Cahn and
Brennan 1999, Traum 1994) and the coordination of
representations are likely to be two of the most useful
augmentations to the collaborative process for users.
Concepts that are relevant in grounding include access to
earlier products, salience and other issues for coordinating
meaning and action, justification of common ground, and
repairs. Coordinating representations is also a dominant
part of grounding. Concepts that are relevant to this
process include collaboration in referring (e.g., Heeman
and Hirst 1995) and the use of conventions (e.g., Alterman
and Garland 2001).

A second motivation for pursuing computational
strategies for the maintenance of common ground is to
share the user’s cognitive load. This is a long range goal
that ultimately will augment the range of human concerns
computers are likely to be useful for. A brief, but hardly
speculative, list of domains in which such a capacity would
be invaluable include situation awareness and decision
support in military environments and interactive robotic
assistance in any number of critical settings. A great
strength of social interaction for people is its capacity to
corroborate and revise their perceptions and to expand
their knowledge and experience. Persistent computational
representation of collaborative activities between humans
and computers and the development of appropriate
interaction strategies and techniques for its coordination
and use will prove in the end to be an indispensable
requisite if people are to benefit from the many advantages
robust machine cognition is certain to bring to human
endeavors.

References

Alterman, R. and Garland, A. 2001. Convention in Joint Activity.
Cognitive Science. 25(4): 611-657.

Brennan, S. E. 1998. The Grounding Problem in Conversations
With and Through Computers. In S. R. Fussell and R. J. Kreuz
eds. Social and Cognitive Psychological Approaches to
Interpersonal Communication, 201-225. Hillsdale, NJ: Lawrence
Erlbaum.

Brock, D. 2002. A Language Use Perspective on the Design of
Human-Computer Interaction. Proceedings: Office of Naval
Research TC3 Workshop: Cognitive Elements of Effective
Collaboration. University of San Diego. CA.

Cahn, J. E. and Brennan, S. E. 1999. A Psychological Model of
Grounding and Repair in Dialog. Proceedings, AAAI Fall
Symposium on Psychological Models of Communication in
Collaborative Systems, 25-33. North Falmouth, MA: American
Association for Artificial Intelligence.

Cassimatis, N. L. 2002. Polyscheme: A Cognitive Architecture
for Integrating Multiple Representation and Inference Schemes.
Ph.D. diss., Media Laboratory, Massachusetts Institute of
Technology, Cambridge, MA.

Clark, H. H. 1992. Arenas of Language Use. Chicago, IL: The
University of Chicago Press.

Clark, H. H. 1996. Using Language. Cambridge, England:
Cambridge University Press.

Heeman, P. and Hirst, G. 1995. Collaborating on referring
expressions. Computational Linguistics, 21(3): 351-382.

Traum, D. R. 1999. Computational Models of Grounding in
Collaborative Systems. Working Notes of AAAI Fall Symposium
on Psychological Models of Communication. 124-131. Menlo
Park, CA: American Association for Artificial Intelligence.

