
Comparative Analysis of Frameworks for Knowledge-Intensive Intelligent Agents

Randolph M Jones
Colby College & Soar Technology

5857 Mayflower Hill
Waterville, ME 04901-8858

Tel: 207.872.3831
rjones@soartech.com

Robert E Wray
Soar Technology

3600 Green Road Suite 600
Ann Arbor, MI 48105

Tel: 734.327.8000
wray@soartech.com

Abstract maintain awareness of its environment for a long period
of time. Additionally, knowledge-intensive agents must
be engineered such that their knowledge can be easily
updated as environment and task requirements change
during deployment.

This paper discusses representations and proc-
esses for agents and behavior models that encode
large knowledge bases, are long-lived, and ex-
hibit high degrees of competence and flexibility
while interacting with complex environments.
There are many different approaches to building
such agents, and understanding the important
commonalities and differences between ap-
proaches is often difficult. We introduce a new
approach to comparing approaches based on the
notions of deliberate commitment, reconsidera-
tion, and a categorization of representations. We
review three agent frameworks, concentrating on
the major representations and processes each di-
rectly supports. By organizing the approaches
according to a common nomenclature, the analy-
sis highlights points of similarity and difference
and suggests directions for integrating and unify-
ing disparate approaches and for incorporating
research results from one approach into alterna-
tive ones.

 Transfer and generalization of results from one frame-
work to others is usually slow and limited. The reasons
for such limited transfer include differences in nomencla-
ture and methodology that makes it more difficult to un-
derstand and apply results, and to specify low-level de-
tails that are not given by the frameworks, but become
important in actual implementation. Our goal is to de-
velop techniques that will minimize framework-specific
descriptions and that bridge the gap between a frame-
work’s theory and the details of its implementation, espe-
cially clarifying which details are intrinsic to particular
approaches and which are not.
 This paper reviews three existing agent frameworks in
order to explore what they specify (and do not) about an
agent’s construction. The chosen frameworks have
proven successful for building knowledge-intensive
agents or specifically address constraints on agents with
high levels of competence (such as human behavior mod-
els). We identify the representations and agent processes
that the frameworks dictate for agent design. This com-
parative analysis, to our knowledge, is novel and pro-
vides insights into the tradeoffs inherent in these systems
for building intelligent agents. The goal is truly com-
parative. Each system we review arguably has a unique
application niche, and we are not seeking to suggest one
framework is better than another. Rather, in comparing
them, especially in noting convergences and divergences
in knowledge-intensive agent applications, we seek to
develop a uniform methodology for comparing frame-
works and ultimately to speed the development and
evaluation of new agent architectures, by making re-
search results more communicable and transparent to
researchers not working within the specific subfield of AI
or Cognitive Science in which new architecture develop-
ments are made.

1 Overview
A variety of frameworks exist for designing intelligent
agents and behavior models. Although they have differ-
ent emphases, these frameworks each provide coherent,
high-level views of intelligent agency. However, more
pragmatically, much of the complexity of building intel-
ligent agents is in the low-level details, especially when
building agents that exhibit high degrees of competence
while interacting in complex environments. We call such
agents “knowledge-intensive”, to distinguish them from
smaller scale, single-task agents (e.g., service brokers)
that are often fielded in multi-agent systems. Good ex-
amples of fielded knowledge-intensive agents include a
real-time fault diagnosis system on the Space Shuttle
[Georgeff and Rao, 1996] and a real-time model of com-
bat pilots [Jones et al., 1999]. Knowledge-intensive
agents are also often used in “long-life” situations, where
a particular agent needs to behave appropriately and

2 Review of Agent Frameworks
We review three mature frameworks for intelligent
agents that represent three different theoretical traditions
(philosophical and logical, psychological, and func-

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

tional). Our intent is to consider the primary representa-
tional constructs and processes directly supported by
each. We focus on these aspects of agent frameworks
because an agent is essentially the sum of a system’s
knowledge (represented with particular constructs) and
the processes that operate on those constructs [Russell
and Norvig, 1994]. The goal of focusing on these types
of frameworks is that they provide integrated platforms
for building intelligent systems. They make commit-
ments to various representations and processes that are
necessarily dependent on each other. However, the
analysis will show that many of these dependencies ap-
pear at an architectural, or implementation, level. Using
an information-level analysis, we describe a more general
framework that specifies a space of potential representa-
tions and processes (abstracted away from their specific
implementations), together with a space of potential inte-
grations of these components.

