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Abstract maintain awareness of its environment for a long period 
of time.  Additionally, knowledge-intensive agents must 
be engineered such that their knowledge can be easily 
updated as environment and task requirements change 
during deployment.   

This paper discusses representations and proc-
esses for agents and behavior models that encode 
large knowledge bases, are long-lived, and ex-
hibit high degrees of competence and flexibility 
while interacting with complex environments. 
There are many different approaches to building 
such agents, and understanding the important 
commonalities and differences between ap-
proaches is often difficult.  We introduce a new 
approach to comparing approaches based on the 
notions of deliberate commitment, reconsidera-
tion, and a categorization of representations.  We 
review three agent frameworks, concentrating on 
the major representations and processes each di-
rectly supports.  By organizing the approaches 
according to a common nomenclature, the analy-
sis highlights points of similarity and difference 
and suggests directions for integrating and unify-
ing disparate approaches and for incorporating 
research results from one approach into alterna-
tive ones. 

   Transfer and generalization of results from one frame-
work to others is usually slow and limited.  The reasons 
for such limited transfer include differences in nomencla-
ture and methodology that makes it more difficult to un-
derstand and apply results, and to specify low-level de-
tails that are not given by the frameworks, but become 
important in actual implementation.  Our goal is to de-
velop techniques that will minimize framework-specific 
descriptions and that bridge the gap between a frame-
work’s theory and the details of its implementation, espe-
cially clarifying which details are intrinsic to particular 
approaches and which are not.   
   This paper reviews three existing agent frameworks in 
order to explore what they specify (and do not) about an 
agent’s construction.  The chosen frameworks have 
proven successful for building knowledge-intensive 
agents or specifically address constraints on agents with 
high levels of competence (such as human behavior mod-
els).  We identify the representations and agent processes 
that the frameworks dictate for agent design.    This com-
parative analysis, to our knowledge, is novel and pro-
vides insights into the tradeoffs inherent in these systems 
for building intelligent agents.   The goal is truly com-
parative.  Each system we review arguably has a unique 
application niche, and we are not seeking to suggest one 
framework is better than another.  Rather, in comparing 
them, especially in noting convergences and divergences 
in knowledge-intensive agent applications, we seek to 
develop a uniform methodology for comparing frame-
works and ultimately to speed the development and 
evaluation of new agent architectures, by making re-
search results more communicable and transparent to 
researchers not working within the specific subfield of AI 
or Cognitive Science in which new architecture develop-
ments are made.   

1 Overview 
A variety of frameworks exist for designing intelligent 
agents and behavior models.  Although they have differ-
ent emphases, these frameworks each provide coherent, 
high-level views of intelligent agency.  However, more 
pragmatically, much of the complexity of building intel-
ligent agents is in the low-level details, especially when 
building agents that exhibit high degrees of competence 
while interacting in complex environments.  We call such 
agents “knowledge-intensive”, to distinguish them from 
smaller scale, single-task agents (e.g., service brokers) 
that are often fielded in multi-agent systems.  Good ex-
amples of fielded knowledge-intensive agents include a 
real-time fault diagnosis system on the Space Shuttle 
[Georgeff and Rao, 1996] and a real-time model of com-
bat pilots [Jones et al., 1999].  Knowledge-intensive 
agents are also often used in “long-life” situations, where 
a particular agent needs to behave appropriately and  
______________ 

2 Review of Agent Frameworks 
We review three mature frameworks for intelligent 
agents that represent three different theoretical traditions 
(philosophical and logical, psychological, and func-
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tional).  Our intent is to consider the primary representa-
tional constructs and processes directly supported by 
each. We focus on these aspects of agent frameworks 
because an agent is essentially the sum of a system’s 
knowledge (represented with particular constructs) and 
the processes that operate on those constructs [Russell 
and Norvig, 1994].  The goal of focusing on these types 
of frameworks is that they provide integrated platforms 
for building intelligent systems.  They make commit-
ments to various representations and processes that are 
necessarily dependent on each other.  However, the 
analysis will show that many of these dependencies ap-
pear at an architectural, or implementation, level.  Using 
an information-level analysis, we describe a more general 
framework that specifies a space of potential representa-
tions and processes (abstracted away from their specific 
implementations), together with a space of potential inte-
grations of these components. 

