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Abstract 
There is often seen in the literature a disconnect between 
higher-level artificial intelligence and lower-level controls 
research.  Too often, path planners do not account for the 
physical capabilities of the agents that will be following 
their paths.  Similarly, the best controllers available need to 
be given trajectories from somewhere.  This work presents a 
combined architecture that links a high-level cognitive 
model, which can handle symbolic information and make 
rational decisions using it, with a lower-level optimal 
controller for planning detailed robotic vehicle trajectories.  
The priorities of the cognitive model are passed to the 
controller in the form of a set of weights that vary the 
importance of terms in a cost functional.  Using the calculus 
of variations, this cost functional is combined with the 
physical system dynamics and globally optimized, resulting 
in a full-state trajectory that is optimal with respect to the 
agent’s strategic goals and physical capabilities.   

Introduction  
We desire an intelligent robot that can reason, plan ahead, 
and make decisions based on its goals, its environment, 
and the desires of any teammates it might have. A 
cognitive model capable of symbolic inference can, with a 
large enough rules set and world information, do this for 
us. It can make judgment calls not only about what actions 
it should undertake, but how it should perform them - 
quickly, efficiently, cautiously, aggressively.  
 These behaviors, illustrated with possibly emotionally 
loaded words, are simply stereotypes of classes of 
trajectories. An "aggressive driver" is one who drives 
quickly, leaves little clearance between his vehicle and 
others, and engages in rapid accelerations between and 
within lanes. We interpret these dynamic characteristics of 
the vehicle's motion as aggression, regardless of the actual 
emotional state of the driver. A "cautious driver" would 
have different characteristics. He might still drive very 
quickly on a highway, but would leave larger clearances 
between his car and others, and would maintain a more 
constant speed with fewer and more gradual accelerations. 
How can we elicit these characteristics in position, 
velocity, and acceleration in a variety of domains?  
 This research is aimed at providing autonomous mobile 
agents with such a capability to plan their dynamic 
behaviors intelligently, based on goals, environmental 
concerns, and teammate input.  Task execution involves 

tradeoffs between quantities such as speed and fuel 
efficiency, so the agent must understand which are more 
highly prized, and the conditions under which that 
evaluation might change.   
 We express the various dynamic features of the system 
as terms in a cost function.  Each term is a quantity we 
wish to minimize to some degree or another: power use, 
time, or risk from approaching obstacles.  Expressed 
mathematically, we can use weighting terms to give 
different priorities to the elements of the cost function 
before using an optimal controls approach to generate 
trajectories and inputs for the system.  Changing the 
weights changes the resulting behaviors.  If saving fuel and 
avoiding obstacles are highly prized, the robot may travel 
slowly, avoiding rapid accelerations and looping far 
around obstacles.  If a short completion time is heavily 
weighted, the robot will zoom forward, dodging obstacles 
at high speeds with low clearance.  Human observers 
might give emotionally-inspired names to these behaviors: 
careful, reckless.   But this work is different from 
emotionally-based behaviors (Velasquez 1999).  In that 
work, different goals and environmental factors contribute 
to producing emotions, which then inhibit or excite certain 
behaviors.  The value of a new behavior is computed from 
both a weighted sum of "releasers" or triggers for the 
behavior, and excitory or inhibitory impulses generated by 
other, active behaviors.  The weights are static, so the 
system depends on sufficiently high levels of releasers to 
trigger a new behavior.  This is entirely in keeping with the 
theory behind behavior-based robotics (Brooks 1991). 
However, it does not allow for computational optimization 
of any kind.  Our research is aimed at eliciting behaviors 
that are optimal with respect to specific physical quantities 
(e.g., fuel, time, and distance from obstacles).  Some of 
these quantities may be perceived as more important than 
others, and weighted more heavily, resulting in a behavior 
that is optimal for this agent, with these goals, in this 
particular environment. Emotional language may be used 
to characterize these behaviors, but we do not seek to 
model emotions as a means of achieving these behaviors.   
 We will instead use a computational cognitive modeling 
system to recognize what kind of behavior is mostly likely 
to be successful, given the goal and the environment at the 
moment.  Then, we use the trajectory planner to find the 
physical motions best representing that “stereotyped”
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Figure 1: Integration of Cognitive and Physics-based Planners 