We focus on frameworks that have been used to build
large-scale, highly capable agent systems. One motivat-
ing factor for this analysis was recognition that imple-
mented BDI and Soar systems, while originating from
different theoretical starting points, have converged on
similar solutions for large-scale systems. However, this
analysis is not complete. Other frameworks include addi-
tional representations and processes that may be impor-
tant for knowledge-intensive agent applications (e.g.,
4D/RCS [Albus, 2001], RETSINA [Payne et al., 2002]
and ACT-R [Anderson, 1998]). In the long term, we will
extend our analysis to these and other frameworks as
well.

2.1 BDI
The BDI (Beliefs-Desires-Intentions) framework pro-
vides a methodology for building competent agents that
are grounded in logical theories of rationality [Georgeff
and Lansky, 1987; Rao and Georgeff, 1995; Wooldridge,
2000]. A basic assumption in BDI is that intelligent
agents ought to be rational in a formal sense, meaning
rationality (as well as other properties) can be logically
proven. However, the framework goes beyond vague
notions of proof as rationality by providing an integrated
set of elements that serve as first-class representational
objects within a logical framework for reasoning. In
BDI, actions arise from internal constructs called inten-
tions. An intelligent agent cannot make rational deci-
sions about intentions until it has at least some represen-
tation of its beliefs about its situation. Any particular set
of beliefs may logically entail many different situations
that the agent considers desirable (subject to logical con-
straints governing desirability, together with preference
knowledge about goals). Given limited resources, how-
ever, the agent can often only act on some subset of these
desires, so the agent commits to subset, its intentions, to
pursue.

A BDI agent’s actions must be logically consistent
with its combination of beliefs and goals (again as speci-
fied by various logics for defining consistency in rational

agents). This property is not generally true of the other
frameworks we examine. BDI has a number of distinct
implementations, among them IRMA [Bratman et al,
1988], PRS [Georgeff and Lansky, 1987], dMARS
[d’Inverno et al, 1997], and JAM [Huber, 1999].

2.2 GOMS
GOMS (Goals, Operators, Methods, and Selections) was
developed from a psychological perspective as an analy-
sis tool mostly for human-computer interaction [Card et
al., 1983]. GOMS is not strictly an agent framework, but
it formalizes many details of high-level human reasoning
and interaction in the same spirit of integration as other
knowledge-intensive agent architectures. However,
GOMS is particularly interesting because knowledge-
intensive agents are often used to simulate human behav-
ior. Although GOMS has not been used to develop large-
scale systems, it has been used to represent the human
knowledge necessary for performing many tasks, includ-
ing complex human activity. We include GOMS because
the representation and process regularities it has identi-
fied are critical for knowledge-intensive agents that will
encode this type of knowledge. In addition, improve-
ments in efficiency increasingly allow executable cogni-
tive models to compete with AI architectures in applica-
tion areas (e.g., [John et al., 1994]).

GOMS systems explicitly encode hierarchical task de-
compositions, starting with a top-level task goal, plus a
number of methods, or plans, for achieving various types
of goals and subgoals. Each goal’s plan specifies a series
of actions (called operators) invoking subgoals or primi-
tive actions to complete the goal. Selection rules provide
conditional logic for choosing between plans based on
the agent’s current set of beliefs. Like BDI, GOMS is a
high-level framework, realized in a number of individual
implementations, such as GLEAN [Kieras et al., 1995],
APEX [Freed and Remington, 2000], CPM-GOMS [Gray
et al., 1993], and NGOMSGL [Kieras 1997]. Early im-
plementations of GOMS (as with many early agent archi-
tectures) relied on hand-crafted representations of prob-
lems and situations, instead of being situated in interac-
tive environments. However, many of the more recent
implementations contain integration subsystems to inter-
act with realistic environments, including running user-
interface models. These variations move GOMS even
closer to agent architectures, by requiring the models to
address explicitly issues of perception and action.

