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Abstract 
Four connectionist models are reported that learn static 
representations of variable-length strings using a novel 
autosequencer architecture. These representations were 
learned as plans for a simple recurrent network to 
regenerate a given input sequence. Results showed that the 
autosequencer can be used to address the dispersion 
problem because the positions and identities of letters in a 
string were integrated over learning into the plan 
representations. Results also revealed a moderate degree of 
componentiality in the plan representations. 

 
Linguistic structures vary in length. Paragraphs contain 
varying numbers of sentences, sentences contain varying 
numbers of words, and words contain varying numbers of 
letters and sounds. By contrast, standard connectionist 
mechanisms are designed to compute fixed-length vectors. 
In connectionist models of human language processing, 
variable-length structures have been most commonly 
processed using simple recurrent networks (Elman, 1990; 
Jordan, 1986) 
 Perhaps the most well-known usage of SRNs is to learn 
the transitional probabilities in a grammar (Christiansen 
et al., 1998; Cleeremans et al., 1989). The SRN is given a 
sequence of inputs, and it is trained to predict the next 
input on the basis of the current and previous inputs. 
Given this task, the fixed-length hidden representations 
learn to hold just enough information about the variable-
length sequence of past inputs in order to best predict the 
next input. However, the hidden representations are not 
pressured to hold enough information such that they could 
be used to reproduce the past N inputs in order. 
 Two other common usages of SRNs are 1) to map static, 
fixed-length inputs onto variable-length outputs, or 2) to 
map variable-length inputs onto static, fixed-length 
outputs. As an example of the former, Dell and his 
colleagues (Dell et al., 1993) built an SRN model of 
phonological encoding in which a fixed-length 
representation of a word lemma or word form served as a 
“plan” representation to generate a variable-length 
sequence phonological features. As an example of the 

latter, Plaut and Kello (1999) built a model of 
phonological development in which variable-length 
sequences of phonetic features were mapped onto fixed-
length semantic representations. In both of these examples 
(and all such previous work), the static representations 
were engineered by the modelers. 

The Autosequencer 

Here we present an extension of the SRN architecture, 
termed an autosequencer, that is able to learn fixed-length 
representations of variable-length strings (the architecture 
originated as tool to interpret the outputs of the model 
presented by Plaut and Kello. 1999). The autosequencer is 
motivated by the need to learn representations that 
simultaneously encode information about the identities 
and positions of characters in variable-length strings. 
 In the context of lexical processing, Plaut et al. (1996) 
described the tension between identity and position as the 
dispersion problem. Both the identities and positions of 
letters and sounds must be encoded in order to 
comprehend and produce written and spoken words, 
respectively. Connectionist models of lexical processing 
typically devote units to represent letters or sounds in 
particular positions, such as a unit to code P or /p/ in the 
onset of a word. The consequence of this slot-based coding 
scheme is that knowledge about P or /p/ in the onset is 
represented separate from knowledge about P or /p/ in the 
end of a word. Moreover, slot-based codes work only for 
strings whose lengths are relatively uniform, i.e., they 
have been used for monosyllabic, but not multisyllabic, 
words. Wickelfeatures are an alternative to slot-based 
codes (e.g., Seidenberg and McClelland, 1989), but they 
too are limited in important ways (Pinker and Prince, 
1988). 
 The autosequencer architecture presented here 
addresses the dispersion problem. Analogous to an 
autoencoder, representations are learned to reproduce 
inputs as outputs.  The difference is that these learned 
representations serve as plans for reproducing variable-



length input strings. We show that this pressures the 
autosequencer to learn representations that code both 
position-dependent and position-independent information 
about letters in variable-length strings. These 
representations exhibited a limited degree of 
compositionality. 