 
behavior.  A cognitive model has the responsibility of 
selecting the correct set of weights, given the agent's goals 
and environment.  These weights can then be further tuned 
by the model for even better performance.  We assume the 
existence of a higher-level strategic planner which 
produces these goals. 
 Figure 1 shows the integration of cognitive and physical 
planning technologies.  Inside the Cognitive/Physical 
Trajectory Planner, a symbolic inference engine (ACT-R) 
(Anderson and Lebiere 1998) is linked with a continuous 
trajectory planner to construct smooth motions that reflect 
behavioral goals as well as physical realities (e.g., obstacle 
avoidance, limited acceleration).  This link is achieved 
without requiring architectural extension to either the 
cognitive or trajectory planning components, using ACT-R 
to specify relative weights in a multi-objective cost 
function over which trajectories are optimized.  As we will 
illustrate, simple weight adjustments can dramatically vary 
trajectory 
 We begin with a review of previous research in path 
planning, cognition, and behavioral control. Then we 
discuss our goals for the cognitive model and overview the 
optimal controls method used to generate trajectories in 
this work.  A brief description of our dynamic model and 
cost functional is provided.  Results include 
demonstrations of the path and trajectory properties and an 
example in weight adjustment.  This paper introduces a 
method for a high-level, symbolic agent and physics-based 
trajectory planner to work together to plan robot motions.  
Numerous applications ranging from single-robot 
surveillance to multi-agent missions will ultimately benefit 
from such integration. 

Related Work 
Getting to a particular location is typically the province of 
path planning.  Many robust techniques exist and have 
been implemented on mobile robots operating in complex 
environments.  Voronoi diagrams, tangent graphs, cell 
decomposition and potential fields (Latombe 1991) all 
offer viable path planning methods.    However, they must 
all be augmented in some way to allow the use of a cost 
function that involves more than path length minimization.  
Agents require fuel, power, and time resources to move 
about their environment.  To fully define a “trajectory”, a 
“path” (i.e., sequence of positions) must be augmented 
with velocities and angular motion parameters (e.g., 
heading, angular velocity).   Resource costs in the form of 
forces/torques and traversal times can then be computed 
from the governing equations of motion.   To incorporate 
quantities such as fuel and time into a traditional path 
planner’s cost function, system “state” must be augmented 
with velocities, etc.  An exhaustive search through a space 
of discretized dynamic parameter values (e.g., velocities) 
given constraints (e.g., limited accelerations) could 
theoretically be used to augment each path segment with a 
good or even optimal trajectory.  However, computational 
efficiency is poor, and optimality is subject to the level of 
dynamic parameter discretization. 
 Optimal control algorithms (Kirk 1970) build full 
trajectories rather than paths, using the calculus of 
variations.  Additionally, the technique allows constraints 
to be placed on the trajectories. These can include, for 
example, system dynamics (including real-world concerns 
such as motor saturation), resulting in a path that the agent 
is guaranteed to be able to follow. They can also include a 
multi-term cost function that will allow us to elicit our 