2.3 Soar
Soar has roots in cognitive psychology and computer
science, but it is primarily a functional approach to en-
coding intelligent behavior [Laird et al., 1987]. The con-
tinuing thread in Soar research has been to find a mini-
mal but sufficient set of mechanisms for producing intel-
ligent behavior. An additional hallmark of efforts with
Soar has been to focus on a principled integration of rep-
resentations and processes. These goals have resulted in

uniform representations of beliefs and knowledge, fixed
mechanisms for learning and intention selection, and
methods for integrating and interleaving all reasoning.

Like BDI, Soar’s principles are based in part on as-
sumed high-level constraints on intelligent behavior.
Foremost among these are the problem space hypothesis
[Newell, 1982] and the physical symbol systems hy-
pothesis [Newell, 1980]. Problem spaces modularize
long-term knowledge so that it can be brought to bear in
a goal-directed series of discrete steps. The problem
space hypothesis assumes rationality, similar to BDI.
However, where BDI frameworks generally provided
explicit logical encodings of rationality constraints or
principles, this has generally not been the case in Soar
systems (although it would certainly be possible to insert
similarly encoded constraints into Soar-based agents).
The physical symbol-systems hypothesis argues that any

entity that exhibits intelligence can be viewed as the
physical realization of a formal symbol-processing sys-
tem. The physical symbol systems hypothesis led to
Soar’s commitment to uniform representations of knowl-
edge and beliefs. For example, Soar’s design encourages
the development of models and knowledge representa-
tions that allow the same knowledge to be used for plan-
ning as for execution. Uniform knowledge representa-
tions also allow certain reflective capabilities, where a
model can create its own internal representations that
mimic the representations it might see from its perceptual
systems (or supply to its motor systems).

While Soar imposes strong constraints on fundamental
aspects of intelligence, it does not impose functionally
inspired high-level constraints (in the spirit of BDI’s use
of logic, or GOMS’ use of hierarchical goal decomposi-
tion). Thus, Soar is a lower level framework for reason-
ing than BDI and GOMS. Either BDI principles [Taylor
et al 2004] or GOMS principles [Peck and John 1992]
can be followed while using Soar as the implementation
architecture.

3 Analysis of Agent Frameworks
Each of these frameworks provides a coherent view of
agency and gives explicit attention to specific representa-
tions and processes for intelligent agents. They also re-
flect different points of emphasis, arising in part from the
theoretical traditions that produced them. However, none
of the frameworks cover all the points of emphasis.

Table 1 lists the union of a number of base-level repre-
sentations identified for BDI, GOMS, and Soar. The or-
der of the representations in the table suggests the basic
information flow from an external world (through per-
ceptual systems) into agent reasoning (cognition, the
primary focus of agent architectures) and then out to the
environment (through motor systems). The “representa-
tion” column specifies each framework’s implementation
data structure for the base-level representational element.
Each representation also requires a decision point in the
reasoning cycle, where an agent must choose from a set
of alternatives. We generalize Wooldridge’s [2000] con-
cept of intention commitment to specify the process an
agent uses to assert some instance of the base-level rep-
resentation. In Table 1, the “commitment” column
identifies the general process used to select among alter-
natives. Commitments also require maintenance; “recon-
sideration” is the determination of whether a commitment
remains valid (a generalization of intention reconsidera-
tion [Schutt and Wooldridge, 2001]).

