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Abstract

My goal is to understand human verbal route instructions by
modeling and implementing the language, knowledge rep-
resentation, and cognitive processes needed to communicate
about spatial routes. To understand human route instructions,
Iran a study of how people give and follow route instructions.
I modeled the language used in the route instruction texts
using standard computational linguistics techniques. I model
the information content of the route instruction texts using a
spatial ontology. I introduce a set of axioms and heuristics
that can autonomously transform a linguistic representation
of what the route director said into a semantic representation
of the intended route. This semantic representation has
been implemented in mobile robots that can navigate and
accomplish simultaneous localization and mapping in real-
world environments. Finally, I model the processes of
following and giving route instructions as Markov processes.

Problem definition

A route instruction is an instruction intended to guide
a mobile agent toward a spatial destination. A route
instruction set is the collection of route instructions that
describes a route. A route instruction set is also referred to as
“route directions” or “directions” !. Route instructions are
a special case of verbal instructions, which include recipes,
assembly instructions, and usage manuals. While route
instruction sets may include verbal, gestural, and pictorial
components, (respectively using words, body gestures,
and map elements) this work focuses on verbal route
instructions. The route instruction provider is referred
to here as the director and the agent following a route
instruction set as the follower.

This paper presents a framework to develop systems that
communicate route instructions in natural language. As a
route instruction follower, the system represents verbal route
descriptions in a spatial knowledge ontology that a robot can
use to navigate the route. As a director, the system generates
route instructions conveying similar information in similar
styles as people’s route instructions.

I modeled the language of the route instruction texts,
using a learned probabilistic context-free grammar to parse

!The term “route instruction” avoids confusion with the terms
“cardinal direction” (north, west, etc.) and “relative direction” (left,
up, etc.), components of route instructions.

the sentences. These parse trees were converted into
attribute-value matrices to filter out the incidental features
of the sentences, such as phrase order. I combined the
linguistic representations of route instruction texts into a
representation of the intended route map, in terms of the
topological layer of the Spatial Semantic Hierarchy. 1
introduce a family of Markov processes that model route
directors and followers of various abilities and goals.

Other work on route instructions
Route instruction understanding

Several software systems analyze or follow route instruc-
tions. Riesbeck’s system evaluated route instructions by
high-level characteristics, independent of the environment
(1980). His natural language parsing and understanding
program analyzed a set of route instructions for overall
clarity and cruciality measures. Each motion must be
described completely and precisely (clarity); additional
descriptions provide checks but are not crucial.

Webber et al. looked at the broader question of inferring
an intended plan from any instructions (1995). Miiller et
al. implemented a system which can follow a formal route
description through an environment, with the intention of
adding on a natural language understanding system (2000).

Perzanowski et al. combined a speech recognizer, a deep
parser and a dialog model with hand gesture recognition, and
other deictic references on a Palm Pilot (2001). This work
was part of GRACE, a robot system that navigated through
a conference center by asking for and following route
instructions (Simmons & others 2003). Frank suggested
formalizing verbal route instructions into action schemas
and considering the “pragmatic information content” of
route instruction texts the same if they produce equivalent
actions (2003).

Route instruction generation

Moulin & Kettani’s GRAAD software generated a logical,
specification of a route from a “Spatial Conceptual Map”
and gave them to a virtual pedestrian (1998). This logical
formulation was processed by another module to convert
it into natural language by removing redundant informa-
tion, matching logical terms with environment names and
matching logical relations with verbs. Stocky’s kiosk system



EDA

turn to face the green halllway, walk three times forward, turn left, walk forward six times, turn left, walk forward
once

EMWC

Follow the grassy hall three segments to the blue-tiled hall. Turn left. Follow the blue-tiled hall six segments,
passing the chair, stool and bench, to the intersection containing the hatrack. Turn left. Go one segment forward
to the corner. This is Position 5.

