
Self Trained Artificial Neural Network

Vikramaditya Reddy.J.

Student Member AAAI, IEEE, ISOC, CSI, ISTE.
Plot no 22, K.R.N.Colony, Bowenpally, Secunderabad, A.P-500011, India.

vikramadityareddy@gmail.com,v_jakkula@hotmail.com

Abstract

Traditional supervised neural network trainers have deviated little
from the fundamental back propagation algorithm popularized in
1986 by Rumelhart, Hinton, and Williams. Typically, the training
process begins with the collection of a fixed database of input and
output vectors. The operator then adjusts additional parameters
such as network architecture, learning rate, momentum, and
annealing noise, based upon their past experience in network
training. Optimizing the network’s generalization capacity
usually involves either experiments with various hidden layer
architectures or similar automated investigations using genetic
algorithms. Along with these often-complex procedural issues,
usable networks generally lack flexibility, beginning at the level
of the individual processing unit. Normally, the user finds him or
her confined to a limited range of unit activation functions,
usually including linear, linear threshold, and sigmoidal analytical
forms whose partial derivatives with respect to net input are
definable through a similar continuous, analytical expression.
Generally, the demand is for a more flexible and user friendly
system that will not only lessen the technical confusion for non-
connectionist end-users, but also create expanded utility for those
demanding more architectural freedom and adaptability in their
artificial neural networks or ANNs.

Introduction

By implementing an ANN within a spreadsheet
environment, using only relative cell references and
supplied functions, we create a quasi-parallel
computational scheme quite distinct from past
algorithmically based neural network simulations and
addressing the above-mentioned needs. By allowing one
such spreadsheet network to serve as training supervisor to
another, we create an adaptive neural network cascade that
need only be physically juxtaposed with the database to
learn any of its contained patterns. Viewed as a whole, the
combination of untrained network and its supervising
counterpart represent a self-training artificial neural
network, learning by parallel processing and without the
assistance of algorithmic code. Providing some means to
stream data past this self-training artificial neural network,
or "STANN" (patent-pending), this agent "sees" exemplars
and spontaneously self-organizes to generalize the
represented knowledge domain. Such a network

implementation is well suited for monitoring and learning
from data streams supplied to the Excel environment,
either from external devices, human input, or algorithmic
codes. Furthermore, because such networks function in a
parallel fashion, we may train multiple STANNs
simultaneously, allowing us to gain multiple perspectives
on the influx of data.

Because such self-trainers numerically calculate the needed
partial derivatives, the functional form of activation need
not be simple. Instead, each processing unit’s activation
function may be arbitrarily complex, perhaps taking the
form of an entire neural network. We thereby achieve the
capacity to create self-training neural network cascades,
with each component network emulating the behavior of
any given analog or digital device. Training of such
compound networks would allow any combination of
electrical, mechanical, or optical devices to self-organize
and interconnect to achieve any desired input-output
relation, in turn allowing us to rapidly prototype and invent
a wide variety of hardware devices. Herein we elaborate on
the basic operation of the self-training artificial neural
network and then expand on its potential applications and
derivative concepts.

Principles and Applications of the Self-Training
Artificial Neural Network Object

We typically think of neural network simulations as the
sequential evaluation of activation states of neurons within
a network, using some algorithmic language such as C or
C++. Within such schemes, individual activation levels are
only momentarily visible and accessible, as when the
governing algorithm evaluates the sigmoidal excitation of
any given neuron (Figure 1). Except for its fleeting
appearance during program execution, a neuron’s
excitation becomes quickly obscured by its redistribution
among downstream processing elements.

Exploiting the many analogies between biological neurons
and cells within a spreadsheet, we may evaluate the state of
any given network-processing unit through relative
references and resident spreadsheet functions (Figure 2).

By referencing the outputs of such spreadsheet neurons to
the inputs of other similarly implemented neurons, we may
create whole networks or network cascades. Unlike the
algorithmic network simulation, all neuron activations are
simultaneously visible and randomly accessible within this
spreadsheet implementation. More like a network of
virtual, analog devices, we consider this simulation to be a
distributed algorithm, with all neurons equilibrating with
one another following each wave of spreadsheet renewal.

Figure 1. Neuron activation within a given network layer is
evaluated in C-code.

Figure 2. Neuron activation within a given network layer is
by relative reference within a spreadsheet environment.