We focus on frameworks that have been used to build 
large-scale, highly capable agent systems.  One motivat-
ing factor for this analysis was recognition that imple-
mented BDI and Soar systems, while originating from 
different theoretical starting points, have converged on 
similar solutions for large-scale systems.   However, this 
analysis is not complete.  Other frameworks include addi-
tional representations and processes that may be impor-
tant for knowledge-intensive agent applications (e.g., 
4D/RCS [Albus, 2001], RETSINA [Payne et al., 2002] 
and ACT-R [Anderson, 1998]).  In the long term, we will 
extend our analysis to these and other frameworks as 
well. 

2.1 BDI 
The BDI (Beliefs-Desires-Intentions) framework pro-
vides a methodology for building competent agents that 
are grounded in logical theories of rationality [Georgeff 
and Lansky, 1987; Rao and Georgeff, 1995; Wooldridge, 
2000].  A basic assumption in BDI is that intelligent 
agents ought to be rational in a formal sense, meaning 
rationality (as well as other properties) can be logically 
proven.   However, the framework goes beyond vague 
notions of proof as rationality by providing an integrated 
set of elements that serve as first-class representational 
objects within a logical framework for reasoning.  In 
BDI, actions arise from internal constructs called inten-
tions.  An intelligent agent cannot make rational deci-
sions about intentions until it has at least some represen-
tation of its beliefs about its situation.  Any particular set 
of beliefs may logically entail many different situations 
that the agent considers desirable (subject to logical con-
straints governing desirability, together with preference 
knowledge about goals).  Given limited resources, how-
ever, the agent can often only act on some subset of these 
desires, so the agent commits to subset, its intentions, to 
pursue. 

A BDI agent’s actions must be logically consistent 
with its combination of beliefs and goals (again as speci-
fied by various logics for defining consistency in rational 

agents).  This property is not generally true of the other 
frameworks we examine.  BDI has a number of distinct 
implementations, among them IRMA [Bratman et al, 
1988], PRS [Georgeff and Lansky, 1987], dMARS 
[d’Inverno et al, 1997], and JAM [Huber, 1999].   

2.2 GOMS 
GOMS (Goals, Operators, Methods, and Selections) was 
developed from a psychological perspective as an analy-
sis tool mostly for human-computer interaction [Card et 
al., 1983].  GOMS is not strictly an agent framework, but 
it formalizes many details of high-level human reasoning 
and interaction in the same spirit of integration as other 
knowledge-intensive agent architectures.  However, 
GOMS is particularly interesting because knowledge-
intensive agents are often used to simulate human behav-
ior. Although GOMS has not been used to develop large-
scale systems, it has been used to represent the human 
knowledge necessary for performing many tasks, includ-
ing complex human activity.  We include GOMS because 
the representation and process regularities it has identi-
fied are critical for knowledge-intensive agents that will 
encode this type of knowledge.  In addition, improve-
ments in efficiency increasingly allow executable cogni-
tive models to compete with AI architectures in applica-
tion areas (e.g., [John et al., 1994]).   

GOMS systems explicitly encode hierarchical task de-
compositions, starting with a top-level task goal, plus a 
number of methods, or plans, for achieving various types 
of goals and subgoals.  Each goal’s plan specifies a series 
of actions (called operators) invoking subgoals or primi-
tive actions to complete the goal.  Selection rules provide 
conditional logic for choosing between plans based on 
the agent’s current set of beliefs.  Like BDI, GOMS is a 
high-level framework, realized in a number of individual 
implementations, such as GLEAN [Kieras et al., 1995], 
APEX [Freed and Remington, 2000], CPM-GOMS [Gray 
et al., 1993], and NGOMSGL [Kieras 1997]. Early im-
plementations of GOMS (as with many early agent archi-
tectures) relied on hand-crafted representations of prob-
lems and situations, instead of being situated in interac-
tive environments.  However, many of the more recent 
implementations contain integration subsystems to inter-
act with realistic environments, including running user-
interface models.  These variations move GOMS even 
closer to agent architectures, by requiring the models to 
address explicitly issues of perception and action. 

2.3 Soar 
Soar has roots in cognitive psychology and computer 
science, but it is primarily a functional approach to en-
coding intelligent behavior [Laird et al., 1987].  The con-
tinuing thread in Soar research has been to find a mini-
mal but sufficient set of mechanisms for producing intel-
ligent behavior.  An additional hallmark of efforts with 
Soar has been to focus on a principled integration of rep-
resentations and processes.  These goals have resulted in 



uniform representations of beliefs and knowledge, fixed 
mechanisms for learning and intention selection, and 
methods for integrating and interleaving all reasoning. 