3.1 Inputs
Any interactive agent must have a perceptual or input
system that provides a primitive representation of the
agent’s environment or situation. Neither BDI nor
GOMS specify any particular constraints on input. Soar
represents primitive perceptual elements in the same lan-
guage as beliefs, although it does not dictate the structure

 Representation Commitment Reconsideration
Inputs
 BDI Input language
 GOMS Input language
 Soar Working memory
Beliefs
 Entailments
 BDI Beliefs Logical inference Belief revision
 GOMS Working memory
 Soar Working memory Match/assert Reason maintenance
 Assumptions
 BDI Beliefs Plan language Plan language
 GOMS Working memory Operators Operators
 Soar Working memory Deliberation/Ops Operators
Desires
 BDI Desires Logic Logic
 GOMS
 Soar Proposed ops. Preferences Preferences
Active Goals
 BDI Intentions Deliberation Decision theory
 GOMS Goals Operators
 Soar Beliefs/Impasses Deliberation Reason maintenance
Plans
 BDI Plans Plan selection Soundness
 GOMS Methods Selection
 Soar Interleaving
Actions
 BDI Plan language Atomic actions
 GOMS Operators Operators
 Soar Primitive Ops Deliberation Reason maintenance
Outputs
 BDI Plan language Plan language
 GOMS Primitive ops. Conditional ops.
 Soar Working memory Conditional ops.
Table 1. Agent framework comparisons. Black, underlined
items are specific solutions provided by the framework. Grey
items are generally support provided by the framework. No
entry means the framework does not explicitly address the ele-
ment.

of the perceptual systems that create these elements.
However, the constraint that perceptual input must be
represented in the same language as beliefs has important
implications. Aside from their location in memory,
primitive perceptual representations are indistinguishable
from beliefs, which is consistent with Soar’s principle of
uniform knowledge representation. This makes it a rela-
tively simple matter to allow agents to deliberate over
potential input situations (or reflect on past or possible
future input experiences) and transfer that knowledge
directly to actual inputs.

3.2 Beliefs
From primitive perceptual elements, an agent creates in-
terpretations of the environment, or beliefs. Belief repre-
sentation is perhaps one of the most important distin-
guishing features between knowledge-intensive agents
and other agent systems. Before they can make choices
about goals and actions, knowledge-intensive agents
must spend significant effort creating stable representa-
tions of their understanding and interpretation of the en-
vironment.

Using the terminology of reason maintenance systems
[Forbus and deKleer, 1993], beliefs can be classified as
either entailments (or justified beliefs) or assumptions.
Entailments remain in memory only as long as they are
(logically) grounded in perceptual representations and
assumptions. Assumptions, by definition, receive a high
level of commitment and remain in memory, independent
of their continuing relevance to−and logical consistency
with−the external environment. Assumptions remain
asserted until the agent explicitly removes them. As-
sumptions are necessary because not all beliefs can be
grounded in current perception. For example, if an agent
needs to remember an object no longer in the field of
view, then it must commit to remembering (or “assum-
ing”) that the object still exists.

Neither GOMS nor BDI make an explicit distinction
between entailments and assumptions. They each pro-
vide general mechanisms for maintaining entailments,
but not specific solutions. Belief revision [Gardenfors,
1988] is the mechanism of entailment reconsideration in
the BDI framework, although details of the process are
only defined in various specific implementations. Soar
uses a reason maintenance system to assert and retract
entailments automatically. Reason maintenance ensures
that entailments are logically consistent and follow from
their antecedents. All three frameworks support assump-
tions. Soar requires that assumptions be created as the
result of deliberate commitments (operator effects).

Importantly, other frameworks use still other tech-
niques for managing the commitment and reconsideration
of beliefs. For example, 4D/RCS [Albus, 2001] uses a
limited capacity buffer, allowing only a fixed number of
assumptions to be asserted at any one time. ACT-R
[Anderson & Lebiere, 1998] employs sub-symbolic acti-
vation and decay mechanisms to manage assertions. By
making such design decisions explicit in this analysis, we

hope to facilitate a discussion of the trade-offs in these
decisions among different approaches, and to make it
more clear how to incorporate mechanisms from one ar-
chitecture into another architecture. For example, the
activation and decay mechanisms of ACT-R have re-
cently been incorporated into a hybrid architecture inte-
grating elements of ACT-R, Soar, and EPIC (EASE)
[Chong & Wray, in press]. This architecture uses Soar’s
reason maintenance to manage the assertion and retrac-
tion of beliefs, but ACT-R’s activation and decay mecha-
nisms to manage assumptions.