various behaviors. This is an offline planning technique 
that is both mathematically rigorous and provably optimal, 
at the expense of computational complexity. It is therefore 
quite different from the work done in (Santamaria and 
Ram 1997), which is for fast, reactive behaviors that do 
not have a global perspective.  A global planner, in 
addition to avoiding the dead-ends that may break a 
reactive navigation system, can take advantage of 
maneuver which, although immediately very costly, may 
result in a lower total cost.  This comes, of course, at the 
price of requiring a model of the world.   
 Our optimal control cost function contains three terms: 
fuel use, clearance from obstacles, and time. Prior to this 
work, cost function weights were set in an ad hoc fashion, 
often determined experimentally. While we will develop 
our basic behavior-eliciting weights experimentally, we are 
working toward rules to dictate weight adjustment "within" 
as well as "between" behaviors. Perhaps the most 
analogous work is the hybrid dynamical systems approach 
taken by (Aaron et al 2002). In this work on low-level 
navigation, a dynamic "comfort level" is used to adjust the 
weighting parameters of repulsor fields surrounding 
environmental obstacles. This is a purely reactive method, 
however, that does not attempt to calculate or minimize 
any costs. 
 Weighting factors are needed for any cost functions that 
have more than one term.  "The shortest path that uses the 
least amount of fuel" is often neither the shortest possible 
path, nor the path that uses the least fuel, but one which 
strikes a balance between them.  The relative weights of 
these terms determine what sort of balance results.  Neither 
the path planning community nor the optimal controls 
community addresses the selection of these weights.  
Typically, researchers test different weight combinations 
until one that produces the desired behavior is found.  
Since the quantities being weighted can be of different 
units and even different orders of magnitude, there is often 
no more principled technique available. 
 Once weights are assigned to classes of behaviors, we 
will need a method for intelligently selecting among them.  
Cognitive models offer a way of encoding complex  
decision-making processes, such as both weight selection 
and trajectory analysis.  Systems like Soar (Newell 1990), 
EPIC (Kieras and Meyer 1997) and ACT-R (Anderson and 
Lebiere 1998) all try to model not only the end result of 
human cognition, but also the process by which those 
results are reached.  The desired result is a planning agent 
that works in a “human-like” way, and can interact with 
humans in a familiar fashion.  We chose to use ACT-R, 
although the other architectures could be adopted as well.  
In ACT-R, procedural rules fire in the presence of certain 
"chunks" of symbolic declarative memory.  This is a serial 
system, using the bottleneck as a point of coordination 
among different cognitive modules.  This makes it a very 
attractive option for implementing on a hardware system.  
Finally, ACT-R also has an extension, ACT-R/S, which 
supports spatial awareness.  The Naval Research 
Laboratory has leveraged this into a model of perspective-

taking (Trafton et al. 2004) which we would like to further 
extend into our domain in future work. 

Cognitive/Physical Planner 
The optimal control routine can only work with the 
constraints and costs it is given.  Unfortunately, human 
goal-setters are not always proficient in translating their 
intentions into mathematical terms.  This results in 
generated trajectories that are not what the user actually 
wanted. 
 The cognitive model can address this in two ways.  
When working with a human, it may receive feedback 
from him.  We would like for the system to be able to 
accept and use the sort of critiques that humans offer 
naturally and easily.  Once a natural language processing 
routine (e.g., Perzanowski, Schultz and Adams 1998) has 
parsed such utterances, it still remains to determine the size 
of the change that the user desires.  Here, the cognitive 
model can use information gleaned from the conversation 
as well as features in the trajectory to estimate what 
increment will satisfy the user. 
 But this level of autonomy may be too low for all cases.  
If the agent is to be more autonomous, we would like for it 
to be able to perform a self-analysis on the generated 
trajectory.  The optimal control routine cannot evaluate 
this trajectory past its cost functional; the cognitive model, 
however, can.  It can be given a knowledge base of 
trajectory features and how desirable they are for different 
kinds of goals.  Such trajectory features might include 
additional desired waypoints, smoothness criteria, or 
violations of assumed constraints that were not explicitly 
stated in the cost function (e.g., a time limit).  The same 
capabilities that allow for high-level feedback from a 
human user can also be used for interacting with the 
strategic planner.  The planner may be issuing very high-
level descriptions of goals, and the agent needs to interpret 
them.  When the model is  enabled to make its own 
human-like decisions, it can decide by how much the 
trajectory should be altered, and inform the trajectory 
generator of whatever updated weights or waypoints it 
must consider to create a better trajectory. 
 Figure 2 shows an outline of the agent’s processes.  At 
the center sits the ACT-R model, overseeing all activities.  
The human user interacts with this module, monitoring 
events rather than directly participating in trajectory 
generation processes.  The ACT-R trajectory planning 
agent accepts a planning problem, p0, which can be posed 
by the user or by any suitable high-level planner that 
builds task-level actions to achieve its goals, some of 
which may require vehicle motions.  The goal is to return 
feasible and optimal solution X=<Jn, Ln, tn, xn, un>, where 
Jn and Ln summarize solution cost and the feature 
limits/constraints, respectively, and the set <tn, xn, un> 
specifies the full-state trajectory to be executed.     ACT-R 
incrementally builds a history of activities {H}={H1, H2, 
…} with each Hi described by an action ai and planning 
state si.  It can then use {H} to identify which weight 
adjustment strategies it has already employed, to avoid 



infinite loops.  For the trajectory planning problem, action 
set {A} is defined as {INIT, EVAL, RET, TPLAN, FEXT, 
WADJ, REPAIR}.  The supporting modules {TPLAN, 
FEXT, WADJ, REPAIR} are modular and easily altered to 
fit into an existing problem domain.  Their function is 
described briefly below. 
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Figure 2: Details of the Cognitive/Physical Planner 