As a further benefit of the spreadsheet implementation, the
user now has a convenient graphical interface for
constructing and experimenting with ANNs. For instance,
we need only build a template neuron once, using simple
copy and paste commands to build and connect whole
networks from a prototypical processing unit. We may
repeat these procedures on larger scales to move networks
into position and link them into larger cascade structures.
The compound neural networks that result are transparent
in operation and easily accessible for modification and
repair. No longer confined to simple feed forward
architectures, we may readily introduce recurrences and all
manner of neural network paradigms, including IAC,
Boltzmann Machine, Harmonium, Hopfield nets, and self-
organizing maps.

Originally intended to serve as an expedient means to
produce spreadsheet network cascades we have discovered
many additional advantages to this graphical network
implementation. Probably the most important development
to emerge from this scheme is the patent-pending concept
of a ‘self-training artificial neural network’ or "STANN."
Consisting of one network training another, we may view
the STANN as a spin-off of the so-called "Creativity
Machine" paradigm (Yam, 1995). Such Creativity
Machines consist of a chaos-driven network, trained within
a given knowledge domain, and supervised by a second
network. As the level of internal perturbation is slowly
ramped up in the former net, the second supervisory net
monitors its output, alert to any emerging vectorialized
ideas that fulfill some predetermined need or goal. Notable
exercises of this paradigm have included the generation of
myriad; esthetically pleasing musical hooks (Thaler, 1994)
as well as the discovery of new ultra hard materials
(Thaler, 1995). Because we may rapidly train both
component networks by example and then control the
chaotic network’s "egress" from the chosen knowledge
domain (by progressive weight perturbation), we may
rapidly prototype and refine these systems. The technique
offers the significant advantage of reduced development
time over past rule- and model-based attempts at discovery
and creativity (Rowe & Partridge,1993). Viewed in this
context, the STANN is comparable to an ‘inverse’,
spreadsheet-implemented Creativity Machine. Rather than
subjecting the connection weights of the first network to
randomizing influences, we apply weight updates obtained
from the supervising network. These weight adjustments
ultimately correct the first net’s initially randomized
connection weights to achieve the desired mapping (Figure
3). Important to emphasize is that the supervising network
calculates all weight updates from the observed errors,
using a distributed algorithm built upon the traditional back
propagation paradigm. (There are no sequential
algorithmic routines corresponding to the partial
derivatives, error terms, and updates of the prevalent
network trainers.) The result is that such a spreadsheet-

implemented network cascade quite literally need only be
shown data to train. For each exemplar presented to the
STANN, a self-correcting wave propagates through the
composite network, beginning with a spreadsheet
calculation of network error and terminating at the
network’s updated connection weights.

Figure 3. Considering noise and information to be
complementary, the inverse of a Creativity Machine is

a self-training neural network

Viewing the untrained net and its supervisor as a single,
composite net, adapting to data external to itself, the
boundary between supervised and unsupervised learning
becomes diffused. After all, except for the repeated
application of the intended input-output to the net, there is
no supervisory algorithm per se, simply a single composite
network internally adapting to its external (spreadsheet)
environment. The distinction between ‘supervised’ and
‘unsupervised’ totally dissipates when we purposely use an
auto associative network, and consider training on
exemplars containing identical input and output vectors.
Training then consists of applying these vectors to both
inputs and outputs simultaneously while hidden layer
neurons connect themselves to attain some classification
scheme. The resulting process bears a close resemblance to
the unsupervised methods characteristic of Kohonen
(1982) self-organizing maps.

STANN Structure and Operation

Using only relative references and resident spreadsheet
function, I have built several prototype STANNs. Whereas,
we have implemented such STANNs in myriad ways using
these underlying principles, their general construction
(Figure 4) usually involves clearly differentiable modules
corresponding to the individual stages of the back
propagation paradigm (Rumelhart, Hinton & Williams,
1986). All of these modules communicate through cell
reference thereby binding them as a unit, embedded
alongside the spreadsheet data. The distributed algorithm

then estimates the partial derivative of each neuron’s
activation with respect to its net input by adding some
small increment, d, to the input vector’s components and
submitting them to a replica network contained in module
2. The STANN then numerically calculates the derivative
in module 3 for all neurons by noting the changes in both
its activation and its net input between modules 1 and 2.
Modules 4 and 5 handle the back propagation of error,
within similar cell reference networks, with the resulting
corrections simultaneously appended to all weights and
biases in both the parent and replica networks in modules 1
and 2.