3.3 Desires
BDI is the only framework that clearly separates desires
from “normal” active goals (below). Desires allow an
agent to monitor goals that it has chosen not to pursue
explicitly. An additional advantage is that, by making its
desires explicit, an agent can communicate those desires
to another agent that may be able to achieve them
[Wooldridge, 2000]. Soar and GOMS do not specify that
desires should exist, how they should be represented, or
how they should influence reasoning. BDI manages
commitment to desires through logical inference.

3.4 Active Goals
A hallmark of intelligent behavior is the ability to com-
mit to a particular set of concerns and then pursue them
[Bratman, 1987; Newell, 1990]. Most agent frameworks
support explicit representation of the goals an agent has
committed to pursue. However, the agent literature is
somewhat inconsistent in its use of descriptive terms
relevant to goals. Wooldridge [2000] uses the term “in-
tentions” to label what we term active goals. In contrast,
some implementations of BDI do not represent active
goals distinctly from the selected plans that would
achieve these goals. In such systems, selected plans are
“intentions”, but there is no explicit representation of an
active goal apart from the plan. In Soar, an “intention” is
the next action selected from a current plan (which may
itself directly activate a goal). GOMS does not use the
term “intention”, but requires the explicit representation
of goals. To avoid confusion, we call these commitments
“active goals” to distinguish them from “inactive” desires
and plans, and we avoid the term “intention” because of
its overloaded usage in the literature and various imple-
mentations.

Agents require a process for selecting the current ac-
tive goal (or set of goals). BDI and Soar include explicit
processes for deliberate goal commitment, although goals
can be implemented in a variety of ways in Soar. In
GOMS, goal commitment occurs by invoking the plan
associated with the goal. Although this is a deliberative
process, it is not divided into separate steps as in the
other frameworks. This is similar to some of the BDI
implementations that implicitly attach active goals to
plans (e.g., Winikoff et al, 2002).

An important area of research explores the question of
when an agent should reconsider an active goal (e.g.,

Schutt and Wooldridge, 2001; Wray and Laird, 2003).
The BDI framework uses evaluations of soundness to
determine when an active goal should be reconsidered,
and more recently, has been extended to include deci-
sion-theoretic processes for intention reconsideration
[Schutt & Wooldridge, 2002]. Soar uses reason mainte-
nance, which is essentially an implementation of the
soundness criterion. GOMS uses selection rules to com-
mit to a goal, but does not explicitly address later recon-
sidering a goal.

3.5 Plans
Once there is an active goal to pursue, the agent must
commit to a plan of action. BDI and GOMS assume
there is a plan library, or some other method for generat-
ing plans outside the basic agent framework. Soar does
not require that an agent have an explicit representation
of a plan. More commonly, Soar agents associate indi-
vidual actions with goals (plan knowledge is implicit in
the execution knowledge), or interleave planning and
execution. Either way, Soar assumes that planning is a
deliberative task requiring the same machinery as any
other agent activity, and involving the same concerns of
commitment and resource usage. However, as with any
other unsupported base-level representation, Soar thus
forces the agent developer to implement the planning
algorithm and the representation of any plans.

GOMS and BDI do not specify plan languages, al-
though their implementations do. Soar has nothing like
the relatively rich GOMS and BDI plan languages, in-
stead using its operators to implement simple types of
commitment. The tradeoff is that complex plans are
much easier for a developer to program in GOMS and
BDI, but easier for a Soar agent to learn (because of the
simpler, uniform target language). Developers of GOMS
and BDI implementations must make decisions about
plan languages, leading to non-uniform solutions from
one implementation to another.

Plan commitment in BDI can be quite simple: plans
can be selected via a lookup table indexed by goal
[Wooldridge, 2000] or implied completely by goal selec-
tion, as in JAM. In sharp contrast, GOMS treats the
choice of which method to choose to pursue a goal as a
major element of the framework. Because Soar does not
have an architectural notion of a plan, there is no plan-
specific commitment mechanism. Soar also does not
make an explicit distinction between plan genera-
tion/selection and plan execution. Creating (or finding) a
plan involves a series of context-sensitive decisions and
operations, just as executing a plan does.

