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Abstract 

Traditional supervised neural network trainers have deviated little 
from the fundamental back propagation algorithm popularized in 
1986 by Rumelhart, Hinton, and Williams. Typically, the training 
process begins with the collection of a fixed database of input and 
output vectors. The operator then adjusts additional parameters 
such as network architecture, learning rate, momentum, and 
annealing noise, based upon their past experience in network 
training. Optimizing the network’s generalization capacity 
usually involves either experiments with various hidden layer 
architectures or similar automated investigations using genetic 
algorithms. Along with these often-complex procedural issues, 
usable networks generally lack flexibility, beginning at the level 
of the individual processing unit. Normally, the user finds him or 
her confined to a limited range of unit activation functions, 
usually including linear, linear threshold, and sigmoidal analytical 
forms whose partial derivatives with respect to net input are 
definable through a similar continuous, analytical expression. 
Generally, the demand is for a more flexible and user friendly 
system that will not only lessen the technical confusion for non-
connectionist end-users, but also create expanded utility for those 
demanding more architectural freedom and adaptability in their 
artificial neural networks or ANNs.  

Introduction 

By implementing an ANN within a spreadsheet 
environment, using only relative cell references and 
supplied functions, we create a quasi-parallel 
computational scheme quite distinct from past 
algorithmically based neural network simulations and 
addressing the above-mentioned needs. By allowing one 
such spreadsheet network to serve as training supervisor to 
another, we create an adaptive neural network cascade that 
need only be physically juxtaposed with the database to 
learn any of its contained patterns. Viewed as a whole, the 
combination of untrained network and its supervising 
counterpart represent a self-training artificial neural 
network, learning by parallel processing and without the 
assistance of algorithmic code. Providing some means to 
stream data past this self-training artificial neural network, 
or "STANN" (patent-pending), this agent "sees" exemplars 
and spontaneously self-organizes to generalize the 
represented knowledge domain. Such a network 

implementation is well suited for monitoring and learning 
from data streams supplied to the Excel environment, 
either from external devices, human input, or algorithmic 
codes. Furthermore, because such networks function in a 
parallel fashion, we may train multiple STANNs 
simultaneously, allowing us to gain multiple perspectives 
on the influx of data. 

Because such self-trainers numerically calculate the needed 
partial derivatives, the functional form of activation need 
not be simple. Instead, each processing unit’s activation 
function may be arbitrarily complex, perhaps taking the 
form of an entire neural network. We thereby achieve the 
capacity to create self-training neural network cascades, 
with each component network emulating the behavior of 
any given analog or digital device. Training of such 
compound networks would allow any combination of 
electrical, mechanical, or optical devices to self-organize 
and interconnect to achieve any desired input-output 
relation, in turn allowing us to rapidly prototype and invent 
a wide variety of hardware devices. Herein we elaborate on 
the basic operation of the self-training artificial neural 
network and then expand on its potential applications and 
derivative concepts. 

Principles and Applications of the Self-Training 
Artificial Neural Network Object 

We typically think of neural network simulations as the 
sequential evaluation of activation states of neurons within 
a network, using some algorithmic language such as C or 
C++. Within such schemes, individual activation levels are 
only momentarily visible and accessible, as when the 
governing algorithm evaluates the sigmoidal excitation of 
any given neuron (Figure 1). Except for its fleeting 
appearance during program execution, a neuron’s 
excitation becomes quickly obscured by its redistribution 
among downstream processing elements.  

Exploiting the many analogies between biological neurons 
and cells within a spreadsheet, we may evaluate the state of 
any given network-processing unit through relative 
references and resident spreadsheet functions (Figure 2). 



By referencing the outputs of such spreadsheet neurons to 
the inputs of other similarly implemented neurons, we may 
create whole networks or network cascades. Unlike the 
algorithmic network simulation, all neuron activations are 
simultaneously visible and randomly accessible within this 
spreadsheet implementation. More like a network of 
virtual, analog devices, we consider this simulation to be a 
distributed algorithm, with all neurons equilibrating with 
one another following each wave of spreadsheet renewal.  

 

Figure 1. Neuron activation within a given network layer is 
evaluated in C-code. 

 

Figure 2. Neuron activation within a given network layer is 
by relative reference within a spreadsheet environment. 

