
Making Decisions about Motion

Jamie Lennon1 Ella Atkins2

1Naval Research Laboratory, 2University of Maryland
14555 Overlook Ave. S.W., Washington, DC, 20375

2Space Systems Laboratory, Building 382, College Park, MD 20742
lennon@aic.nrl.navy.mil, atkins@glue.umd.edu

Abstract
There is often seen in the literature a disconnect between
higher-level artificial intelligence and lower-level controls
research. Too often, path planners do not account for the
physical capabilities of the agents that will be following
their paths. Similarly, the best controllers available need to
be given trajectories from somewhere. This work presents a
combined architecture that links a high-level cognitive
model, which can handle symbolic information and make
rational decisions using it, with a lower-level optimal
controller for planning detailed robotic vehicle trajectories.
The priorities of the cognitive model are passed to the
controller in the form of a set of weights that vary the
importance of terms in a cost functional. Using the calculus
of variations, this cost functional is combined with the
physical system dynamics and globally optimized, resulting
in a full-state trajectory that is optimal with respect to the
agent’s strategic goals and physical capabilities.

Introduction
We desire an intelligent robot that can reason, plan ahead,
and make decisions based on its goals, its environment,
and the desires of any teammates it might have. A
cognitive model capable of symbolic inference can, with a
large enough rules set and world information, do this for
us. It can make judgment calls not only about what actions
it should undertake, but how it should perform them -
quickly, efficiently, cautiously, aggressively.
 These behaviors, illustrated with possibly emotionally
loaded words, are simply stereotypes of classes of
trajectories. An "aggressive driver" is one who drives
quickly, leaves little clearance between his vehicle and
others, and engages in rapid accelerations between and
within lanes. We interpret these dynamic characteristics of
the vehicle's motion as aggression, regardless of the actual
emotional state of the driver. A "cautious driver" would
have different characteristics. He might still drive very
quickly on a highway, but would leave larger clearances
between his car and others, and would maintain a more
constant speed with fewer and more gradual accelerations.
How can we elicit these characteristics in position,
velocity, and acceleration in a variety of domains?
 This research is aimed at providing autonomous mobile
agents with such a capability to plan their dynamic
behaviors intelligently, based on goals, environmental
concerns, and teammate input. Task execution involves

tradeoffs between quantities such as speed and fuel
efficiency, so the agent must understand which are more
highly prized, and the conditions under which that
evaluation might change.
 We express the various dynamic features of the system
as terms in a cost function. Each term is a quantity we
wish to minimize to some degree or another: power use,
time, or risk from approaching obstacles. Expressed
mathematically, we can use weighting terms to give
different priorities to the elements of the cost function
before using an optimal controls approach to generate
trajectories and inputs for the system. Changing the
weights changes the resulting behaviors. If saving fuel and
avoiding obstacles are highly prized, the robot may travel
slowly, avoiding rapid accelerations and looping far
around obstacles. If a short completion time is heavily
weighted, the robot will zoom forward, dodging obstacles
at high speeds with low clearance. Human observers
might give emotionally-inspired names to these behaviors:
careful, reckless. But this work is different from
emotionally-based behaviors (Velasquez 1999). In that
work, different goals and environmental factors contribute
to producing emotions, which then inhibit or excite certain
behaviors. The value of a new behavior is computed from
both a weighted sum of "releasers" or triggers for the
behavior, and excitory or inhibitory impulses generated by
other, active behaviors. The weights are static, so the
system depends on sufficiently high levels of releasers to
trigger a new behavior. This is entirely in keeping with the
theory behind behavior-based robotics (Brooks 1991).
However, it does not allow for computational optimization
of any kind. Our research is aimed at eliciting behaviors
that are optimal with respect to specific physical quantities
(e.g., fuel, time, and distance from obstacles). Some of
these quantities may be perceived as more important than
others, and weighted more heavily, resulting in a behavior
that is optimal for this agent, with these goals, in this
particular environment. Emotional language may be used
to characterize these behaviors, but we do not seek to
model emotions as a means of achieving these behaviors.
 We will instead use a computational cognitive modeling
system to recognize what kind of behavior is mostly likely
to be successful, given the goal and the environment at the
moment. Then, we use the trajectory planner to find the
physical motions best representing that “stereotyped”