KLS

take the green path to the red brick intersection. go left towards the lamp to the very end of the hall. at the chair,
take a right. at the blue path intersection, take a left onto the blue path. at the coat rack, take another left onto the
plain cement. at the end of this hall at the corner, you are at position 5

KXP

head all the way toward the butterfly hallway, keep going down it until you reach a dead end square area. pos 5 is
in the corner to the left as you enter the square block.

1JS

go all the way down the grassy hall, take a left, go all the way down the blue hall until you see a coat rack, take
another immediate left.

WLH

from four face the grass carpet and move to the hat rack, turn left and move onto the blue carpet, walk past two
chairs and to the lamp, turn left, move into the corner such that the lamp is behind you and to your right you see a
gray carpeted alley

Table 1: Example route instructions by different directors, all from Position 4 to Position 5 in the environment in Figure 2.

guided visitors to offices with a virtual avatar that combined
gestures and natural language route instructions (2002).
Porzel, Jansche, & Meyer-Klabunde examine issues of how
to linearize a representation of a two- or three-dimensional
environment or scene into a one-dimensional string of words
(2002).

Modeling route instruction language

The first step of route instruction understanding is to model
the language used in the route instructions. A portion
of route instructions from a cognitive study were hand-
labeled for semantic features (See Table 1 for examples).
A referring phrase is a phrase that refers to some entity or
attribute being described, analyzed on its semantic content
instead of its syntactic makeup (Kuipers & Kassirer 1987).
By semantically tagging the referring phrases and verbs in
a set of route instructions, this analysis characterized the
surface meaning of route instruction utterances. From the
hand-labeled text, a Probabilistic Context Free Grammar
(PCFG) was trained to parse and semantically tag new route
instruction texts.

Figure 1 shows the complete framework for the linguistic
understanding of verbal route instruction texts. The parser,
here from a PCFG, parses the unstructured plain route
instruction text to produce a syntactic parse tree annotated
with word senses, or meaning in context. This tree
can be transformed into an Attribute Value Matrix (AVM)
representation, AVMs are a recursive representation of the
surface meaning of an utterance, after taking out incidental
features, such as phrase order and word selection. AVMs can
represent the information captured in the referring phrase
verbatim protocol analysis (Kuipers & Kassirer 1987): verb
types and their required and optional arguments.

Finally, the framework integrates the knowledge in in-
dividual utterances to extract the meaning of the route
instruction text. A powerful representation of the route can
be found in the Spatial Semantic Hierarchy, as introduced
in the next section. An explanation of the processing of
attribute-value matrices into a representation of the route
follows this brief introduction to the SSH.

Representing routes in the Spatial Semantic
Hierarchy

Route instructions can be represented naturally using the
representations of the Spatial Semantic Hierarchy (SSH)
(Kuipers 2000). Route instruction texts describe causal
and topological structures annotated with metrical and rich
view (object and landmark) information. In the SSH, the
Causal level discretizes continuous control motions into
reliable, high-level actions. At the causal level, motions
are abstracted to either furn or travel actions. A turn action
changes orientation within a place, while a travel moves the
agent from one place to another. A view likewise abstracts
the sensory image.

The topological level of the Spatial Semantic Hierarchy
represents the environment as places, paths, and regions
and the topological relations of connectivity, path order,
boundary relations, and regional containment. Likewise,
there are topological actions, such as “go to the third place
down the path” and “get to the intersection of the brick path
and rose-floored path.”

Route instructions can be represented by the SSH causal
and topological ontologies, with the actions annotated
with metrical and view attributes. Route instructions are
expressed in both declarative and procedural language, e.g.
both “As you walk down the hall, you will see a lamp,”
and “Walk down the hall past the lamp.” Route instructions
include both causal actions (“Walk forward three steps.”)
and topological actions (“Face along the blue path and
follow it to the intersection with the brick hall.”).