 
 Figure 3 shows the possible paths through the 
architecture.  INIT initializes the problem state, p0.  Next, 
TPLAN generates an initial optimal trajectory.  FEXT 
extracts the relevant trajectory features, Fi, and sends them 
to EVAL.  If all Fi are within the limits Li, the trajectory is 
good and the solution X is returned by RET to the user and 
the higher-level strategic planner.  Otherwise, based on 
history {H} and any limit violations, EVAL decides to 
either adjust weights and re-plan the trajectory or repair the 
trajectory locally.  If EVAL decides to adjust the weights 
Wi, it calls WADJ, which uses a local rule set to decide 
which changes to make based on which limits were 
violated.  These Wi+1 are returned to TPLAN and the 
process iterates until a good trajectory is found and RET is 
called.  If EVAL instead decides that local trajectory repair 
is appropriate, it calls REPAIR for this purpose.  The 
repaired trajectory is re-evaluated by FEXT and EVAL to 
ensure that the repair process did not introduce any new 
problems.  If it did not, RET fires as above.  If it did, EVAL 
uses {H} to recall the pre-REPAIR state of the problem and 
calls WADJ to attempt a fix instead. 

TPLANINIT FEXT EVAL RET

WADJ

REPAIR

 
Figure 3: Trajectory Generation Process under ACT-R 

Supervision. 
 EVAL is very much the center of the ACT-R procedure.  
This core process begins simply, by comparing the features 
F returned by FEXT to the L0 generated by INIT.  When all 
F are within the bounds set by L0, nothing more needs to 
be done except to return the trajectory via RET.  When 
some L0 are violated, EVAL has choices to make.  It must 

be aware of what it has tried before so that fruitless 
iterations are avoided.  It must decide if the current 
trajectory is a candidate for REPAIR, or if WADJ is a more 
appropriate approach.  Trajectories are candidates for 
REPAIR only if certain restrictions are met: that the 
violation is of a constraint that can be fixed by REPAIR, 
that the violation is not too large, that there are not too 
many such violations. Otherwise, WADJ is to be done, and 
EVAL needs to prepare input for that routine.  Which L0 
were violated and by how much?  More importantly, are 
there conflicting L0 demands?  The strategic planner may 
unintentionally request competing limits that cannot be 
mutually satisfied.  EVAL must recognize these situations 
and deal with them.  If the strategic planner (human or 
otherwise) has requested a low level of autonomy, EVAL 
should inform the planner that L0 cannot be met.  If a 
higher degree of autonomy has been requested, EVAL 
needs to be able to intelligently decide which L0 can be 
relaxed and by how much to get a solution that is as close 
to the planner’s request as possible.  Once EVAL finds that 
an identified optimal trajectory meets all constraints, RET 
returns the trajectory and control input schedule to the 
strategic planner.  If EVAL made changes to L0, these are 
reported as well.   

Overview of Optimal Control 
We can use optimal control theory to solve the problem of 
finding an admissible input (or control) vector u*(t) that 
causes a system with dynamic constraints (described by 
differential equations) to follow an admissible trajectory 
x*(t) that minimizes a cost functional J.  This is done via 
the calculus of variations in a process which is very 
analogous to minimizing a function (Kirk 1970). 
 A function accepts as its argument numbers – scalars, 
vectors, or matrices.  To minimize a function, the general 
procedure is to take its first derivative, set that to zero, and 
solve the resulting equation.  This finds the extrema, which 
can then be tested to see which are maxima and minima, 
and which are globally the most extreme. 
 A functional accepts as its argument a function.  (The 
integral is a common functional).  One can take the 
variation of a functional, which is analogous to the 
derivative of a function, and set it to zero to find the 
extrema.   
 We create a cost functional J, whose value depends on 
our agent’s state, x(t), its control inputs, u(t), and time t, 
over the interval [t0, tf].  By taking the variation of J and 
setting it to zero, we can solve for the x(t), u(t), and t that 
will minimize J. 
 We can also adjoin to this cost functional a term 
expressing the system dynamics.  When the system’s 
dynamic equations hold, the term is zero; otherwise, the 
term is positive.  J will not be minimal unless the term is 
zeroed and the dynamic constraints are not violated. 
 Boundary conditions depend on the particular problem, 
for instance if the final time is fixed or free, or if the final 