Strategic
Planner

Cognitive/
Physical

Trajectory
Planner

Declarative
Memory

System Dynamics
Cost Function

Guidance
Navigation
& Control

Diagnostics

Sensors

Actuators

En
vi

ro
nm

en
t

)),(),((ttutxax =&

)(*321 xoWWuWuJ T ++=

Strategic and
trajectory goals

Learned chunks

A priori
knowledge

Agent, environment state

Request for current state

Continuous Trajectory

Motor commands

)(),(txtx &

Discretized
State, Fuel

Continuous State, Fuel

Figure 1: Integration of Cognitive and Physics-based Planners

behavior. A cognitive model has the responsibility of
selecting the correct set of weights, given the agent's goals
and environment. These weights can then be further tuned
by the model for even better performance. We assume the
existence of a higher-level strategic planner which
produces these goals.
 Figure 1 shows the integration of cognitive and physical
planning technologies. Inside the Cognitive/Physical
Trajectory Planner, a symbolic inference engine (ACT-R)
(Anderson and Lebiere 1998) is linked with a continuous
trajectory planner to construct smooth motions that reflect
behavioral goals as well as physical realities (e.g., obstacle
avoidance, limited acceleration). This link is achieved
without requiring architectural extension to either the
cognitive or trajectory planning components, using ACT-R
to specify relative weights in a multi-objective cost
function over which trajectories are optimized. As we will
illustrate, simple weight adjustments can dramatically vary
trajectory
 We begin with a review of previous research in path
planning, cognition, and behavioral control. Then we
discuss our goals for the cognitive model and overview the
optimal controls method used to generate trajectories in
this work. A brief description of our dynamic model and
cost functional is provided. Results include
demonstrations of the path and trajectory properties and an
example in weight adjustment. This paper introduces a
method for a high-level, symbolic agent and physics-based
trajectory planner to work together to plan robot motions.
Numerous applications ranging from single-robot
surveillance to multi-agent missions will ultimately benefit
from such integration.

Related Work
Getting to a particular location is typically the province of
path planning. Many robust techniques exist and have
been implemented on mobile robots operating in complex
environments. Voronoi diagrams, tangent graphs, cell
decomposition and potential fields (Latombe 1991) all
offer viable path planning methods. However, they must
all be augmented in some way to allow the use of a cost
function that involves more than path length minimization.
Agents require fuel, power, and time resources to move
about their environment. To fully define a “trajectory”, a
“path” (i.e., sequence of positions) must be augmented
with velocities and angular motion parameters (e.g.,
heading, angular velocity). Resource costs in the form of
forces/torques and traversal times can then be computed
from the governing equations of motion. To incorporate
quantities such as fuel and time into a traditional path
planner’s cost function, system “state” must be augmented
with velocities, etc. An exhaustive search through a space
of discretized dynamic parameter values (e.g., velocities)
given constraints (e.g., limited accelerations) could
theoretically be used to augment each path segment with a
good or even optimal trajectory. However, computational
efficiency is poor, and optimality is subject to the level of
dynamic parameter discretization.
 Optimal control algorithms (Kirk 1970) build full
trajectories rather than paths, using the calculus of
variations. Additionally, the technique allows constraints
to be placed on the trajectories. These can include, for
example, system dynamics (including real-world concerns
such as motor saturation), resulting in a path that the agent
is guaranteed to be able to follow. They can also include a
multi-term cost function that will allow us to elicit our