An agent can consider abandoning its current plan,
even when it has chosen to remain committed to its cur-
rent goal [Wooldridge, 2000]. The frameworks here do
not provide strong advice on when such a commitment
should be given up; BDI and Soar at least dictate that any
plan should be executed one action at a time, allowing
reconsideration of the plan after each step (although the
two disagree on how complex a single action can be).

Frameworks that use explicit plans may provide support
for abandoning a plan reactively (BDI) or ignore this
problem completely (GOMS). Soar, because it does not
require explicit plans, implicitly supports plan reconsid-
eration, because there is no separate commitment to a
plan in the first place. Thus, in Soar, an agent commits
to one action at a time, rather than committing to a whole
plan. The tradeoff is that Soar agents must include extra
knowledge to remain committed to a particular course of
action, and the implementation of this knowledge is up to
individual agent developers.

Other approaches to plan maintenance include using
“completable plans” [Gervasio and DeJong, 1994] and
allowing agents to switch back and forth between two or
more plans in support of multiple, orthogonal goals. Plan
switching is clearly a requirement for knowledge-
intensive agents in many complex domains, but none of
the frameworks specify how switching must occur. For
example, it is not clear whether any current implementa-
tions of BDI or GOMS support resumption of a partially
executed plan (reentrant plan execution). Many Soar
systems implement task switching, but they rely on extra
knowledge coded by the agent developer. This area de-
serves future attention, because reentrant plans provide a
key capability for knowledge-intensive intelligent agents
over more brittle behavior systems.

3.6 Actions
An agent must eventually commit to some type of action
relevant to its active goals. All three frameworks specify
three types of actions: execute an output command, up-
date the belief set, or commit to a new goal (or desire).
GOMS and Soar define operators as the atomic level of
action, allowing commitment and/or reconsideration for
each plan action. As an alternative, BDI systems gener-
ally provide a plan language that is a complete program-
ming language. Such languages provide powerful and
flexible means of plan implementation, but may leave
them outside the commitment regime of the framework.
BDI dictates that reconsideration ought to occur after
each plan step, but does not tightly constrain how much
processing may occur in a single step. This imposes a
tradeoff between ease of programming (BDI) and taking
advantage of the uniformity of the framework’s built-in
processes (GOMS and Soar).

Soar uses actions to create assumptions in the belief set
(thus, assumptions can only be the result of deliberate
decision making). Tying assumptions to actions is an
important issue. Automated, logical reason maintenance
is attractive, but there are pragmatic resource limitations
for updating an agent’s beliefs. Ideally, a rational agent
would compute all relevant entailments from any input.
But in complex environments, this is simply not compu-
tationally feasible (e.g., [Hill, 1999]).

3.7 Outputs
The ultimate level of commitment is to initiate activity in
the environment. To accomplish this, an agent invokes

an output system. All three frameworks assume that out-
put has to happen somehow, but do not impose strong
constraints on the representation of output. BDI leaves
output decisions up to the designer of the plan language.
GOMS insists that primitive operators produce any out-
put. As with perception, Soar requires that a motor
command be represented in Soar’s belief language, which
allows the agent to reason about and execute output
commands using the same agent knowledge. This is a
key aspect of Soar’s approach to integrated reasoning and
execution.

Systems that use completable plans may include condi-
tional outputs (possibly in addition to other conditional
actions). Soar conditionally decodes actions using the
same computational processes that it uses for maintaining
entailments. The instantiated completion of an action is
analogous to the automated elaboration of beliefs. Each
framework supports methods for executing completable
plans; some depending on plan language choices. Soar
specifies what the plan language has to be, and therefore
also specifies how plan completion occurs.

