
Using Simple Recurrent Networks to Learn Fixed-Length
Representations of Variable-Length Strings

Christopher T. Kello
Daragh E. Sibley
Andrew Colombi

Department of Psychology
George Mason University

Fairfax, VA 22030
ckello@gmu.edu, dsibley@gmu.edu

Abstract
Four connectionist models are reported that learn static
representations of variable-length strings using a novel
autosequencer architecture. These representations were
learned as plans for a simple recurrent network to
regenerate a given input sequence. Results showed that the
autosequencer can be used to address the dispersion
problem because the positions and identities of letters in a
string were integrated over learning into the plan
representations. Results also revealed a moderate degree of
componentiality in the plan representations.

Linguistic structures vary in length. Paragraphs contain
varying numbers of sentences, sentences contain varying
numbers of words, and words contain varying numbers of
letters and sounds. By contrast, standard connectionist
mechanisms are designed to compute fixed-length vectors.
In connectionist models of human language processing,
variable-length structures have been most commonly
processed using simple recurrent networks (Elman, 1990;
Jordan, 1986)
 Perhaps the most well-known usage of SRNs is to learn
the transitional probabilities in a grammar (Christiansen
et al., 1998; Cleeremans et al., 1989). The SRN is given a
sequence of inputs, and it is trained to predict the next
input on the basis of the current and previous inputs.
Given this task, the fixed-length hidden representations
learn to hold just enough information about the variable-
length sequence of past inputs in order to best predict the
next input. However, the hidden representations are not
pressured to hold enough information such that they could
be used to reproduce the past N inputs in order.
 Two other common usages of SRNs are 1) to map static,
fixed-length inputs onto variable-length outputs, or 2) to
map variable-length inputs onto static, fixed-length
outputs. As an example of the former, Dell and his
colleagues (Dell et al., 1993) built an SRN model of
phonological encoding in which a fixed-length
representation of a word lemma or word form served as a
“plan” representation to generate a variable-length
sequence phonological features. As an example of the

latter, Plaut and Kello (1999) built a model of
phonological development in which variable-length
sequences of phonetic features were mapped onto fixed-
length semantic representations. In both of these examples
(and all such previous work), the static representations
were engineered by the modelers.

The Autosequencer

Here we present an extension of the SRN architecture,
termed an autosequencer, that is able to learn fixed-length
representations of variable-length strings (the architecture
originated as tool to interpret the outputs of the model
presented by Plaut and Kello. 1999). The autosequencer is
motivated by the need to learn representations that
simultaneously encode information about the identities
and positions of characters in variable-length strings.
 In the context of lexical processing, Plaut et al. (1996)
described the tension between identity and position as the
dispersion problem. Both the identities and positions of
letters and sounds must be encoded in order to
comprehend and produce written and spoken words,
respectively. Connectionist models of lexical processing
typically devote units to represent letters or sounds in
particular positions, such as a unit to code P or /p/ in the
onset of a word. The consequence of this slot-based coding
scheme is that knowledge about P or /p/ in the onset is
represented separate from knowledge about P or /p/ in the
end of a word. Moreover, slot-based codes work only for
strings whose lengths are relatively uniform, i.e., they
have been used for monosyllabic, but not multisyllabic,
words. Wickelfeatures are an alternative to slot-based
codes (e.g., Seidenberg and McClelland, 1989), but they
too are limited in important ways (Pinker and Prince,
1988).
 The autosequencer architecture presented here
addresses the dispersion problem. Analogous to an
autoencoder, representations are learned to reproduce
inputs as outputs. The difference is that these learned
representations serve as plans for reproducing variable-

length input strings. We show that this pressures the
autosequencer to learn representations that code both
position-dependent and position-independent information
about letters in variable-length strings. These
representations exhibited a limited degree of
compositionality.

Training and Testing Corpus
The alphabet consisted of five letters. These letters were
artificial, but let us refer to them as A through E for the
sake of discussion. The space of inputs and outputs was
defined by all possible letter sequences from one to five
letters in length (3905 possible sequences). Each sequence
was terminated by a stop character. Each letter was
represented as a 3-bit binary pattern. Four different subsets
of strings were selected as training sets for four different
autosequencers. The two-fifths training set was created by
choosing at random two out of every five strings at each of
the five lengths (1562 total). The no-fours training set was
created by removing all four-letter strings from the two-
fifths training set (1312 total). The four-five training set
was created by selecting only the four-letter and five-letter
strings from the two-fifths training set (1500 total). The
two-ends training set was created by choosing all
sequences whose ending letter was either an A or B (not
including the stop character; the two end letters were
chosen arbitrarily).