various behaviors. This is an offline planning technique
that is both mathematically rigorous and provably optimal,
at the expense of computational complexity. It is therefore
quite different from the work done in (Santamaria and
Ram 1997), which is for fast, reactive behaviors that do
not have a global perspective. A global planner, in
addition to avoiding the dead-ends that may break a
reactive navigation system, can take advantage of
maneuver which, although immediately very costly, may
result in a lower total cost. This comes, of course, at the
price of requiring a model of the world.
 Our optimal control cost function contains three terms:
fuel use, clearance from obstacles, and time. Prior to this
work, cost function weights were set in an ad hoc fashion,
often determined experimentally. While we will develop
our basic behavior-eliciting weights experimentally, we are
working toward rules to dictate weight adjustment "within"
as well as "between" behaviors. Perhaps the most
analogous work is the hybrid dynamical systems approach
taken by (Aaron et al 2002). In this work on low-level
navigation, a dynamic "comfort level" is used to adjust the
weighting parameters of repulsor fields surrounding
environmental obstacles. This is a purely reactive method,
however, that does not attempt to calculate or minimize
any costs.
 Weighting factors are needed for any cost functions that
have more than one term. "The shortest path that uses the
least amount of fuel" is often neither the shortest possible
path, nor the path that uses the least fuel, but one which
strikes a balance between them. The relative weights of
these terms determine what sort of balance results. Neither
the path planning community nor the optimal controls
community addresses the selection of these weights.
Typically, researchers test different weight combinations
until one that produces the desired behavior is found.
Since the quantities being weighted can be of different
units and even different orders of magnitude, there is often
no more principled technique available.
 Once weights are assigned to classes of behaviors, we
will need a method for intelligently selecting among them.
Cognitive models offer a way of encoding complex
decision-making processes, such as both weight selection
and trajectory analysis. Systems like Soar (Newell 1990),
EPIC (Kieras and Meyer 1997) and ACT-R (Anderson and
Lebiere 1998) all try to model not only the end result of
human cognition, but also the process by which those
results are reached. The desired result is a planning agent
that works in a “human-like” way, and can interact with
humans in a familiar fashion. We chose to use ACT-R,
although the other architectures could be adopted as well.
In ACT-R, procedural rules fire in the presence of certain
"chunks" of symbolic declarative memory. This is a serial
system, using the bottleneck as a point of coordination
among different cognitive modules. This makes it a very
attractive option for implementing on a hardware system.
Finally, ACT-R also has an extension, ACT-R/S, which
supports spatial awareness. The Naval Research
Laboratory has leveraged this into a model of perspective-

taking (Trafton et al. 2004) which we would like to further
extend into our domain in future work.

Cognitive/Physical Planner
The optimal control routine can only work with the
constraints and costs it is given. Unfortunately, human
goal-setters are not always proficient in translating their
intentions into mathematical terms. This results in
generated trajectories that are not what the user actually
wanted.
 The cognitive model can address this in two ways.
When working with a human, it may receive feedback
from him. We would like for the system to be able to
accept and use the sort of critiques that humans offer
naturally and easily. Once a natural language processing
routine (e.g., Perzanowski, Schultz and Adams 1998) has
parsed such utterances, it still remains to determine the size
of the change that the user desires. Here, the cognitive
model can use information gleaned from the conversation
as well as features in the trajectory to estimate what
increment will satisfy the user.
 But this level of autonomy may be too low for all cases.
If the agent is to be more autonomous, we would like for it
to be able to perform a self-analysis on the generated
trajectory. The optimal control routine cannot evaluate
this trajectory past its cost functional; the cognitive model,
however, can. It can be given a knowledge base of
trajectory features and how desirable they are for different
kinds of goals. Such trajectory features might include
additional desired waypoints, smoothness criteria, or
violations of assumed constraints that were not explicitly
stated in the cost function (e.g., a time limit). The same
capabilities that allow for high-level feedback from a
human user can also be used for interacting with the
strategic planner. The planner may be issuing very high-
level descriptions of goals, and the agent needs to interpret
them. When the model is enabled to make its own
human-like decisions, it can decide by how much the
trajectory should be altered, and inform the trajectory
generator of whatever updated weights or waypoints it
must consider to create a better trajectory.
 Figure 2 shows an outline of the agent’s processes. At
the center sits the ACT-R model, overseeing all activities.
The human user interacts with this module, monitoring
events rather than directly participating in trajectory
generation processes. The ACT-R trajectory planning
agent accepts a planning problem, p0, which can be posed
by the user or by any suitable high-level planner that
builds task-level actions to achieve its goals, some of
which may require vehicle motions. The goal is to return
feasible and optimal solution X=<Jn, Ln, tn, xn, un>, where
Jn and Ln summarize solution cost and the feature
limits/constraints, respectively, and the set <tn, xn, un>
specifies the full-state trajectory to be executed. ACT-R
incrementally builds a history of activities {H}={H1, H2,
…} with each Hi described by an action ai and planning
state si. It can then use {H} to identify which weight
adjustment strategies it has already employed, to avoid

infinite loops. For the trajectory planning problem, action
set {A} is defined as {INIT, EVAL, RET, TPLAN, FEXT,
WADJ, REPAIR}. The supporting modules {TPLAN,
FEXT, WADJ, REPAIR} are modular and easily altered to
fit into an existing problem domain. Their function is
described briefly below.