As a further benefit of the spreadsheet implementation, the 
user now has a convenient graphical interface for 
constructing and experimenting with ANNs. For instance, 
we need only build a template neuron once, using simple 
copy and paste commands to build and connect whole 
networks from a prototypical processing unit. We may 
repeat these procedures on larger scales to move networks 
into position and link them into larger cascade structures. 
The compound neural networks that result are transparent 
in operation and easily accessible for modification and 
repair. No longer confined to simple feed forward 
architectures, we may readily introduce recurrences and all 
manner of neural network paradigms, including IAC, 
Boltzmann Machine, Harmonium, Hopfield nets, and self-
organizing maps. 

Originally intended to serve as an expedient means to 
produce spreadsheet network cascades we have discovered 
many additional advantages to this graphical network 
implementation. Probably the most important development 
to emerge from this scheme is the patent-pending concept 
of a ‘self-training artificial neural network’ or "STANN." 
Consisting of one network training another, we may view 
the STANN as a spin-off of the so-called "Creativity 
Machine" paradigm (Yam, 1995). Such Creativity 
Machines consist of a chaos-driven network, trained within 
a given knowledge domain, and supervised by a second 
network. As the level of internal perturbation is slowly 
ramped up in the former net, the second supervisory net 
monitors its output, alert to any emerging vectorialized 
ideas that fulfill some predetermined need or goal. Notable 
exercises of this paradigm have included the generation of 
myriad; esthetically pleasing musical hooks (Thaler, 1994) 
as well as the discovery of new ultra hard materials 
(Thaler, 1995). Because we may rapidly train both 
component networks by example and then control the 
chaotic network’s "egress" from the chosen knowledge 
domain (by progressive weight perturbation), we may 
rapidly prototype and refine these systems. The technique 
offers the significant advantage of reduced development 
time over past rule- and model-based attempts at discovery 
and creativity (Rowe & Partridge,1993). Viewed in this 
context, the STANN is comparable to an ‘inverse’, 
spreadsheet-implemented Creativity Machine. Rather than 
subjecting the connection weights of the first network to 
randomizing influences, we apply weight updates obtained 
from the supervising network. These weight adjustments 
ultimately correct the first net’s initially randomized 
connection weights to achieve the desired mapping (Figure 
3). Important to emphasize is that the supervising network 
calculates all weight updates from the observed errors, 
using a distributed algorithm built upon the traditional back 
propagation paradigm. (There are no sequential 
algorithmic routines corresponding to the partial 
derivatives, error terms, and updates of the prevalent 
network trainers.) The result is that such a spreadsheet-



implemented network cascade quite literally need only be 
shown data to train. For each exemplar presented to the 
STANN, a self-correcting wave propagates through the 
composite network, beginning with a spreadsheet 
calculation of network error and terminating at the 
network’s updated connection weights.  

 
 
 

Figure 3. Considering noise and information to be 
complementary, the inverse of a Creativity Machine is 

a self-training neural network 

Viewing the untrained net and its supervisor as a single, 
composite net, adapting to data external to itself, the 
boundary between supervised and unsupervised learning 
becomes diffused. After all, except for the repeated 
application of the intended input-output to the net, there is 
no supervisory algorithm per se, simply a single composite 
network internally adapting to its external (spreadsheet) 
environment. The distinction between ‘supervised’ and 
‘unsupervised’ totally dissipates when we purposely use an 
auto associative network, and consider training on 
exemplars containing identical input and output vectors. 
Training then consists of applying these vectors to both 
inputs and outputs simultaneously while hidden layer 
neurons connect themselves to attain some classification 
scheme. The resulting process bears a close resemblance to 
the unsupervised methods characteristic of Kohonen 
(1982) self-organizing maps. 

STANN Structure and Operation 

Using only relative references and resident spreadsheet 
function, I have built several prototype STANNs. Whereas, 
we have implemented such STANNs in myriad ways using 
these underlying principles, their general construction 
(Figure 4) usually involves clearly differentiable modules 
corresponding to the individual stages of the back 
propagation paradigm (Rumelhart, Hinton & Williams, 
1986). All of these modules communicate through cell 
reference thereby binding them as a unit, embedded 
alongside the spreadsheet data. The distributed algorithm 

then estimates the partial derivative of each neuron’s 
activation with respect to its net input by adding some 
small increment, d, to the input vector’s components and 
submitting them to a replica network contained in module 
2. The STANN then numerically calculates the derivative 
in module 3 for all neurons by noting the changes in both 
its activation and its net input between modules 1 and 2. 
Modules 4 and 5 handle the back propagation of error, 
within similar cell reference networks, with the resulting 
corrections simultaneously appended to all weights and 
biases in both the parent and replica networks in modules 1 
and 2.  