Like BDI, Soar’s principles are based in part on as-
sumed high-level constraints on intelligent behavior.  
Foremost among these are the problem space hypothesis 
[Newell, 1982] and the physical symbol systems hy-
pothesis [Newell, 1980].  Problem spaces modularize 
long-term knowledge so that it can be brought to bear in 
a goal-directed series of discrete steps.  The problem 
space hypothesis assumes rationality, similar to BDI.  
However, where BDI frameworks generally provided 
explicit logical encodings of rationality constraints or 
principles, this has generally not been the case in Soar 
systems (although it would certainly be possible to insert 
similarly encoded constraints into Soar-based agents).  
The physical symbol-systems hypothesis argues that any 

entity that exhibits intelligence can be viewed as the 
physical realization of a formal symbol-processing sys-
tem.  The physical symbol systems hypothesis led to 
Soar’s commitment to uniform representations of knowl-
edge and beliefs.  For example, Soar’s design encourages 
the development of models and knowledge representa-
tions that allow the same knowledge to be used for plan-
ning as for execution.  Uniform knowledge representa-
tions also allow certain reflective capabilities, where a 
model can create its own internal representations that 
mimic the representations it might see from its perceptual 
systems (or supply to its motor systems). 

While Soar imposes strong constraints on fundamental 
aspects of intelligence, it does not impose functionally 
inspired high-level constraints (in the spirit of BDI’s use 
of logic, or GOMS’ use of hierarchical goal decomposi-
tion).  Thus, Soar is a lower level framework for reason-
ing than BDI and GOMS.  Either BDI principles [Taylor 
et al 2004] or GOMS principles [Peck and John 1992] 
can be followed while using Soar as the implementation 
architecture. 

3 Analysis of Agent Frameworks 
Each of these frameworks provides a coherent view of 
agency and gives explicit attention to specific representa-
tions and processes for intelligent agents.  They also re-
flect different points of emphasis, arising in part from the 
theoretical traditions that produced them.  However, none 
of the frameworks cover all the points of emphasis.   

Table 1 lists the union of a number of base-level repre-
sentations identified for BDI, GOMS, and Soar. The or-
der of the representations in the table suggests the basic 
information flow from an external world (through per-
ceptual systems) into agent reasoning (cognition, the 
primary focus of agent architectures) and then out to the 
environment (through motor systems).  The “representa-
tion” column specifies each framework’s implementation 
data structure for the base-level representational element.  
Each representation also requires a decision point in the 
reasoning cycle, where an agent must choose from a set 
of alternatives.  We generalize Wooldridge’s [2000] con-
cept of intention commitment to specify the process an 
agent uses to assert some instance of the base-level rep-
resentation.    In Table 1, the “commitment” column 
identifies the general process used to select among alter-
natives.  Commitments also require maintenance; “recon-
sideration” is the determination of whether a commitment 
remains valid (a generalization of intention reconsidera-
tion [Schutt and Wooldridge, 2001]).  

3.1 Inputs 
Any interactive agent must have a perceptual or input 
system that provides a primitive representation of the 
agent’s environment or situation.  Neither BDI nor 
GOMS specify any particular constraints on input.  Soar 
represents primitive perceptual elements in the same lan-
guage as beliefs, although it does not dictate the structure 

   Representation Commitment Reconsideration 
Inputs    
 BDI Input language     
 GOMS Input language    
 Soar Working memory     
Beliefs    
 Entailments       
 BDI Beliefs Logical inference Belief revision 
 GOMS Working memory    
 Soar Working memory Match/assert Reason maintenance
 Assumptions    
 BDI Beliefs Plan language Plan language 
 GOMS Working memory Operators Operators 
 Soar Working memory Deliberation/Ops Operators 
Desires    
 BDI Desires Logic Logic 
 GOMS      
 Soar Proposed ops. Preferences Preferences 
Active Goals    
 BDI Intentions Deliberation Decision theory 
 GOMS Goals Operators   
 Soar Beliefs/Impasses Deliberation Reason maintenance
Plans    
 BDI Plans Plan selection Soundness 
 GOMS Methods Selection   
 Soar     Interleaving 
Actions    
 BDI Plan language Atomic actions   
 GOMS Operators Operators   
 Soar Primitive Ops Deliberation Reason maintenance
Outputs    
 BDI Plan language Plan language   
 GOMS Primitive ops. Conditional ops.   
 Soar Working memory Conditional ops.   
Table 1.  Agent framework comparisons.  Black, underlined 
items are specific solutions provided by the framework.  Grey 
items are generally support provided by the framework.  No 
entry means the framework does not explicitly address the ele-
ment. 