4 Conclusions
The research communities that use agent frameworks
continue to explore the issues that limit and inform the
development of highly competent intelligent agents
within their integrated frameworks (e.g., Harland and
Winikoff, 2001; Jones and Laird, 1997). However, too
little attention has been paid to understanding the com-
monalities and differences across frameworks. We have
attempted to contribute to this larger discussion by re-
viewing the directly supported representations and proc-
esses in three broadly differing agent frameworks. Con-
tinuing to identify and develop representations and proc-
esses for agents is an important research goal. Increas-
ingly, researchers are attending to processes necessary
for social agents, including normatives, values, obliga-
tions and teamwork. However, there are additional intra-
agent representations and processes that the frameworks
discussed here do not directly support and that may be so
widely necessary that they should be considered base-
level representations. Examples include deliberate atten-
tion [Hill, 1999], parallel active goals [Jones et al.,
1994], and architectural support for managing resource
limitations and conflicts [Meyer and Kieras, 1997].
Learning is also important for long-lived knowledge-
intensive agents. The migration of knowledge into (and
out of) long-term memory can also be studied in terms of
representations, commitment, and reconsideration, result-
ing in a complex space of learning mechanisms (e.g.,
along dimensions of automatic vs. deliberate learning, or
representations of procedural, declarative, and episodic
memories). This analysis lays the groundwork for ex-
tending and unifying the basic level representations and
processes needed for knowledge-intensive intelligent
agents.

References
Albus, J. 2001. Engineering of Mind: An Introduction to
the Science of Intelligent Systems. 2001: John Wiley and
Sons.
Anderson, J. R. and Lebiere, C. 1998. Atomic Compo-
nents of Thought. Hillsdale, NJ: Lawrence Erlbaum.
Bratman, M. E. 1987. Intentions, plans, and practical
reason. Cambridge, MA: Harvard University Press
Bratman, M. E., Israel, D. J., and Pollack, M. E. 1988.
Plans and resource-bounded practical reasoning. Compu-
tational Intelligence 4:349-355.
Card, S., Moran, T., and Newell, A. 1983. The psychol-
ogy of human-computer interaction. Hillsdale, NJ: Law-
rence Erlbaum.
Chong, R.S. 2003. The addition of an activation and de-
cay mechanism to the Soar architecture. in Fifth Interna-
tional Conference on Cognitive Modeling. Bamberg,
Germany: University of Bamberg.
Chong, R. S., & Wray, R. E. In press. Constraints on
Architectural Models: Elements of ACT-R, Soar and
EPIC in Human Learning and Performance. In K. Gluck
& R. Pew (Eds.), Modeling Human Behavior with Inte-
grated Cognitive Architectures: Comparison, Evalua-
tion, and Validation.
d'Inverno, M., Kinny, D., Luck, M., and Wooldridge, M.
1997. A formal specification of dMARS. In Singh, A.
Rao, and M. J. Wooldridge (eds.), Intelligent Agents IV
(LNAI Volume 1365), 155-176. Berlin: Springer Verlag.
Forbus, K. D., and deKleer, J. 1993. Building problem
solvers. Cambridge, MA: MIT Press.
Freed, M. A., and Remington, R. W. 2000. Making hu-
man-machine system simulation a practical engineering
tool: An Apex overview. Proceedings of the 2000 Inter-
national Conference on Cognitive Modeling.
Gardenfors, P. 1988. Knowledge in flux. Cambridge, MA:
MIT Press.
Georgeff, M. P., and Lansky, A. L. 1987. Reactive rea-
soning and planning. Proceedings of the Sixth National
Conference on Artificial Intelligence, 677-682. Menlo
Park, CA: AAAI Press.
Georgeff M. P. and Rao, A. S. 1996. A profile of the
Australian AI Institute. IEEE Expert, 11(6): 89-92.
Gervasio, M. T., and DeJong, G. F. 1994. An incre-
mental approach for completable planning. Machine
Learning: Proceedings of the Eleventh National Confer-
ence, 78-86. San Mateo, CA: Morgan Kaufmann.
Gray, W. D., John, B. E., and Atwood, M. E. 1993. Pro-
ject Ernestine: Validating a GOMS analysis for predict-
ing and explaining real-world performance. Human-
Computer Interaction 8(3): 237-309.
Harland, J., and Winikoff, M. 2001. Agents via mixed-
mode computation in linear logic: A proposal. Proceed-
ings of the ICLP'01 Workshop on Computational Logic in
Multi-Agent Systems. Paphos, Cyprus.
Hill, R. 1999. Modeling perceptual attention in virtual
humans. Proceedings of the Eighth Conference on Com-
puter Generated Forces and Behavior Representation.
Orlando, FL.