Figure 4. Module structure of a simple STANN (left)
consisting of two inputs and one output, immersed
within a database. The STANN mobilizes itself by

automated cut and paste commands to move through
the data to learn any contained patterns.

Important to note is that the STANN "sees" its training
data by relative referencing. Thus any input data to the left
of the STANN’s network input cells appears duplicated
within those cells. Similarly any output data to the
STANN’s right appears reproduced simultaneously in the
designated output cell. Viewing these "interface" cells
between the external spreadsheet "environment" and the
STANN’s internal network as metaphorical "retinas," we
see that data may appear as a training progression to the
STANN if data and STANN move relative to one another.

We achieve such relative movement between the STANN
and the data by either (1) movement of the data or (2)
movement of the STANN. In the former mode, data
streams through the Excel columns by dynamic data
exchange as the STANN observes a fixed group of
spreadsheet cells. Alternately, STANN motion may occur

by allowing the STANN to command an algorithm (i.e.,
Visual Basic macros) that performs cyclic cut and paste
commands to the totally self-contained network cascade, as
depicted in Figure 4.

The former training technique may find immense utility in
the real-time patrol of data streams from sensors in various
hardware or laboratory systems. Such STANNs learning in
real time, may provide appropriate outputs to control
various system actuators. In another application, separate
VBA macros running algorithmic models may generate
streams of model exemplars to a STANN to convert
various rule- or model-based algorithms into their
corresponding neural network models. Extensions of this
concept may vastly facilitate the conversion of expert
systems to their connectionist counterparts.

In the latter training technique, STANNs may move and
train within static or periodically updated spreadsheet
databases. There, the added dwell time allows the STANN
to make many passes through the data (e.g., training
epochs) between database updates. This concept finds
added utility in advanced STANNs that are able to move in
two or three spreadsheet dimensions, choose their own
perspective on the database, and elect their own trajectory
through the spreadsheet workbook. Such mobile STANNs
or "data bots" now can exhaustively search through either
fixed or dynamic databases in search of subtle patterns of
interest or unexpected discoveries.

Dynamic Data Exchange to STANNs

One exciting application of the self-training artificial
neural network object is in the area of real time training of
sensor data fed directly to spreadsheet environments by
dynamic data exchange or ‘DDE.’ That is, we may elect
with various newly developed software packages such as
National Instrument’s LabViewTM and MeasureTM to pass
sensor output to selected spreadsheet cells that double as
the inputs and outputs of a STANN. The self-training net
may then simultaneously train on any desired input output
relationship as data originates from the system of interest.
This development now paves the way for totally adaptive
control systems, entirely implemented within Microsoft
Excel. In theory, it should be possible for a STANN to
observe the action of human operators in restoring various
production systems back to their intended set points. Then,
after sufficient ‘apprenticeship’ period, they may step in to
control that process by outputting the necessary DDE
control parameter adjustments.

System Prototyping and Self-Organization

As mentioned above, one of the most powerful features of
the STANN is that the transfer function of each processor
element is free to take a wide variety of forms. Therefore,
it need not be restricted to an analytical and differentiable
squashing functions such as the sigmoids popularly used in
ANN construction (see for instance, Skapura & Freeman,
1991). Individual processing units may even take the form
of whole ANNs representing the input-output response of
various analog and digital devices. Training of a collection
of such composite ANN systems would be tantamount to
the discovery of just how to connect such subsystems to
attain some desired global response. Thus the trained
connection weights between various electrical devices such
as diodes, transistors, etc. would represent connecting
resistances to attain some overall electronic function. This
device prototyping concept is extendible to other digital
electronic applications involving such components as flip-
flops and counters. It would likewise be applicable to a
wide range of optical, mechanical, and hydraulic systems.

As an example of such device prototyping I have
performed preliminary experiments in which I have
coupled various ANNs representing various harmonic
generation devices in parallel, driven by a single sinusoidal
signal generator to produce some predetermined waveform
such as a square wave. The compound network self-
organizes itself to allow conversion of the sinusoidal input
into a rectangular pulse output. We note that during
training of this cascade, connection weights assume values
proportional to the Fourier coefficients. In principle, this
ANN cascade could represent the prototype of an electrical
or optical waveform synthesis device.