of the perceptual systems that create these elements.  
However, the constraint that perceptual input must be 
represented in the same language as beliefs has important 
implications.  Aside from their location in memory, 
primitive perceptual representations are indistinguishable 
from beliefs, which is consistent with Soar’s principle of 
uniform knowledge representation.  This makes it a rela-
tively simple matter to allow agents to deliberate over 
potential input situations (or reflect on past or possible 
future input experiences) and transfer that knowledge 
directly to actual inputs.   

3.2 Beliefs 
From primitive perceptual elements, an agent creates in-
terpretations of the environment, or beliefs.  Belief repre-
sentation is perhaps one of the most important distin-
guishing features between knowledge-intensive agents 
and other agent systems.  Before they can make choices 
about goals and actions, knowledge-intensive agents 
must spend significant effort creating stable representa-
tions of their understanding and interpretation of the en-
vironment.  

Using the terminology of reason maintenance systems 
[Forbus and deKleer, 1993], beliefs can be classified as 
either entailments (or justified beliefs) or assumptions.  
Entailments remain in memory only as long as they are 
(logically) grounded in perceptual representations and 
assumptions.  Assumptions, by definition, receive a high 
level of commitment and remain in memory, independent 
of their continuing relevance to−and logical consistency 
with−the external environment.  Assumptions remain 
asserted until the agent explicitly removes them. As-
sumptions are necessary because not all beliefs can be 
grounded in current perception.  For example, if an agent 
needs to remember an object no longer in the field of 
view, then it must commit to remembering (or “assum-
ing”) that the object still exists.   

Neither GOMS nor BDI make an explicit distinction 
between entailments and assumptions.  They each pro-
vide general mechanisms for maintaining entailments, 
but not specific solutions.  Belief revision [Gardenfors, 
1988] is the mechanism of entailment reconsideration in 
the BDI framework, although details of the process are 
only defined in various specific implementations.  Soar 
uses a reason maintenance system to assert and retract 
entailments automatically.  Reason maintenance ensures 
that entailments are logically consistent and follow from 
their antecedents.  All three frameworks support assump-
tions. Soar requires that assumptions be created as the 
result of deliberate commitments (operator effects).   

Importantly, other frameworks use still other tech-
niques for managing the commitment and reconsideration 
of beliefs.  For example, 4D/RCS [Albus, 2001] uses a 
limited capacity buffer, allowing only a fixed number of 
assumptions to be asserted at any one time.  ACT-R 
[Anderson & Lebiere, 1998] employs sub-symbolic acti-
vation and decay mechanisms to manage assertions.  By 
making such design decisions explicit in this analysis, we 

hope to facilitate a discussion of the trade-offs in these 
decisions among different approaches, and to make it 
more clear how to incorporate mechanisms from one ar-
chitecture into another architecture.  For example, the 
activation and decay mechanisms of ACT-R have re-
cently been incorporated into a hybrid architecture inte-
grating elements of ACT-R, Soar, and EPIC (EASE) 
[Chong & Wray, in press].  This architecture uses Soar’s 
reason maintenance to manage the assertion and retrac-
tion of beliefs, but ACT-R’s activation and decay mecha-
nisms to manage assumptions. 

3.3 Desires   
BDI is the only framework that clearly separates desires 
from “normal” active goals (below).  Desires allow an 
agent to monitor goals that it has chosen not to pursue 
explicitly.  An additional advantage is that, by making its 
desires explicit, an agent can communicate those desires 
to another agent that may be able to achieve them 
[Wooldridge, 2000]. Soar and GOMS do not specify that 
desires should exist, how they should be represented, or 
how they should influence reasoning.    BDI manages 
commitment to desires through logical inference. 