ACT-R
Planner
(Lisp)

Optimal
Control
(Matlab)

Feature
Extraction
(Matlab)

Weight
Adjustment

(Lisp)

Trajectory Repair
(Matlab)

J(x,u,{O}), _ = f(x,u)
{O}={o1,o2,…,ok}

Strategic: {I,PS,G} p0
Trajectory: {p0,PT} X

Fi

Wi, Fi, Li

x&

Fi, Li, ti, xi, ui

ti+1, xi+1, ui+1

Wi+1

ti, xi, ui

bc, Wi

Ji, ti, xi, ui

TPLAN (a4)

FEXT (a5)

REPAIR (a7)

WADJ (a6)

User

Figure 2: Details of the Cognitive/Physical Planner

 Figure 3 shows the possible paths through the
architecture. INIT initializes the problem state, p0. Next,
TPLAN generates an initial optimal trajectory. FEXT
extracts the relevant trajectory features, Fi, and sends them
to EVAL. If all Fi are within the limits Li, the trajectory is
good and the solution X is returned by RET to the user and
the higher-level strategic planner. Otherwise, based on
history {H} and any limit violations, EVAL decides to
either adjust weights and re-plan the trajectory or repair the
trajectory locally. If EVAL decides to adjust the weights
Wi, it calls WADJ, which uses a local rule set to decide
which changes to make based on which limits were
violated. These Wi+1 are returned to TPLAN and the
process iterates until a good trajectory is found and RET is
called. If EVAL instead decides that local trajectory repair
is appropriate, it calls REPAIR for this purpose. The
repaired trajectory is re-evaluated by FEXT and EVAL to
ensure that the repair process did not introduce any new
problems. If it did not, RET fires as above. If it did, EVAL
uses {H} to recall the pre-REPAIR state of the problem and
calls WADJ to attempt a fix instead.

TPLANINIT FEXT EVAL RET

WADJ

REPAIR

Figure 3: Trajectory Generation Process under ACT-R

Supervision.
 EVAL is very much the center of the ACT-R procedure.
This core process begins simply, by comparing the features
F returned by FEXT to the L0 generated by INIT. When all
F are within the bounds set by L0, nothing more needs to
be done except to return the trajectory via RET. When
some L0 are violated, EVAL has choices to make. It must

be aware of what it has tried before so that fruitless
iterations are avoided. It must decide if the current
trajectory is a candidate for REPAIR, or if WADJ is a more
appropriate approach. Trajectories are candidates for
REPAIR only if certain restrictions are met: that the
violation is of a constraint that can be fixed by REPAIR,
that the violation is not too large, that there are not too
many such violations. Otherwise, WADJ is to be done, and
EVAL needs to prepare input for that routine. Which L0
were violated and by how much? More importantly, are
there conflicting L0 demands? The strategic planner may
unintentionally request competing limits that cannot be
mutually satisfied. EVAL must recognize these situations
and deal with them. If the strategic planner (human or
otherwise) has requested a low level of autonomy, EVAL
should inform the planner that L0 cannot be met. If a
higher degree of autonomy has been requested, EVAL
needs to be able to intelligently decide which L0 can be
relaxed and by how much to get a solution that is as close
to the planner’s request as possible. Once EVAL finds that
an identified optimal trajectory meets all constraints, RET
returns the trajectory and control input schedule to the
strategic planner. If EVAL made changes to L0, these are
reported as well.