Huber, M. J. 1999. JAM: A BDI-theoretic mobile agent
architecture. Proceedings of the Third International
Conference on Autonomous Agents, 236-243.
John, B. E., Vera, A. H., and Newell, A. 1994. Toward
real-time GOMS: A model of expert behavior in a highly
interactive task. Behavior and Information Technology
13(4): 255-267.
 Jones, R. M., Laird, J. E., Nielsen, P. E. at al. 1999.
Automated Intelligent Pilots for Combat Flight Simula-
tion. AI Magazine. 20(1): 27-42.
Jones, R. M., and Laird, J. E. 1997. Constraints on the
design of a high-level model of cognition. Proceedings of
the Nineteenth Annual Conference of the Cognitive Sci-
ence Society.
Jones, R. M., Laird, J. E., Tambe, M., and Rosenbloom,
P. S. 1994. Generating behavior in response to interact-
ing goals. Proceedings of the Fourth Conference on
Computer Generated Forces and Behavior Representa-
tion, 325-332. Orlando, FL.
Kieras, D. E. 1997. A guide to GOMS model usability
evaluation using NGOMSL. In M. Helander, T. Lan-
dauer, and P. Prabhu (eds.), Handbook of human-
computer interaction, 733-766. North-Holland.
Kieras, D. E., Wood, S. D., Abotel, K., and Hornof, A.
1995. GLEAN: A computer-based tool for rapid GOMS
model usability evaluation of user interface designs.
Proceedings of the ACM symposium on User Interface
Software and Technology.
Laird, J. E., Newell, A., and Rosenbloom, P. S. 1987.
Soar: An architecture for general intelligence. Artificial
Intelligence 33(1): 1-64.
Meyer, D., and Kieras, D. 1997. EPIC: A computational
theory of executive cognitive processes and multiple-task
performance: Part 1. Psychological Review 104:3-65,
Newell, A. 1980. Physical symbol systems. Cognitive
Science 4:135-183.
Newell, A. 1982. The knowledge level. Artificial Intel-
ligence 18(1): 87-127.
Newell, A. 1990. Unified theories of cognition. Cam-
bridge, MA: Harvard University Press.
Payne, T. R., Singh, R., & Sycara, K. 2002. Calendar
agents on the semantic web. IEEE Intelligent Systems,
17(3): 84-86,
Peck, V. A., and John, B. E. 1992. Browser-Soar: A
computational model of a highly interactive task. In P.
Bauersfeld, J. Bennett, and G. Lynch (eds.), ACM CHI
'92 Conference on Human Factors in Computing Sys-
tems, 165-172. New York: ACM Press.
Rao, A., and Georgeff, M. 1995, BDI agents: From the-
ory to practice. Proceedings of the First Intl. Conference
on Multiagent Systems. San Francisco.
Schutt, M. C., and Wooldridge, M. 2001. Principles of
intention reconsideration. Proceedings of the Fifth Inter-
national Conference on Autonomous Agents, 209-216.
New York: ACM Press.
Taylor, G., Frederiksen, R., Vane, R. and Waltz, E. 2004.
Agent-based simulation of geo-political conflict. 2004

Innovative Applications of Artificial Intelligence. San
Jose.
Winikoff, M., Padgham, L., Harland, J.,Thangarajah, J.
Declarative and Procedural Goals in Intelligent Agent
Systems. In proceedings of the Eighth International Con-
ference on Principles of Knowledge Representation and
Reasoning (KR2002), April 22-25, 2002, Toulouse,
France.
Wooldridge, M. 2000. Reasoning about Rational Agents.
Cambridge, MA: MIT Press.
Wray, R.E. and J.E. Laird. 2003. An architectural ap-
proach to consistency in hierarchical execution. Journal
of Artificial Intelligence Research. 19: p. 355-398.

http://www.kr.org/kr/kr02/

	Inputs
	BDI