Training and Testing Corpus 
The alphabet consisted of five letters. These letters were 
artificial, but let us refer to them as A through E for the 
sake of discussion. The space of inputs and outputs was 
defined by all possible letter sequences from one to five 
letters in length (3905 possible sequences). Each sequence 
was terminated by a stop character. Each letter was 
represented as a 3-bit binary pattern. Four different subsets 
of strings were selected as training sets for four different 
autosequencers. The two-fifths  training set was created by 
choosing at random two out of every five strings at each of 
the five lengths (1562 total). The no-fours training set was 
created by removing all four-letter strings from the two-
fifths training set (1312 total). The four-five training set 
was created by selecting only the four-letter and five-letter 
strings from the two-fifths training set (1500 total). The 
two-ends training set was created by choosing all 
sequences whose ending letter was either an A or B (not 
including the stop character; the two end letters were 
chosen arbitrarily). 

Model Architecture 
The architecture of the autosequencer is diagrammed in 
Figure 1. Letter patterns were presented sequentially on 
the input units, and the network was trained to reproduce 
the pattern sequence over the output units.  Over a given 
input sequence, a representation was built up on the static 
layer, up to and including the final stop character. The 
decoder was not run until the stop character. At that point, 
the final static representation was held constant, and the 
decoder side of the network was run to produce a sequence 
of outputs. The numbers of hidden units were chosen on 
the basis of trial-and-error to be close to the minimums 
necessary to learn the training sets to criterion. 
 The trick to this architecture is in how to back-
propagate error from the encoder side to the decoder side. 
Cross-entropy error signals (Rumelhart et al., 1995) were 
generated on each forward propagation of the decoder, and 
the signals were back-propagated to the static layer only. 
Error derivates were accumulated at the static layer over 
the forward pass of the decoder, up to and including the 
last forward propagation for the stop character.  
 At that point, the forward pass of the encoder was 
“replayed”, and the accumulated derivatives were used as 
error signals.  Specifically, these derivatives were back-
propagated in time from the last to the first forward 
propagation of the encoder. 

 One informative point about this method of training is 
that accumulated derivatives on the static layer act as 
“moving targets” for the encoder, because they change as 
weights in the decoder change. Also, activations on the 
static layer act as “moving inputs” to the decoder, because 
they change as weights in the encoder change. Our 
experience has been that this interdependence can 
destabilize learning in larger, more difficult training sets. 
We have found that learning can be made more stable by 
making the encoder learning rate slower than the decoder 
learning rate. This was not needed for the current 
simulations, however. 
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Figure 1. Architecture of the Autosequencer 
 
 Input unit activations were set to 0 or 1, and all other 
unit activations were computed as the hyperbolic tangent 
(sigmoid) of their net inputs.  Net inputs were calculated 
as the dot product of the incoming weight vector and the 
activation vector over the sending units. Context units 
were copies of the corresponding hidden units from the 
previous time step (initialized to zero). 

Training Procedure 
For each of the four autosequencers, items were chosen at 
random from the training set, and weight updates were 
made after weight derivatives were accumulated over 200 
training items. Weight derivatives were calculated with 
the learning rate fixed at 0.0001, and a momentum 
parameter fixed at 0.8. After 2700 epochs of weight 
updates, the activations of all output units for all letters of 
all training sequences were on the correct side of zero. 
Model performance did not change substantially with 
further training, so results are presented up to 2700 
epochs. To be consistent, the other three models were also 
trained for a total of 2700 epochs.  



Simulation Results 
 In Figure 2, the percentage of items correct is plotted as 
a function of training for the two-fifths model. Percentages 
are plotted separately for trained items and novel items of 
lengths 1-3 versus 4-5. Novel items included all untrained 
sequences.  
 Accuracies for trained items show that the 
autosequencer was successful at learning static 
representations for variable-length strings. Accuracies for 
novel items show that learning generalized to both short 
and long sequences, but generalization was better for 
longer sequences. This difference occurred because, 
unavoidably, there were many more longer sequences to 
train on, compared with shorter ones.  Hidden unit sizes of 
up to 500 were tested (results not shown here), and 
generalization improved somewhat with more units. 
However, performance on the longer novel sequences was 
always better than performance on the shorter ones. 
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Figure 2. Accuracies for the Two-Fifths Model 