Overview of Optimal Control
We can use optimal control theory to solve the problem of
finding an admissible input (or control) vector u*(t) that
causes a system with dynamic constraints (described by
differential equations) to follow an admissible trajectory
x*(t) that minimizes a cost functional J. This is done via
the calculus of variations in a process which is very
analogous to minimizing a function (Kirk 1970).
 A function accepts as its argument numbers – scalars,
vectors, or matrices. To minimize a function, the general
procedure is to take its first derivative, set that to zero, and
solve the resulting equation. This finds the extrema, which
can then be tested to see which are maxima and minima,
and which are globally the most extreme.
 A functional accepts as its argument a function. (The
integral is a common functional). One can take the
variation of a functional, which is analogous to the
derivative of a function, and set it to zero to find the
extrema.
 We create a cost functional J, whose value depends on
our agent’s state, x(t), its control inputs, u(t), and time t,
over the interval [t0, tf]. By taking the variation of J and
setting it to zero, we can solve for the x(t), u(t), and t that
will minimize J.
 We can also adjoin to this cost functional a term
expressing the system dynamics. When the system’s
dynamic equations hold, the term is zero; otherwise, the
term is positive. J will not be minimal unless the term is
zeroed and the dynamic constraints are not violated.
 Boundary conditions depend on the particular problem,
for instance if the final time is fixed or free, or if the final

state is fixed, free or constrained. In all cases, one can find
2n equations to determine 2n constants of integration.
Typically, some of these equations deal with the starting
state, and some with the ending state: this is called the split
boundary value problem. The split boundary value
problem is not in general solvable in closed-form, so
numeric methods were employed (Shampine, Kierzenka,
and Reichelt 2000).
 These optimal controls methods are computationally
expensive (compared to reactive controllers) and thus are
typically employed offline. For a well-characterized,
uncluttered environment (such as space), this is not a large
drawback. For many other applications, it is not
acceptable. There do exist real-time near-optimal
controllers (Henshaw 2004, Miles 1997) that offer
significant savings over reactive methods. As changes to
the environment are detected, these methods can replan
new near-optimal trajectories (path and velocity schedule
sequences) from the agent’s present state to its goal in a
timely fashion.

Terms of the Cost Functional
In robotic applications, two concerns are usually
paramount: conserving fuel or battery power and not
running into obstacles. Additionally, there may be time
constraints on a mission. Equation (1) gives the cost
functional J, and each term is described more fully below.
 dtroWWuWuJ ft

t
T))((

0 321∫ ⋅++= (1)

Energy. To minimize energy use, we add the term uT⋅W1⋅u
to the cost functional, J, where u is the control vector (the
energy used to control the vehicle) and is W1 a weighting
term. This term is generally used in optimal controls when
electric power is being used.
Time. Since J is an integral, the cost functional only needs
a constant term, W2, to minimize time. Over the integral,
the resulting W2⋅tf will be minimized.
Clearance to Obstacles. To keep the vehicle away from
obstacles, we add the term W3⋅o(r). o(r) is a function
which increasingly penalizes the agent as it approaches an
obstacle; W3 is the weighting term, and r is the distance
from the vehicle to the obstacle’s center. o(r) is a cubic
spline that is at maximum over the center of the obstacle,
attains a fixed value K at the obstacle's edge, distance R
from the center, and decreases to zero at some distance
LIM away from the obstacle's edge. Coefficients ai are
computed to meet these requirements.

() () ()
() () ()⎪⎩

⎪
⎨
⎧

≤<+−+−+−

≤≤+−+−+−
=

LIMrRaRraRraRra

RrarRarRarRa
ro

,

0,
)(

87
2

6
3

5

43
2

2
3

1 (2)

 To this cost functional, we appended a simple set of
dynamics:

 ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
)(

0
)(
)(

/0
10

)(
)(

tutx
tx

mctx
tx

&&&

&
 (3)

which is simply “F=ma” with some losses due to friction.
 We have found that the relative ratios of W1, W2 and W3
to each other are significant, but their numeric values are

not. (That is, <100, 10, 10> and <10, 1, 1> give the same
results). The numeric value of LIM in o(r), however, is
significant. The path is actually more sensitive to changes
in LIM than in changes in the ratio of W3 to W1 or W2. In
Figure 4, the band of solid lines shows the difference in
path for W3/W1 ranging from 1 to 5. (The circular shape is
an obstacle). The dashed lines show the effects of varying
LIM from 1 (closest to the obstacle) to 7 (farthest away).
Therefore, we now augment our weight set <W1, W2, W3>
with LIM.