 Potential Applications

In the spirit of object-oriented programming, it is my
intention to build Self-Training Artificial Neural Network
Objects possessing a variety of innovative properties and
methods. Some very broad and powerful applications of
such "STANNOs" will include:

Autonomous Knowledge Base Agents - One
of the unique advantages of the STANN is
that multiple networks can simultaneously
train. Therefore, multiple STANNs may
patrol the dynamic data exchange to an Excel
spreadsheet, each taking their own unique
perspective on the data stream. STANNs or
STANN cascades may in turn take action
upon that data to extract or manipulate the
resulting database.

Adaptive Creativity Machines -
Until now, Creativity Machines have
been static in the sense that we have

already trained all of its component
networks prior to its discovery
function. Using the STANN’s ability
to train on a dynamic influx of data,
a Creativity Machine may
simultaneously train and create.
Presently, I have implemented such
schemes allowing multiple STANNs
to concomitantly train on the data
stream, with a master algorithm
periodically copying and pasting the
updated networks into their
respective positions within a
spreadsheet-resident Creativity
Machine.

Adaptive Hardware and
Instrumentation - Smart rooms,
furniture, vehicles, etc. may utilize
the self-trainer to adapt to changing
requirements and conditions. Thus
an automobile equipped with
STANNO control would adapt fuel
injection within the driving context
to attain the highest fuel economy.
Such software could likewise learn
driver idiosyncrasies in real time and
automatically compensate for
disadvantageous motoring habits.

Artificial Life - Expanding on the
metaphor of a "retina," implemented
through relative referencing, we may
provide various levels of visual
processing, analogous to those in
human vision, and subsequently,
databot reaction to that sensory
information. Autonomy derives from
the encapsulation of data and
function in a manner reminiscent of
class objects in object-oriented
programming. Further augmenting
the databot’s organism-like
capabilities (e.g., locomotion,
reproduction, etc.) the integration of
Creativity Machine architectures
within the virtual creature’s neural
cascade allows for its own
autonomous movement planning,
attention-windowing, and course of
action when manipulating its
database environment.

Cooperative Spreadsheet Organisms - Implementing a
communication scheme between such spreadsheet objects,

it may be possible to achieve cooperative behaviors among
databots to build larger neural cascades. Having achieved
prototypical structures of this kind in the autonomous
construction of Creativity Machines, it is conceivable that
much more generalized self-constructing cascades may
spontaneously organize within Excel to produce highly
sophisticated neural processing structures.

Conclusion

The Self-Training Neural Network Object represents a
major paradigm shift from the notion of algorithmic code
training an algorithmic neural network simulation. Here,
one distributed algorithm trains another, without the
intervention of a programmer or sequential computer code.
Viewed as a whole, these two reciprocal nets constitute a
single, self-training spreadsheet object that need only be
physically cut and pasted within the data to learn any
patterns contained therein. If data streams through a
spreadsheet application by DDE, such STANNOs may
similarly glean trends from external agencies and
instrumentation. With the appearance of Excel
spreadsheets as a convenient medium of dynamic data
exchange from instrumentation, satellite feeds, and the
Internet, the STANNO may represent a means for sensing,
detection, and prediction, all in real time. Used in
conjunction with other cascaded networks and algorithms,
such self-trainers will allow for the bi-directional sensing
and control required in a number of applied and
experimental areas.

References
Freeman, J.A. and Skapura, J.A. (1991). Neural Networks,
Applications, and Programming Techniques, (Reading:
Addison-Wesley), 98-99.
Kohonen, T. (1982). Self-organized formation of
topologically correct feature maps, Biological Cybernetics
43, 59-69.
Rowe, J. and Partridge, G. (1993). Creativity: a survey of
AI approaches, Artificial Intelligence Review, 7, 43-70.
Rumelhart, D.E., Hinton, G.E., & Williams, R.J. 1986).
Parallel distributed processing: Explorations in the
microstructure of cognition, Vol. 1 (eds Rumelhart, D.E. &
McClelland, J.L.) (Cambridge: MIT).
Thaler, S.L. (1994) Musical Themes From Creativity
Machine, U.S. Copyright Pau1-920-845.
Thaler, S.L. (1995) An Autonomous Discovery Machine for
Ultra hard Materials, Bulletin of the American Physical
Society, Program of the March Meeting, Series II, 40(1),
592.
Yam, P. (1995). Scientific American 272(5), 24-25.