 
 A basic question about the autosequencer is how 
learning and representations differed as a function of 
position in a string. Two analyses were conducted to 
address this question. In one, errors were tallied as a 
function of position for all strings of lengths 2-5, across all 
epochs of training. In the other, similarities of the learned 
static representations were compared at the end of training 
for strings that differed only by one letter in the Nth 
position, where N was all positions for strings of lengths 
2-5. Similarity was measured by the normalized dot 
product (NDP).  
 The results of these two analyses are shown in Table 1. 
One can see that, in general, the static layer coded the 
beginning positions more distinctly than the end positions: 
there were fewer errors in processing letters in the first 
position, and static representations for strings that differed 
in the first position were less similar to each other, 
compared with differences in other positions. For longer 

strings, the end positions were coded more distinctly 
compared with the middle positions. It is important to note 
that these differences were caused by the autosequencer 
itself; there were no biasing statistics in the training 
corpus that could have caused them. 
 

Table 1. Percentages of errors and mean NDPs as a 
function of length and position for the two-fifths model. 

 
 % of Errors Similarity (NDP) 
 String Length String Length 
 2 3 4 5 2 3 4 5 

Pos         
1 32 22 16 19 .05 .13 .15 .42 
2 88 61 40 29 .76 .73 .79 .75 
3  53 49 46  .81 .83 .84 
4   43 40   .87 .80 
5    31    .77 

 
 A more pointed question is, how did the static 
representations code the positions and identities of letters? 
A number of tests were conducted to address this question. 
First, we counted the number of errors during training in 
which a letter was inserted, deleted, or transposed. These 
types of errors demonstrate some degree of separation in 
the coding the positions and identities of letters, a property 
that is lacking in more traditional connectionist 
representations (e.g., slot-based codes). 
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Figure 3.  Three Error Types for the Two-Fifths Model 

 
 In Figure 3, error types are plotted as a function of 
training for all 3092 possible strings up to 5 characters 
long. The graph shows that the autosequencer made all 
three types of errors, which demonstrates that position and 



identity information were coded at least somewhat 
separately from each other. Interestingly, there was a spike 
in transposition errors midway through training. It 
appears that the network went through a period in which 
position information was particularly weak, but further 
analyses are needed to test the hypothesis.   
 Another way to test for the separation of position and 
identity is to examine the similarity structure of the 
learned static representations.  We conducted two analyses 
of the similarity structure, one to test for coding of identity 
separate from position, and the other to test for coding of 
position separate from identity. 
 To test coding of letter identity, NDPs were calculated 
for strings that share letters in different positions. For 
instance, the letter strings AYE and YEA share three non-
overlapping letters in common. This test was performed 
on all pairs of three-letter strings that shared 0 to 3 non-
overlapping letters in common. None of these pairs shared 
letters in the same positions. If the static representations 
coded letter identities at least partially independent of 
their position, then similarity should increase as the 
number of non-overlapping letters in common increases. 
Results confirmed this prediction: the mean NDPs were 
−0.14, −0.11, −0.08, and −0.05 for 0 to 3 letters in 
common, respectively. While the overall low similarities 
suggest that position information was very important, the 
linear increase in similarity stands as clear evidence that 
the letters were coded similarly across positions in the 
static representations. 
 To test coding of letter position, similarities of same-
length strings were measured against similarities of 
comparable different-length strings. If the static 
representations coded position information at least 
partially independent of letter identities, then same-length 
strings should more similar to each other. We tested this 
prediction by first calculating NDPs for all pairs of three-
letter strings that differed in only one position.  Three 
such pairs might be CAT-BAT, ACT-ANT, and BID-BIN. 
We then calculated NDPs for three-letter strings paired 
with four-letter strings that contained the paired three-
letter string.  Three such pairs might be HAT-CHAT, 
WIN-WINE, and ACT-FACT. The mean NDP for same-
length strings was 0.55, whereas it was only 0.23 for 
different-length strings.  This difference occurred despite 
the fact that different-length strings shared more letters in 
common (3 versus 2 in the same-length pairings). This 
result confirms that the static representations coded the 
positions of letters at least partially independent of their 
identities. 
 While positions and identities may be coded separately 
to some degree, it is unclear how well the autosequencer 
can generalize on the basis of these codes. The analyses 
graphed in Figure 2 show that generalization is fairly good 
for string lengths and letter positions that appeared in the 
training corpus. However, to show full compositionality in 
the learned static representations, the autosequencer would 