Inferring an SSH topological route map

The Attribute Value Matrix is a good representation of
the shallow meaning of route instruction text utterances.
The remaining step builds the gestalt meaning of the
text from the individual utterances. To reason about the
semantics (meaning), anaphora (co-reference resolution),
and discourse properties (inferring the conversational intent
of an utterance) of route instruction texts, I examine how the
spatial language is used.
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Figure 1: Natural language understanding framework with an example of understanding a route instruction text.

Both Grice’s conversational maxims (1975) and Sperber
& Wilson’s Relevance Theory (2004) are linguistic theories
of discourse — how sentences are strung together to form
broader meaning. Each theory assumes that a cooperative
speaker conveys meaning by crafting the discourse to clearly
and concisely carry across the necessary concepts. In this
vein, I propose sets of axioms and heuristics for a follower
to infer the topological map. Once the makeup and structure
of the topological map is known, the map can be displayed
graphically as a user or developer interface. The bottom
right corner of Figure 1 shows the propositional topological
maps for the short route described by these two sentences. A
graphical representation from another route instruction text
is shown in Figure 3.

One set of axioms instantiates the entities, or resources,
required by complex concepts. For instance, “the corner”
in these instructions usually refers to the intersection of
two paths, each terminating at the corner. Other resource
axioms include “each path connects at least two places,
“each intersection is the meet point of at least two paths”,
and “a left or right turn action implies changing paths”.

Another class of axioms tracks when information is
explicitly mentioned and when it can be inferred. These
conversational axioms include “When two consecutive turn
commands specify their location, these are distinct places
separated by an unstated travel action.” and “When a
turn is immediately followed by a travel without a location
mentioned, the travel starts where the turn results.” These
help resolve anaphora issues — is the place or path mentioned
in the current sentence new or previously mentioned?

Resolving linguistic anaphora is analogous to resolving

place aliasing, or perceptually identical places, while
exploring. Often, the route instructions do not completely
specify the route, leaving spatial ambiguity. For instance,
a turn direction may be unspecified, leaving topological
ambiguity. Fortunately, the SSH can handle these partial
states of knowledge. Moreover, the SSH has been exten-
sively used to resolve the spatial ambiguity present while
performing simultaneous localization and mapping. The
partial, ambiguous map of the environment derived from
language understanding can be handled by exactly the same
processes that handle the partial, ambiguous map learned
from exploration.

Ideal route instruction models

An empirically tested model reveals which aspects of route
instructions lead the follower reliably to the destination. The
route can be segmented into route legs, where each route leg
consists of selecting, orienting, executing, and terminating
a topological travel action that transports the traveler from
one place to another.

A route instruction text can likewise be segmented into
the utterances describing each route leg. A route consists
of a chain of route legs; a route instruction set is a chain
of route instructions. Both meet the Markov criterion: after
traveling or describing a route leg, the remainder of the route
is independent from how the current state was achieved.
Once one has described or followed a route to be facing in a
direction at a position, the problem is the same as starting a
route from the intermediate pose to the destination.

Since the Markov assumption is met, the probability that a
set of route instructions will successfully guide the follower
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Figure 2: The “Grid” environment. Example route
instructions drawn (Table 1) from a virtual reality human
study in an environment with this layout, 11 instances of 6
objects, 7 floor textures, and three wall-hangings.

along a route to the destination can be estimated by a
Markov Model. Markov models are systems of stochastic
transitions between discrete states (Kaelbling, Littman, &
Cassandra 1998).With partial knowledge of some of a
route leg description, an environment and the follower’s
cognitive map, perceptive skills, and motive capabilities,
such as assuming a generic follower, a Hidden Markov
Model (HMM) can estimate the probability of the route leg
being successfully traversed. Each route leg is a link in a
Markov chain where the probability of success from that
point forward does not depend on the history of what was
described and how it was followed.