-6 -4 -2 0 2 4 6 8

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

X

Y

Figure 4: Effects on path of changing W3 (solid lines) and LIM

(dashed lines)

Results
Figure 5 shows three paths for three different weight sets
<W1, W2, W3> (LIM is fixed). Each path is required to
start at coordinates (-5, -5) with zero velocity and end at
coordinates (5, 5), also with zero velocity. There is one
obstacle that blocks a straight-line solution. Despite the
very different priorities given to the cost functional terms,
each path looks nearly identical.

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

X

Y

W1/W2 = 1
W1/W2 = 8
W1/W2 = 98

Figure 5: Paths for W1/W2 = 1, 8 and 98, W2/W3 = 1 for all.

 The strength of the optimal trajectory planner is
apparent when we compare the velocities and accelerations
of these three cases, as shown in Figure 6. The weight set
<98, 1, 1> (dashed and dotted lines) weighs saving power
98 times more heavily than saving either time or risk due
to the obstacle. It takes 111.3 time units to reach its
destination, using very minimal accelerations (which
require only very minimal power) to maintain a very small
forward velocity, as Figure 6 shows.

0 20 40 60 80 100 120
0

0.5

1

1.5

Time

S
pe

ed

W1/W2 = 1
W1/W2 = 8
W1/W2 = 98

0 20 40 60 80 100 120
0

0.5

1

1.5

Time

A
cc

el
er

at
io

n

0 20 40 60 80 100 120
0

1000

2000

3000

Time

E
ne

rg
y

Figure 6: Speed, acceleration, and energy profiles for W1/W2 = 1,

8, and 98, W2/W3 = 1 for all.

For the weight set <8, 1, 1> (dotted lines), the agent still
has a marked preference for saving power. But it is far
less extreme than in the previous case, completing the
mission in just under a third of the time (34.9 time units).
While accelerations over most of the mission are still
barely above zero, initial and final accelerations are larger,
and the velocity over the mission is more than twice that of
the previous case.
 The trends continue as W1 continues to decrease and W2
and W3 increase. The solid lines showing weight set <1, 1,
1> show markedly higher speeds, accelerations, and
energy usage, with a correspondingly shorter time to finish
(13.2 time units). These three optimal trajectories are
obviously quite different from one another, despite the fact
that the paths over which they move are nearly identical.
 The path is not invariant for all combinations of
weighting factors, of course. Figure 7 shows the optimal
path generated for a weight set in which minimizing time
is of the utmost importance. The path, which comes within
0.34 distance units of the obstacle’s edge, takes only 2.6
time units to complete, but at a cost of 235.0 energy units.

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

X

Y

Figure 7: Optimal path for weight set <1, 98, 1>

 We want to provide the cognitive agent with
mathematical tools it can call upon to adjust the
trajectories. Looking at Figure 6, we certainly get the
sense that there are tradeoffs between energy use, time,
and time-dependent quantities. Figure 4 indicates some

relationship between path features and LIM. Can we
codify these?
 We can. We ran simulations for this simplified 2-DOF
point robot model in worlds with no obstacles, one
obstacle, and three obstacles. We extracted features from
the resulting trajectories and plotted them against different
weight ratios and LIM to look for relationships. For those
features which have a time component – velocities,
accelerations, forces – there were strong power
relationships with the W1/W2 ratio that began to degrade as
obstacles were introduced. Each relationship was of the
form:
 () 2

211 / CWWCEnergy = (4)
Table 1 summarizes the properties of the trendlines of each
plot. R2 is the correlation coefficient, an indicator of how
well the equation fits the actual data (1.0 is a perfect
predictor).

obstacles 0 1 3
C1 20.19 23.14 32.00
C2 -0.51 -0.47 -0.42
R2 0.9996 0.7703 0.8546

Table 1: Constant values for energy curves

Adding obstacles decreases the accuracy of the power rule.
However, as a rule of thumb to guide the agent in making
intelligent adjustments, it may prove very useful. We used
this data to provide the WADJ module with the following
rule for adjusting W1/W2 when an upper limit on the energy
used (u2) is exceeded:

IF THEN

 Use power rule u2 = C1(W1/W2)-0.5

u2 limit
not met

Compute C1 from current W1, W2 and u2
values

 Use desired u2 and C1 to compute new W1/W2

Table 2: Rule for adjusting W1/W2 when u2 limit not met

Similar power rules were derived for other trajectory
features (see Lennon and Atkins 2004 for complete list).
Path features, such as obstacle clearance, had linear
relationships with LIM. Their rules were derived in a
similar fashion.