3.4 Active Goals 
A hallmark of intelligent behavior is the ability to com-
mit to a particular set of concerns and then pursue them 
[Bratman, 1987; Newell, 1990].  Most agent frameworks 
support explicit representation of the goals an agent has 
committed to pursue.  However, the agent literature is 
somewhat inconsistent in its use of descriptive terms 
relevant to goals.  Wooldridge [2000] uses the term “in-
tentions” to label what we term active goals.  In contrast, 
some implementations of BDI do not represent active 
goals distinctly from the selected plans that would 
achieve these goals.  In such systems, selected plans are 
“intentions”, but there is no explicit representation of an 
active goal apart from the plan. In Soar, an “intention” is 
the next action selected from a current plan (which may 
itself directly activate a goal).  GOMS does not use the 
term “intention”, but requires the explicit representation 
of goals.  To avoid confusion, we call these commitments 
“active goals” to distinguish them from “inactive” desires 
and plans, and we avoid the term “intention” because of 
its overloaded usage in the literature and various imple-
mentations.   

Agents require a process for selecting the current ac-
tive goal (or set of goals).  BDI and Soar include explicit 
processes for deliberate goal commitment, although goals 
can be implemented in a variety of ways in Soar.  In 
GOMS, goal commitment occurs by invoking the plan 
associated with the goal.  Although this is a deliberative 
process, it is not divided into separate steps as in the 
other frameworks.  This is similar to some of the BDI 
implementations that implicitly attach active goals to 
plans (e.g., Winikoff et al, 2002). 

An important area of research explores the question of 
when an agent should reconsider an active goal (e.g., 



Schutt and Wooldridge, 2001; Wray and Laird, 2003).  
The BDI framework uses evaluations of soundness to 
determine when an active goal should be reconsidered, 
and more recently, has been extended to include deci-
sion-theoretic processes for intention reconsideration 
[Schutt & Wooldridge, 2002].  Soar uses reason mainte-
nance, which is essentially an implementation of the 
soundness criterion.  GOMS uses selection rules to com-
mit to a goal, but does not explicitly address later recon-
sidering a goal. 

3.5 Plans 
Once there is an active goal to pursue, the agent must 
commit to a plan of action.  BDI and GOMS assume 
there is a plan library, or some other method for generat-
ing plans outside the basic agent framework.    Soar does 
not require that an agent have an explicit representation 
of a plan.  More commonly, Soar agents associate indi-
vidual actions with goals (plan knowledge is implicit in 
the execution knowledge), or interleave planning and 
execution. Either way, Soar assumes that planning is a 
deliberative task requiring the same machinery as any 
other agent activity, and involving the same concerns of 
commitment and resource usage. However, as with any 
other unsupported base-level representation, Soar thus 
forces the agent developer to implement the planning 
algorithm and the representation of any plans.   

GOMS and BDI do not specify plan languages, al-
though their implementations do.  Soar has nothing like 
the relatively rich GOMS and BDI plan languages, in-
stead using its operators to implement simple types of 
commitment.  The tradeoff is that complex plans are 
much easier for a developer to program in GOMS and 
BDI, but easier for a Soar agent to learn (because of the 
simpler, uniform target language).  Developers of GOMS 
and BDI implementations must make decisions about 
plan languages, leading to non-uniform solutions from 
one implementation to another. 

Plan commitment in BDI can be quite simple: plans 
can be selected via a lookup table indexed by goal 
[Wooldridge, 2000] or implied completely by goal selec-
tion, as in JAM.  In sharp contrast, GOMS treats the 
choice of which method to choose to pursue a goal as a 
major element of the framework.  Because Soar does not 
have an architectural notion of a plan, there is no plan-
specific commitment mechanism.  Soar also does not 
make an explicit distinction between plan genera-
tion/selection and plan execution.  Creating (or finding) a 
plan involves a series of context-sensitive decisions and 
operations, just as executing a plan does. 

An agent can consider abandoning its current plan, 
even when it has chosen to remain committed to its cur-
rent goal [Wooldridge, 2000].  The frameworks here do 
not provide strong advice on when such a commitment 
should be given up; BDI and Soar at least dictate that any 
plan should be executed one action at a time, allowing 
reconsideration of the plan after each step (although the 
two disagree on how complex a single action can be).  

Frameworks that use explicit plans may provide support 
for abandoning a plan reactively (BDI) or ignore this 
problem completely (GOMS).  Soar, because it does not 
require explicit plans, implicitly supports plan reconsid-
eration, because there is no separate commitment to a 
plan in the first place.  Thus, in Soar, an agent commits 
to one action at a time, rather than committing to a whole 
plan.  The tradeoff is that Soar agents must include extra 
knowledge to remain committed to a particular course of 
action, and the implementation of this knowledge is up to 
individual agent developers.   