 

Figure 4. Module structure of a simple STANN (left) 
consisting of two inputs and one output, immersed 
within a database. The STANN mobilizes itself by 

automated cut and paste commands to move through 
the data to learn any contained patterns. 

Important to note is that the STANN "sees" its training 
data by relative referencing. Thus any input data to the left 
of the STANN’s network input cells appears duplicated 
within those cells. Similarly any output data to the 
STANN’s right appears reproduced simultaneously in the 
designated output cell. Viewing these "interface" cells 
between the external spreadsheet "environment" and the 
STANN’s internal network as metaphorical "retinas," we 
see that data may appear as a training progression to the 
STANN if data and STANN move relative to one another. 

We achieve such relative movement between the STANN 
and the data by either (1) movement of the data or (2) 
movement of the STANN. In the former mode, data 
streams through the Excel columns by dynamic data 
exchange as the STANN observes a fixed group of 
spreadsheet cells. Alternately, STANN motion may occur 



by allowing the STANN to command an algorithm (i.e., 
Visual Basic macros) that performs cyclic cut and paste 
commands to the totally self-contained network cascade, as 
depicted in Figure 4. 

The former training technique may find immense utility in 
the real-time patrol of data streams from sensors in various 
hardware or laboratory systems. Such STANNs learning in 
real time, may provide appropriate outputs to control 
various system actuators. In another application, separate 
VBA macros running algorithmic models may generate 
streams of model exemplars to a STANN to convert 
various rule- or model-based algorithms into their 
corresponding neural network models. Extensions of this 
concept may vastly facilitate the conversion of expert 
systems to their connectionist counterparts. 

In the latter training technique, STANNs may move and 
train within static or periodically updated spreadsheet 
databases. There, the added dwell time allows the STANN 
to make many passes through the data (e.g., training 
epochs) between database updates. This concept finds 
added utility in advanced STANNs that are able to move in 
two or three spreadsheet dimensions, choose their own 
perspective on the database, and elect their own trajectory 
through the spreadsheet workbook. Such mobile STANNs 
or "data bots" now can exhaustively search through either 
fixed or dynamic databases in search of subtle patterns of 
interest or unexpected discoveries. 

Dynamic Data Exchange to STANNs 

One exciting application of the self-training artificial 
neural network object is in the area of real time training of 
sensor data fed directly to spreadsheet environments by 
dynamic data exchange or ‘DDE.’ That is, we may elect 
with various newly developed software packages such as 
National Instrument’s LabViewTM and MeasureTM to pass 
sensor output to selected spreadsheet cells that double as 
the inputs and outputs of a STANN. The self-training net 
may then simultaneously train on any desired input output 
relationship as data originates from the system of interest. 
This development now paves the way for totally adaptive 
control systems, entirely implemented within Microsoft 
Excel. In theory, it should be possible for a STANN to 
observe the action of human operators in restoring various 
production systems back to their intended set points. Then, 
after sufficient ‘apprenticeship’ period, they may step in to 
control that process by outputting the necessary DDE 
control parameter adjustments. 

System Prototyping and Self-Organization 

As mentioned above, one of the most powerful features of 
the STANN is that the transfer function of each processor 
element is free to take a wide variety of forms. Therefore, 
it need not be restricted to an analytical and differentiable 
squashing functions such as the sigmoids popularly used in 
ANN construction (see for instance, Skapura & Freeman, 
1991). Individual processing units may even take the form 
of whole ANNs representing the input-output response of 
various analog and digital devices. Training of a collection 
of such composite ANN systems would be tantamount to 
the discovery of just how to connect such subsystems to 
attain some desired global response. Thus the trained 
connection weights between various electrical devices such 
as diodes, transistors, etc. would represent connecting 
resistances to attain some overall electronic function. This 
device prototyping concept is extendible to other digital 
electronic applications involving such components as flip-
flops and counters. It would likewise be applicable to a 
wide range of optical, mechanical, and hydraulic systems. 