Point Robot Example
 We used a 10 x 10 field with two obstacles for this
example. We imposed the following limits L0 on the
trajectory:

⎩
⎨
⎧

≥∀
≤

=
0.1},{

202

0
i

tot

rO
u

L (5)

where u2
tot is the total energy used, {O} are the obstacles

and ri is the distance of the point robot from the edge of
each. As a starting guess, we took W1=W2=W3 and LIM=3.

The resulting path (Figure 8, dotted line) used 26.24
energy units, violating the first constraint in L0. WADJ
used this feature value, the W1/W2 ratio and the rule shown
in Table 2 to compute a new W1/W2 value. The new Wi
were passed to TPLAN and the process iterated. The
results are shown as the first two iterations in Table 3, after
which an acceptable trajectory was found (Figure 8,
dashed line).

-6 -4 -2 0 2 4 6
-5

-4

-3

-2

-1

0

1

2

3

4

5

X

Y

Iter0
Iter2
Iter3

(a)

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

Time

S
pe

ed

Iter0
Iter2
Iter3

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

Time

A
cc

el
er

at
io

n

0 2 4 6 8 10 12 14 16 18
0

2

4

6

Time

E
ne

rg
y

(b)

Figure 8: (a) Path and (b) speed, acceleration and energy
use for three generated trajectories

 To extend the example, we added a third component to
L0 at this point acting as “maximum separation” (e.g.,
appropriate should the vehicle wish to survey each
obstacle it passes):

⎪
⎩

⎪
⎨

⎧

≤∀
≥∀

≤
=

0.2_,}{
0.1},{

202

0

i

i

tot

sepminO
rO

u
L (6)

min_sepi is the minimum separation of the agent from the
obstacle along the path. We allow the agent to be farther
than 2.0 units from the obstacle over the course of the path
(it would be difficult to reach the endpoint, otherwise), but
require that this nearest approach be less than our limit.
Using the linear relationship between LIM and the

minimum separation, WADJ calculated the coefficient
based on current data and evaluated the LIM needed for a
minimum separation distance of 2.0 distance units.
Sending the results back to TPLAN returned the results on
the last line of Table 3. As an added and expected bonus,
there is a fuel savings as well when the vehicle can more
closely approach obstacles. Since L0 does not require that
the energy be near 20 units, only less than 20 units, there is
no reason to recompute the trajectory. The solid line in
Figure 8 shows the resulting path and trajectory
information.

Iter # Wi Energy Dist

1
Dist

2
Wi+1

0 <1, 1, 1, 3> 26.24 2.00 1.94 <1.668, 1, 1,
3>

1 <1.668, 1, 1,
3>

20.24 2.00 1.94 <1.708, 1, 1,
3>

2 <1.708, 1, 1,
3>

18.82 2.57 2.73 <1.708, 1, 1,
2.33>

3 <1.708, 1, 1,
2.33>

16.72 1.94 1.90

Table 3: Planar Robot Case Study Results. (Dist1 and Dist2 are
the minimum clearance to obstacles 1 and 2);