state is fixed, free or constrained.  In all cases, one can find 
2n equations to determine 2n constants of integration.  
Typically, some of these equations deal with the starting 
state, and some with the ending state: this is called the split 
boundary value problem.  The split boundary value 
problem is not in general solvable in closed-form, so 
numeric methods were employed (Shampine, Kierzenka, 
and Reichelt 2000). 
 These optimal controls methods are computationally 
expensive (compared to reactive controllers) and thus are 
typically employed offline.  For a well-characterized, 
uncluttered environment (such as space), this is not a large 
drawback.  For many other applications, it is not 
acceptable.  There do exist real-time near-optimal 
controllers (Henshaw 2004, Miles 1997) that offer 
significant savings over reactive methods.  As changes to 
the environment are detected, these methods can replan 
new near-optimal trajectories (path and velocity schedule 
sequences) from the agent’s present state to its goal in a 
timely fashion. 

Terms of the Cost Functional 
In robotic applications, two concerns are usually 
paramount: conserving fuel or battery power and not 
running into obstacles.  Additionally, there may be time 
constraints on a mission.  Equation (1) gives the cost 
functional J, and each term is described more fully below. 
 dtroWWuWuJ ft
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Energy.  To minimize energy use, we add the term uT⋅W1⋅u  
to the cost functional, J, where u is the control vector (the 
energy used to control the vehicle) and is W1 a weighting 
term.  This term is generally used in optimal controls when 
electric power is being used. 
Time. Since J is an integral, the cost functional only needs 
a constant term, W2, to minimize time.   Over the integral, 
the resulting W2⋅tf will be minimized. 
Clearance to Obstacles.  To keep the vehicle away from 
obstacles, we add the term W3⋅o(r).  o(r) is a function 
which increasingly penalizes the agent as it approaches an 
obstacle; W3 is the weighting term, and r is the distance 
from the vehicle to the obstacle’s center.  o(r) is a cubic 
spline that is at maximum over the center of the obstacle, 
attains a fixed value K at the obstacle's edge, distance R 
from the center, and decreases to zero at some distance 
LIM away from the obstacle's edge.  Coefficients ai are 
computed to meet these requirements. 
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 To this cost functional, we appended a simple set of 
dynamics: 
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which is simply “F=ma” with some losses due to friction. 
 We have found that the relative ratios of W1, W2 and W3 
to each other are significant, but their numeric values are 

not.  (That is, <100, 10, 10> and <10, 1, 1> give the same 
results).  The numeric value of LIM in o(r), however, is 
significant.  The path is actually more sensitive to changes 
in LIM than in changes in the ratio of W3 to W1 or W2.  In 
Figure 4, the band of solid lines shows the difference in 
path for W3/W1 ranging from 1 to 5.  (The circular shape is 
an obstacle).  The dashed lines show the effects of varying 
LIM from 1 (closest to the obstacle) to 7 (farthest away).  
Therefore, we now augment our weight set <W1, W2, W3> 
with LIM. 
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Figure 4: Effects on path of changing W3 (solid lines) and LIM 

(dashed lines) 

Results 
Figure 5 shows three paths for three different weight sets 
<W1, W2, W3> (LIM is fixed).  Each path is required to 
start at coordinates (-5, -5) with zero velocity and end at 
coordinates (5, 5), also with zero velocity.  There is one 
obstacle that blocks a straight-line solution.  Despite the 
very different priorities given to the cost functional terms, 
each path looks nearly identical.   
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Figure 5: Paths for W1/W2 = 1, 8 and 98, W2/W3 = 1 for all. 