Model Architecture
The architecture of the autosequencer is diagrammed in
Figure 1. Letter patterns were presented sequentially on
the input units, and the network was trained to reproduce
the pattern sequence over the output units. Over a given
input sequence, a representation was built up on the static
layer, up to and including the final stop character. The
decoder was not run until the stop character. At that point,
the final static representation was held constant, and the
decoder side of the network was run to produce a sequence
of outputs. The numbers of hidden units were chosen on
the basis of trial-and-error to be close to the minimums
necessary to learn the training sets to criterion.
 The trick to this architecture is in how to back-
propagate error from the encoder side to the decoder side.
Cross-entropy error signals (Rumelhart et al., 1995) were
generated on each forward propagation of the decoder, and
the signals were back-propagated to the static layer only.
Error derivates were accumulated at the static layer over
the forward pass of the decoder, up to and including the
last forward propagation for the stop character.
 At that point, the forward pass of the encoder was
“replayed”, and the accumulated derivatives were used as
error signals. Specifically, these derivatives were back-
propagated in time from the last to the first forward
propagation of the encoder.

 One informative point about this method of training is
that accumulated derivatives on the static layer act as
“moving targets” for the encoder, because they change as
weights in the decoder change. Also, activations on the
static layer act as “moving inputs” to the decoder, because
they change as weights in the encoder change. Our
experience has been that this interdependence can
destabilize learning in larger, more difficult training sets.
We have found that learning can be made more stable by
making the encoder learning rate slower than the decoder
learning rate. This was not needed for the current
simulations, however.

Input Letters
3 units

Encoding Layer
100 units

Static Layer
100 units

Decoding Layer
100 units

Output Letters
3 units

Encoding Context

Decoding Context

Figure 1. Architecture of the Autosequencer

 Input unit activations were set to 0 or 1, and all other
unit activations were computed as the hyperbolic tangent
(sigmoid) of their net inputs. Net inputs were calculated
as the dot product of the incoming weight vector and the
activation vector over the sending units. Context units
were copies of the corresponding hidden units from the
previous time step (initialized to zero).

Training Procedure
For each of the four autosequencers, items were chosen at
random from the training set, and weight updates were
made after weight derivatives were accumulated over 200
training items. Weight derivatives were calculated with
the learning rate fixed at 0.0001, and a momentum
parameter fixed at 0.8. After 2700 epochs of weight
updates, the activations of all output units for all letters of
all training sequences were on the correct side of zero.
Model performance did not change substantially with
further training, so results are presented up to 2700
epochs. To be consistent, the other three models were also
trained for a total of 2700 epochs.

Simulation Results
 In Figure 2, the percentage of items correct is plotted as
a function of training for the two-fifths model. Percentages
are plotted separately for trained items and novel items of
lengths 1-3 versus 4-5. Novel items included all untrained
sequences.
 Accuracies for trained items show that the
autosequencer was successful at learning static
representations for variable-length strings. Accuracies for
novel items show that learning generalized to both short
and long sequences, but generalization was better for
longer sequences. This difference occurred because,
unavoidably, there were many more longer sequences to
train on, compared with shorter ones. Hidden unit sizes of
up to 500 were tested (results not shown here), and
generalization improved somewhat with more units.
However, performance on the longer novel sequences was
always better than performance on the shorter ones.

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500
Epochs

Novel 4-5

Novel 1-3

Trained 4-5

Trained 1-3

P
er

ce
n
t C

o
rr

ec
t

Figure 2. Accuracies for the Two-Fifths Model

 A basic question about the autosequencer is how
learning and representations differed as a function of
position in a string. Two analyses were conducted to
address this question. In one, errors were tallied as a
function of position for all strings of lengths 2-5, across all
epochs of training. In the other, similarities of the learned
static representations were compared at the end of training
for strings that differed only by one letter in the Nth
position, where N was all positions for strings of lengths
2-5. Similarity was measured by the normalized dot
product (NDP).
 The results of these two analyses are shown in Table 1.
One can see that, in general, the static layer coded the
beginning positions more distinctly than the end positions:
there were fewer errors in processing letters in the first
position, and static representations for strings that differed
in the first position were less similar to each other,
compared with differences in other positions. For longer

strings, the end positions were coded more distinctly
compared with the middle positions. It is important to note
that these differences were caused by the autosequencer
itself; there were no biasing statistics in the training
corpus that could have caused them.

Table 1. Percentages of errors and mean NDPs as a
function of length and position for the two-fifths model.