need to generalize to string lengths and letter positions 
outside the training corpus. 
 Three autosequencers were trained to test composition-
ality of the static representations. The no-fours model 
served to test whether learning could be interpolated to 
four-letter strings when only shorter and longer strings are 
trained. The four-five model served to test whether 
learning could be extrapolated to sequences shorter or 
longer than those trained. Results with these two models 
showed no tendency to interpolate or extrapolate. 
Specifically, none of the four-letter strings were processed 
correctly by the no-fours model, and none of the three-
letter or six-letter strings were processed correctly by the 
four-five model. These results show some of the limits of 
compositionality in the current autosequencers, but more 
simulations are necessary to confirm these limits. 
 The third and final model tested whether individual 
letters could be correctly sequenced in untrained positions. 
In the two-ends model, three of the five letters never 
appeared at the end of a sequence in the training set. After 
training, 15% of the novel sequences with untrained end-
letters were processed correctly. This modest 
generalization suggests that the autosequencer has the 
potential to sequence letters in untrained positions, but 
more simulations are necessary to determine whether this 
potential can be fully realized. 

Conclusions 

A variety of hybrid mechanisms have been proposed to 
enhance the componentiality of connectionist processing 
(Browne and Sun, 1999; Plate, 1994; Pollack, 1990; 
Shastri and Ajjanagadde, 1993). The autosequencer 
presented here uses SRNs to learn distributed 
representations that code the position and identity of 
elements in a variable-length sequence. 
 The autosequencer is similar to a sequential recursive 
auto-associative memory (RAAM Pollack, 1990).  A 
RAAM can learn to code a variable-length string as a left-
branching binary tree. To do so, it must learn a 
representation that can decode each branch of the tree.  
For instance, to learn a code for the letter-string TRAP, it 
would also learn codes for the strings T, TR, and TRA.  
By contrast, the autosequencer is not forced to learn 
sequences as left-branching binary trees, and it is not 
forced to learn representations that can decode parts of 
strings in its training corpus. Further work is necessary to 
compare the RAAM and autosequencer architectures in 
order to determine the consequences that their similarities 
and differences may have on processing capabilities. 
 The autosequencer simulations reported here 
demonstrated a limited degree of compositionality. On the 
one hand, representations were learned to integrated 
knowledge about the identities and positions of letters in 
variable-length strings. This knowledge generalized fairly 



well to the sequencing of novel strings, so long as their 
lengths and letter positions were represented in the 
training corpus. On the other hand, learning did not 
generalize equally to all sequence lengths, and there was 
no evidence of interpolation or extrapolation to string 
lengths outside the training corpus.  
 More work is necessary to determine whether these 
shortcomings are inherent to the autosequencer, or 
whether they were partly due to choices in the model 
parameters and representations. But putting these possible 
shortcomings aside, the autosequencer was designed to 
learn representations of variable-length linguistic 
structures. Our plan is to “port” such representations into 
connectionist models of language processing, such as 
models of word reading (e.g., see Kello and Plaut, 2003). 
The current simulations demonstrate the viability of this 
plan. 
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