 
 The strength of the optimal trajectory planner is 
apparent when we compare the velocities and accelerations 
of these three cases, as shown in Figure 6.  The weight set 
<98, 1, 1> (dashed and dotted lines) weighs saving power 
98 times more heavily than saving either time or risk due 
to the obstacle.  It takes 111.3 time units to reach its 
destination, using very minimal accelerations (which 
require only very minimal power) to maintain a very small 
forward velocity, as Figure 6 shows. 
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Figure 6: Speed, acceleration, and energy profiles for W1/W2 = 1, 

8, and 98, W2/W3 = 1 for all. 
 
For the weight set <8, 1, 1> (dotted lines), the agent still 
has a marked preference for saving power.  But it is far 
less extreme than in the previous case, completing the 
mission in just under a third of the time (34.9 time units).  
While accelerations over most of the mission are still 
barely above zero, initial and final accelerations are larger, 
and the velocity over the mission is more than twice that of 
the previous case. 
 The trends continue as W1 continues to decrease and W2 
and W3 increase.  The solid lines showing weight set <1, 1, 
1> show markedly higher speeds, accelerations, and 
energy usage, with a correspondingly shorter time to finish 
(13.2 time units).  These three optimal trajectories are 
obviously quite different from one another, despite the fact 
that the paths over which they move are nearly identical. 
 The path is not invariant for all combinations of 
weighting factors, of course.  Figure 7 shows the optimal 
path generated for a weight set in which minimizing time 
is of the utmost importance.  The path, which comes within 
0.34 distance units of the obstacle’s edge, takes only 2.6 
time units to complete, but at a cost of 235.0 energy units.   
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Figure 7: Optimal path for weight set <1, 98, 1> 

 
 We want to provide the cognitive agent with 
mathematical tools it can call upon to adjust the 
trajectories.  Looking at Figure 6, we certainly get the 
sense that there are tradeoffs between energy use, time, 
and time-dependent quantities.  Figure 4 indicates some 

relationship between path features and LIM.  Can we 
codify these? 
 We can.  We ran simulations for this simplified 2-DOF 
point robot model in worlds with no obstacles, one 
obstacle, and three obstacles.  We extracted features from 
the resulting trajectories and plotted them against different 
weight ratios and LIM to look for relationships.  For those 
features which have a time component – velocities, 
accelerations, forces – there were strong power 
relationships with the W1/W2 ratio that began to degrade as 
obstacles were introduced. Each relationship was of the 
form: 
 ( ) 2

211 / CWWCEnergy =              (4) 
Table 1 summarizes the properties of the trendlines of each 
plot.  R2 is the correlation coefficient, an indicator of how 
well the equation fits the actual data (1.0 is a perfect 
predictor). 
 

# obstacles 0 1 3 
C1 20.19 23.14 32.00 
C2 -0.51 -0.47 -0.42 
R2 0.9996 0.7703 0.8546 

Table 1: Constant values for energy curves 
 
Adding obstacles decreases the accuracy of the power rule.  
However, as a rule of thumb to guide the agent in making 
intelligent adjustments, it may prove very useful.  We used 
this data to provide the WADJ module with the following 
rule for adjusting W1/W2 when an upper limit on the energy 
used (u2) is exceeded: 
 

IF THEN 

 Use power rule u2 = C1(W1/W2)-0.5 

u2 limit 
not met 

Compute C1 from current W1, W2 and u2 
values 

 Use desired u2 and C1 to compute new W1/W2 

Table 2: Rule for adjusting W1/W2 when u2 limit not met 
 
Similar power rules were derived for other trajectory 
features (see Lennon and Atkins 2004 for complete list).  
Path features, such as obstacle clearance, had linear 
relationships with LIM.  Their rules were derived in a 
similar fashion. 

Point Robot Example 
 We used a 10 x 10 field with two obstacles for this 
example. We imposed the following limits L0 on the 
trajectory: 
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where u2
tot is the total energy used, {O} are the obstacles 

and ri is the distance of the point robot from the edge of 
each.  As a starting guess, we took W1=W2=W3 and LIM=3.  