 % of Errors Similarity (NDP)
 String Length String Length
 2 3 4 5 2 3 4 5

Pos
1 32 22 16 19 .05 .13 .15 .42
2 88 61 40 29 .76 .73 .79 .75
3 53 49 46 .81 .83 .84
4 43 40 .87 .80
5 31 .77

 A more pointed question is, how did the static
representations code the positions and identities of letters?
A number of tests were conducted to address this question.
First, we counted the number of errors during training in
which a letter was inserted, deleted, or transposed. These
types of errors demonstrate some degree of separation in
the coding the positions and identities of letters, a property
that is lacking in more traditional connectionist
representations (e.g., slot-based codes).

0

2

4

6

8

10

12

14

16

18

20

200 600 1000 1400 1800 2200 2600

Deletions

Insertions

Transpositions

P
er

ce
n
ta

g
e

o
f E

rr
o
rs

Epochs

Figure 3. Three Error Types for the Two-Fifths Model

 In Figure 3, error types are plotted as a function of
training for all 3092 possible strings up to 5 characters
long. The graph shows that the autosequencer made all
three types of errors, which demonstrates that position and

identity information were coded at least somewhat
separately from each other. Interestingly, there was a spike
in transposition errors midway through training. It
appears that the network went through a period in which
position information was particularly weak, but further
analyses are needed to test the hypothesis.
 Another way to test for the separation of position and
identity is to examine the similarity structure of the
learned static representations. We conducted two analyses
of the similarity structure, one to test for coding of identity
separate from position, and the other to test for coding of
position separate from identity.
 To test coding of letter identity, NDPs were calculated
for strings that share letters in different positions. For
instance, the letter strings AYE and YEA share three non-
overlapping letters in common. This test was performed
on all pairs of three-letter strings that shared 0 to 3 non-
overlapping letters in common. None of these pairs shared
letters in the same positions. If the static representations
coded letter identities at least partially independent of
their position, then similarity should increase as the
number of non-overlapping letters in common increases.
Results confirmed this prediction: the mean NDPs were
−0.14, −0.11, −0.08, and −0.05 for 0 to 3 letters in
common, respectively. While the overall low similarities
suggest that position information was very important, the
linear increase in similarity stands as clear evidence that
the letters were coded similarly across positions in the
static representations.
 To test coding of letter position, similarities of same-
length strings were measured against similarities of
comparable different-length strings. If the static
representations coded position information at least
partially independent of letter identities, then same-length
strings should more similar to each other. We tested this
prediction by first calculating NDPs for all pairs of three-
letter strings that differed in only one position. Three
such pairs might be CAT-BAT, ACT-ANT, and BID-BIN.
We then calculated NDPs for three-letter strings paired
with four-letter strings that contained the paired three-
letter string. Three such pairs might be HAT-CHAT,
WIN-WINE, and ACT-FACT. The mean NDP for same-
length strings was 0.55, whereas it was only 0.23 for
different-length strings. This difference occurred despite
the fact that different-length strings shared more letters in
common (3 versus 2 in the same-length pairings). This
result confirms that the static representations coded the
positions of letters at least partially independent of their
identities.
 While positions and identities may be coded separately
to some degree, it is unclear how well the autosequencer
can generalize on the basis of these codes. The analyses
graphed in Figure 2 show that generalization is fairly good
for string lengths and letter positions that appeared in the
training corpus. However, to show full compositionality in
the learned static representations, the autosequencer would

need to generalize to string lengths and letter positions
outside the training corpus.
 Three autosequencers were trained to test composition-
ality of the static representations. The no-fours model
served to test whether learning could be interpolated to
four-letter strings when only shorter and longer strings are
trained. The four-five model served to test whether
learning could be extrapolated to sequences shorter or
longer than those trained. Results with these two models
showed no tendency to interpolate or extrapolate.
Specifically, none of the four-letter strings were processed
correctly by the no-fours model, and none of the three-
letter or six-letter strings were processed correctly by the
four-five model. These results show some of the limits of
compositionality in the current autosequencers, but more
simulations are necessary to confirm these limits.
 The third and final model tested whether individual
letters could be correctly sequenced in untrained positions.
In the two-ends model, three of the five letters never
appeared at the end of a sequence in the training set. After
training, 15% of the novel sequences with untrained end-
letters were processed correctly. This modest
generalization suggests that the autosequencer has the
potential to sequence letters in untrained positions, but
more simulations are necessary to determine whether this
potential can be fully realized.