Other approaches to plan maintenance include using 
“completable plans” [Gervasio and DeJong, 1994] and 
allowing agents to switch back and forth between two or 
more plans in support of multiple, orthogonal goals.  Plan 
switching is clearly a requirement for knowledge-
intensive agents in many complex domains, but none of 
the frameworks specify how switching must occur.  For 
example, it is not clear whether any current implementa-
tions of BDI or GOMS support resumption of a partially 
executed plan (reentrant plan execution).  Many Soar 
systems implement task switching, but they rely on extra 
knowledge coded by the agent developer.  This area de-
serves future attention, because reentrant plans provide a 
key capability for knowledge-intensive intelligent agents 
over more brittle behavior systems. 

3.6 Actions 
An agent must eventually commit to some type of action 
relevant to its active goals.  All three frameworks specify 
three types of actions: execute an output command, up-
date the belief set, or commit to a new goal (or desire).  
GOMS and Soar define operators as the atomic level of 
action, allowing commitment and/or reconsideration for 
each plan action.  As an alternative, BDI systems gener-
ally provide a plan language that is a complete program-
ming language.  Such languages provide powerful and 
flexible means of plan implementation, but may leave 
them outside the commitment regime of the framework.  
BDI dictates that reconsideration ought to occur after 
each plan step, but does not tightly constrain how much 
processing may occur in a single step.  This imposes a 
tradeoff between ease of programming (BDI) and taking 
advantage of the uniformity of the framework’s built-in 
processes (GOMS and Soar).  

Soar uses actions to create assumptions in the belief set 
(thus, assumptions can only be the result of deliberate 
decision making).  Tying assumptions to actions is an 
important issue.  Automated, logical reason maintenance 
is attractive, but there are pragmatic resource limitations 
for updating an agent’s beliefs.  Ideally, a rational agent 
would compute all relevant entailments from any input.  
But in complex environments, this is simply not compu-
tationally feasible (e.g., [Hill, 1999]).   

3.7 Outputs 
The ultimate level of commitment is to initiate activity in 
the environment.  To accomplish this, an agent invokes 



an output system.  All three frameworks assume that out-
put has to happen somehow, but do not impose strong 
constraints on the representation of output.  BDI leaves 
output decisions up to the designer of the plan language.  
GOMS insists that primitive operators produce any out-
put.  As with perception, Soar requires that a motor 
command be represented in Soar’s belief language, which 
allows the agent to reason about and execute output 
commands using the same agent knowledge.  This is a 
key aspect of Soar’s approach to integrated reasoning and 
execution. 

Systems that use completable plans may include condi-
tional outputs (possibly in addition to other conditional 
actions).  Soar conditionally decodes actions using the 
same computational processes that it uses for maintaining 
entailments.  The instantiated completion of an action is 
analogous to the automated elaboration of beliefs.  Each 
framework supports methods for executing completable 
plans; some depending on plan language choices.  Soar 
specifies what the plan language has to be, and therefore 
also specifies how plan completion occurs. 

4 Conclusions 
The research communities that use agent frameworks 
continue to explore the issues that limit and inform the 
development of highly competent intelligent agents 
within their integrated frameworks (e.g., Harland and 
Winikoff, 2001; Jones and Laird, 1997).  However, too 
little attention has been paid to understanding the com-
monalities and differences across frameworks. We have 
attempted to contribute to this larger discussion by re-
viewing the directly supported representations and proc-
esses in three broadly differing agent frameworks.  Con-
tinuing to identify and develop representations and proc-
esses for agents is an important research goal.   Increas-
ingly, researchers are attending to processes necessary 
for social agents, including normatives, values, obliga-
tions and teamwork.  However, there are additional intra-
agent representations and processes that the frameworks 
discussed here do not directly support and that may be so 
widely necessary that they should be considered base-
level representations.  Examples include deliberate atten-
tion [Hill, 1999], parallel active goals [Jones et al., 
1994], and architectural support for managing resource 
limitations and conflicts [Meyer and Kieras, 1997].  
Learning is also important for long-lived knowledge-
intensive agents.  The migration of knowledge into (and 
out of) long-term memory can also be studied in terms of 
representations, commitment, and reconsideration, result-
ing in a complex space of learning mechanisms (e.g., 
along dimensions of automatic vs. deliberate learning, or 
representations of procedural, declarative, and episodic 
memories).  This analysis lays the groundwork for ex-
tending and unifying the basic level representations and 
processes needed for knowledge-intensive intelligent 
agents.  
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