As an example of such device prototyping I have 
performed preliminary experiments in which I have 
coupled various ANNs representing various harmonic 
generation devices in parallel, driven by a single sinusoidal 
signal generator to produce some predetermined waveform 
such as a square wave. The compound network self-
organizes itself to allow conversion of the sinusoidal input 
into a rectangular pulse output. We note that during 
training of this cascade, connection weights assume values 
proportional to the Fourier coefficients. In principle, this 
ANN cascade could represent the prototype of an electrical 
or optical waveform synthesis device. 

 Potential Applications 

In the spirit of object-oriented programming, it is my 
intention to build Self-Training Artificial Neural Network 
Objects possessing a variety of innovative properties and 
methods. Some very broad and powerful applications of 
such "STANNOs" will include: 

Autonomous Knowledge Base Agents - One 
of the unique advantages of the STANN is 
that multiple networks can simultaneously 
train. Therefore, multiple STANNs may 
patrol the dynamic data exchange to an Excel 
spreadsheet, each taking their own unique 
perspective on the data stream. STANNs or 
STANN cascades may in turn take action 
upon that data to extract or manipulate the 
resulting database. 

Adaptive Creativity Machines - 
Until now, Creativity Machines have 
been static in the sense that we have 



already trained all of its component 
networks prior to its discovery 
function. Using the STANN’s ability 
to train on a dynamic influx of data, 
a Creativity Machine may 
simultaneously train and create. 
Presently, I have implemented such 
schemes allowing multiple STANNs 
to concomitantly train on the data 
stream, with a master algorithm 
periodically copying and pasting the 
updated networks into their 
respective positions within a 
spreadsheet-resident Creativity 
Machine. 

Adaptive Hardware and 
Instrumentation - Smart rooms, 
furniture, vehicles, etc. may utilize 
the self-trainer to adapt to changing 
requirements and conditions. Thus 
an automobile equipped with 
STANNO control would adapt fuel 
injection within the driving context 
to attain the highest fuel economy. 
Such software could likewise learn 
driver idiosyncrasies in real time and 
automatically compensate for 
disadvantageous motoring habits. 

Artificial Life - Expanding on the 
metaphor of a "retina," implemented 
through relative referencing, we may 
provide various levels of visual 
processing, analogous to those in 
human vision, and subsequently, 
databot reaction to that sensory 
information. Autonomy derives from 
the encapsulation of data and 
function in a manner reminiscent of 
class objects in object-oriented 
programming. Further augmenting 
the databot’s organism-like 
capabilities (e.g., locomotion, 
reproduction, etc.) the integration of 
Creativity Machine architectures 
within the virtual creature’s neural 
cascade allows for its own 
autonomous movement planning, 
attention-windowing, and course of 
action when manipulating its 
database environment. 

Cooperative Spreadsheet Organisms - Implementing a 
communication scheme between such spreadsheet objects, 

it may be possible to achieve cooperative behaviors among 
databots to build larger neural cascades. Having achieved 
prototypical structures of this kind in the autonomous 
construction of Creativity Machines, it is conceivable that 
much more generalized self-constructing cascades may 
spontaneously organize within Excel to produce highly 
sophisticated neural processing structures. 

Conclusion 

The Self-Training Neural Network Object represents a 
major paradigm shift from the notion of algorithmic code 
training an algorithmic neural network simulation. Here, 
one distributed algorithm trains another, without the 
intervention of a programmer or sequential computer code. 
Viewed as a whole, these two reciprocal nets constitute a 
single, self-training spreadsheet object that need only be 
physically cut and pasted within the data to learn any 
patterns contained therein. If data streams through a 
spreadsheet application by DDE, such STANNOs may 
similarly glean trends from external agencies and 
instrumentation. With the appearance of Excel 
spreadsheets as a convenient medium of dynamic data 
exchange from instrumentation, satellite feeds, and the 
Internet, the STANNO may represent a means for sensing, 
detection, and prediction, all in real time. Used in 
conjunction with other cascaded networks and algorithms, 
such self-trainers will allow for the bi-directional sensing 
and control required in a number of applied and 
experimental areas. 
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