Conclusions

A variety of hybrid mechanisms have been proposed to
enhance the componentiality of connectionist processing
(Browne and Sun, 1999; Plate, 1994; Pollack, 1990;
Shastri and Ajjanagadde, 1993). The autosequencer
presented here uses SRNs to learn distributed
representations that code the position and identity of
elements in a variable-length sequence.
 The autosequencer is similar to a sequential recursive
auto-associative memory (RAAM Pollack, 1990). A
RAAM can learn to code a variable-length string as a left-
branching binary tree. To do so, it must learn a
representation that can decode each branch of the tree.
For instance, to learn a code for the letter-string TRAP, it
would also learn codes for the strings T, TR, and TRA.
By contrast, the autosequencer is not forced to learn
sequences as left-branching binary trees, and it is not
forced to learn representations that can decode parts of
strings in its training corpus. Further work is necessary to
compare the RAAM and autosequencer architectures in
order to determine the consequences that their similarities
and differences may have on processing capabilities.
 The autosequencer simulations reported here
demonstrated a limited degree of compositionality. On the
one hand, representations were learned to integrated
knowledge about the identities and positions of letters in
variable-length strings. This knowledge generalized fairly

well to the sequencing of novel strings, so long as their
lengths and letter positions were represented in the
training corpus. On the other hand, learning did not
generalize equally to all sequence lengths, and there was
no evidence of interpolation or extrapolation to string
lengths outside the training corpus.
 More work is necessary to determine whether these
shortcomings are inherent to the autosequencer, or
whether they were partly due to choices in the model
parameters and representations. But putting these possible
shortcomings aside, the autosequencer was designed to
learn representations of variable-length linguistic
structures. Our plan is to “port” such representations into
connectionist models of language processing, such as
models of word reading (e.g., see Kello and Plaut, 2003).
The current simulations demonstrate the viability of this
plan.

Acknowledgements
This work was funded in part by NIH Grant MH55628,
and NSF Grant 0239595. The computational simulations
were run using the Lens network simulator (version 2.6),
written by Doug Rohde (http://tedlab.mit.edu/~dr/Lens).
We thank David Plaut for collaborations on precursors to
this work.

References

Browne, A. and Sun, R., 1999. Connectionist variable
binding. Expert Systems, 16: 189-207.

Christiansen, M.H., Allen, J. and Seidenberg, M.S., 1998.
Learning to segment speech using multiple cues: A
connectionist model. Language & Cognitive Processes,
13(2&3): 221-268.

Cleeremans, A., Servan-Schreiber, D. and McClelland,
J.L., 1989. Finite state automata and simple recurrent
networks. Neural Computation, 1(3): 372-381.

Dell, G.S., Juliano, C. and Govindjee, A., 1993. Structure
and content in language production: A theory of frame
constraints in phonological speech errors. Cognitive
Science, 17(2): 149-195.

Elman, J.L., 1990. Finding structure in time. Cognitive
Science, 14(2): 179-211.

Jordan, M.I., 1986. Serial order: A parallel distributed
processing approach. 8604 ICS Technical Report,
University of California at San Diego, La Jolla, CA.

Kello, C.T. and Plaut, D.C., 2003. Strategic control over
rate of processing in word reading: A computational

investigation. Journal of Memory & Language, 48(1):
207-232.

Pinker, S. and Prince, A., 1988. On language and
connectionism: Analysis of a parallel distributed
processing model of language acquisition. Cognition,
28(1-2): 73-193.

Plate, T.A., 1994. Distributed representation and nested
compositional structure, Department of Computer Science,
University of Toronto, Toronto, CA.

Plaut, D.C., 1996. Understanding human performance in
quasi-regular domains: Insights from connectionist
modeling of normal and impaired word reading.
International Journal of Psychology, 31(3-4): 1003-1003.

Plaut, D.C. and Kello, C.T., 1999. The emergence of
phonology from the interplay of speech comprehension
and production: A distributed connectionist approach. In:
B. MacWhinney (Editor), The emergence of language.
Erlbaum, Mahweh, NJ, pp. 381-415.

Pollack, J.B., 1990. Recursive distributed representations.
Artificial Intelligence, 46: 77-105.

Rumelhart, D.E., Durbin, R., Golden, R. and Chauvin, Y.,
1995. Backpropagation: The basic theory, Chauvin, Yves
(Ed); Rumelhart, David E (Ed) (1995) Backpropagation:
Theory, architectures, and applications (pp 1-34).

Seidenberg, M.S. and McClelland, J.L., 1989. A
Distributed, Developmental Model of Word Recognition
and Naming. Psychological Review, 96(4): 523-568.

Shastri, L. and Ajjanagadde, V., 1993. From simple
associations to systematic reasoning: A connectionist
representation of rules, variables and dynamic bindings.
Behavioral & Brain Sciences, 16: 417-494.