Conclusions and Future Work
We have outlined a flexible architecture that ably
combines higher-level cognitive reasoning with a
computational trajectory planner. Just as human scientists
and engineers use calculators and computers to augment
their own cognitive powers when generating complex,
optimized full-state trajectories, so too can our cognitive
model call upon the computational modules TPLAN and
WADJ to perform mathematical calculations. But these
computational tools, while powerful, are generally
insufficient. We would otherwise not need scientists and
engineers to review their output. Our EVAL module
provides the same type of high-level, intelligent evaluation
of the entire trajectory that a human operator would give.
As mission complexity and the number of fielded vehicles
increases, it is necessary to automate this evaluation so that
the humans in the loop can devote their cognitive resources
to other, higher-level tasks.
 Our results show that, even when paths are nearly
identical, consideration of dynamics can result in very
different ways of traversing those paths. An optimal
trajectory planner, provided with numerical representations
of symbolic goals by EVAL, can provide these trajectories
to an agent. Cognition supports the physical motion
planner by interpreting the high-level goals into these
numeric values; the physical motion planner supports the
cognitive model by providing a trajectory which is, ideally,
the best way to achieve some goal that it has.
 But the physical motion planner does not have any real
understanding of the agent’s goals and needs. It still falls
to the agent to review the returned trajectory and check it
over, ensuring that any limits that could not be
communicated effectively to the trajectory planner are met.
If they are not, the cognitive model has tools at its disposal

to alter the inputs to the physical motion planner to drive
the solution toward one that meets these unstated
requirements.
 The next major step will be the improvement of the
ACT-R cognitive model. In addition to the weight
adjustment scheme shown here, we want it to be able to
look at the returned trajectory data and make high-level
alterations. The REPAIR module has yet to be
implemented, and EVAL needs the ability to identify
conflicting limits in L0 and determine whether to report
failure or to change the limits, based on its knowledge of
the higher-level strategic goals.

Acknowledgements
This work was performed in part at the Naval Research
Laboratory under funding from the Office of Naval
Research under work order N0001404WX30001.

References
Aaron, E., Sun, H., Ivancic, F., and Metaxas, D. 2002. A hybrid

dynamical systems approach to intelligent low-level
navigation. In Proceedings of Computer Animation 2002: 154-
163.

Anderson, J.R., and Lebiere, C. 1998. The Atomic Components of
Thought. Mahwah, NJ: Lawrence Erlbaum.

Brooks, R.A. 1991 Intelligence without representation. Artificial
Intelligence Journal 47: 139-159.

Henshaw, C.G. 2004. Personal communication.

Kieras, D., and Meyer, D.E. 1997. An overview of the epic
architecture for cognition and performance with application to
human-computer interaction. Human Computer Interaction 12:
391-438.

Kirk, D. E. 1970. _Optimal Control Theory: An Introduction._
Englewood Cliffs, NJ: Prentice-Hall, Inc.

Latombe, J.C. 1991 _Robot Motion Planning._ Norwell, MA:
Kluwer Academic Publishers.

Lennon, J.A. and Atkins, E.M. 2004. Optimal Path Planning with
Behavior-Based Cost Definition. To appear in Proceedings of
the AIAA 1st Intelligent Systems Conference, Chicago, IL,
September 20-22, 2004.

Miles, D.W. 1997. Real-Time Dynamic Trajectory Optimization
with Application to Free-Flying Space Robots. PhD thesis:
Standford University.

Newell, A. 1990. _Unified theories of cognition._ Cambridge,
MA: Harvard University Press.

Perzanowski, D., Schultz, A.C., and Adams, W. 1998.
Integrating Natural Language and Gesture in a Robotics
Domain. In Proceedings of the IEEE International Symposium
on Intelligent Control: ISIC/CIRA/ISAS Joint Conference, 247-
252.

Ram, A., Arkin, R., Boone, G., and Pearce, M. 1994. Using
genetic algorithms to learn reactive control parameters for
autonomous robotic navigation. Adaptive Behavior 2(3): 277-
304.

Santamaria, J.C. and Ram, A. 1997. Learning of Parameter-
Adaptive Reaction Controllers for Robotic Navigation. In
Proceedings of the World Multiconference on Systemics,
Cybernetics, and Informatics.

Shampine, L.F.; Kierzenka, J.; and Reichelt, M.W. 2000.
Solving boundary value problems for ordinary differential
equations in Matlab with bvp4c. The MathWorks, Inc. tutorial.

Trafton, J.G.; Schultz, A.C.; Perzanowski, D.; Bugajska, M.D.;
Adams, W.; Cassimatis, N.L.; and Brock, D.P. 2004. Children
and robots learning to play hide and seek. Cognitive Systems
Research, under review.

Velasquez, J.D. 1999. An emotion-based approach to robotics. In
Proceedings of the 1999 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 235-240.