The resulting path (Figure 8, dotted line) used 26.24 
energy units, violating the first constraint in L0.  WADJ 
used this feature value, the W1/W2 ratio and the rule shown 
in Table 2 to compute a new W1/W2 value.  The new Wi 
were passed to TPLAN and the process iterated.  The 
results are shown as the first two iterations in Table 3, after 
which an acceptable trajectory was found (Figure 8, 
dashed line). 
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Figure 8: (a) Path and (b) speed, acceleration and energy 
use for three generated trajectories 

 
 To extend the example, we added a third component to 
L0 at this point acting as “maximum separation” (e.g., 
appropriate should the vehicle wish to survey each 
obstacle it passes):  
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min_sepi is the minimum separation of the agent from the 
obstacle along the path.  We allow the agent to be farther 
than 2.0 units from the obstacle over the course of the path 
(it would be difficult to reach the endpoint, otherwise), but 
require that this nearest approach be less than our limit.   
Using the linear relationship between LIM and the 

minimum separation, WADJ calculated the coefficient 
based on current data and evaluated the LIM needed for a 
minimum separation distance of 2.0 distance units.  
Sending the results back to TPLAN returned the results on 
the last line of Table 3.  As an added and expected bonus, 
there is a fuel savings as well when the vehicle can more 
closely approach obstacles.  Since L0 does not require that 
the energy be near 20 units, only less than 20 units, there is 
no reason to recompute the trajectory.  The solid line in 
Figure 8 shows the resulting path and trajectory 
information. 

 
Iter # Wi Energy Dist

1 
Dist

2 
Wi+1 

0 <1, 1, 1, 3> 26.24 2.00 1.94 <1.668, 1, 1, 
3> 

1 <1.668, 1, 1, 
3> 

20.24 2.00 1.94 <1.708, 1, 1, 
3> 

2 <1.708, 1, 1, 
3> 

18.82 2.57 2.73 <1.708, 1, 1, 
2.33> 

3 <1.708, 1, 1, 
2.33> 

16.72 1.94 1.90  

Table 3: Planar Robot Case Study Results.  (Dist1 and Dist2 are 
the minimum clearance to obstacles 1 and 2); 

Conclusions and Future Work 
We have outlined a flexible architecture that ably 
combines higher-level cognitive reasoning with a 
computational trajectory planner.  Just as human scientists 
and engineers use calculators and computers to augment 
their own cognitive powers when generating complex, 
optimized full-state trajectories, so too can our cognitive 
model call upon the computational modules TPLAN and 
WADJ to perform mathematical calculations.  But these 
computational tools, while powerful, are generally 
insufficient.  We would otherwise not need scientists and 
engineers to review their output.  Our EVAL module 
provides the same type of high-level, intelligent evaluation 
of the entire trajectory that a human operator would give.  
As mission complexity and the number of fielded vehicles 
increases, it is necessary to automate this evaluation so that 
the humans in the loop can devote their cognitive resources 
to other, higher-level tasks. 
 Our results show that, even when paths are nearly 
identical, consideration of dynamics can result in very 
different ways of traversing those paths.  An optimal 
trajectory planner, provided with numerical representations 
of symbolic goals by EVAL, can provide these trajectories 
to an agent.  Cognition supports the physical motion 
planner by interpreting the high-level goals into these 
numeric values; the physical motion planner supports the 
cognitive model by providing a trajectory which is, ideally, 
the best way to achieve some goal that it has.   
 But the physical motion planner does not have any real 
understanding of the agent’s goals and needs.  It still falls 
to the agent to review the returned trajectory and check it 
over, ensuring that any limits that could not be 
communicated effectively to the trajectory planner are met.  
If they are not, the cognitive model has tools at its disposal 



to alter the inputs to the physical motion planner to drive 
the solution toward one that meets these unstated 
requirements. 
 The next major step will be the improvement of the 
ACT-R cognitive model.  In addition to the weight 
adjustment scheme shown here, we want it to be able to 
look at the returned trajectory data and make high-level 
alterations.  The REPAIR module has yet to be 
implemented, and EVAL needs the ability to identify 
conflicting limits in L0 and determine whether to report 
failure or to change the limits, based on its knowledge of 
the higher-level strategic goals. 
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