Use of Markov models serves two purposes: First, the
Markov models provide a flexible rigorous framework for
describing a variety of followers and directors with different
abilities in different conditions. Second, Markov models
allow exact or approximate optimal solution that put a
bound on performance. These ideal route follower and
ideal route director models provide comparison benchmarks
for all route directors, like ideal observer models do for
perception tasks and the ideal navigator does for spatial
localization and navigation tasks.While these ideal models
may prove infeasible to fully optimize in some real-world
cases, approximate solutions may provide excellent task
performance. Even where search for the optimal set of
route instructions is intractable, this conceptual framework
for evaluating route instructions can guide heuristic search
for high quality route instructions.

i

g

Figure 3: Topological map derived from route instructions
(KLS, Table 1), Position 4 to Position 5 in “Grid” map.

Markov model notation

I will use the following notation to specify Markov models.

As in (Kaelbling, Littman, & Cassandra 1998), a partially

observable Markov decision processes (POMDP) is a tuple

(S,A, T,R, 2, O) where:

S is set of discrete states

A is a set of discrete actions

T is a transition function T'(s, a,s’) — [0, 1] defining the
probability of the transitioning from state s to state s’ in
the next time step, given action a,

R is a reward function R(s,a) — %R mapping each
combination of state s and action a into a continuous
reward value,

{2 1is a set of discrete observations, and

O is an observation function, O(o, a, s) — [0, 1], describ-
ing the discrete probability distribution over observing o
in state s performing action a.

A hidden Markov model (HMM) consists of a tuple

(S, T, 2, O). Since there are no actions in the HMM, Ois

O(o,s) — [0,1] and Tis T'(s,s’) — [0,1].

Ideal route instruction follower

We follow Roy, Pineau, & Thrun in modeling natural
language understanding as a Markov process where the
hidden state is the speaker’s intention. In the Nursebot
elderly assistant domain, the robot Pearl plan dialog with
a POMDP (Roy, Pineau, & Thrun 2000). The state was the
speaker’s intended meaning and the actions were physical
and speech actions, such as clarifications.

In route instructions, the director’s intent is that the
follower navigate a certain route. Thus, Markov models
capture the trade-offs in crafting short, robust route instruc-
tions and handle following an ambiguously described route.
The ideal follower maximizes the probability of reaching the



destination given a route description and any knowledge of
the environment or director. However, a navigating agent
can be ideal under several different metrics, with differing
assumptions.

First, one can optimally guess the meaning of an am-
biguous route instruction set. This task can be modeled,
like many in computational linguistics, by a Hidden Markov
Model. Paring text into a representation of the surface
semantics, such as the attribute value matrix, can be
represented by a HMM:

S is the set of AVM route leg descriptions;

T is the likelihood of transitioning among AVMs;

{2 is the set of textual utterances; and

O is the likelihood of an AVM given an utterance.

This HMM models the lexicon and route instruction style
of a director, that is, how a director uses words and strings
together utterance types. For instance, some director’s in-
struction style alternates between turn and travel commands.

Another HMM models the transformation from the sur-
face meaning of sentences to the deep meaning of the route
instruction set:

S is the set of (partial) route maps;

T is the likelihood of options to growing the route map;

{2 is the set of AVM route leg descriptions; and

O is the likelihood of a new route map given an AVM.
This HMM models the route knowledge from the utterance’s
meaning and conversational implicatures. The implicatures
are the resource and conversational axioms introduced
above. Solving both HMMs maximizes the probability
of correctly inferring the map and instruction series the
director intended, using models of the syntax, semantics,
and pragmatics of the director’s route instruction language
usage.

These hidden Markov models can be extended with
navigation actions to form partially observable Markov
decision processes. Assuming a correctly inferred route
map and route instruction set, the problem is now Markov
localization (Kaelbling, Littman, & Cassandra 1998):

S is the set of inferred places and path segments;

A is a set of inferred travel and turn actions;

T comes from the connectivity of the route map and the
likelihood of executing each route instruction;

R is gives a reward for reaching the destination and a
penalty for each movement;

2 is a set of mentioned appearance and layout attributes;
and

O is models the likelihood of being on a path segment or at

a place given an observation.

When more than one map is possible from an ambiguous
route instruction text, the problem is a Markov Simultaneous
Localization and Mapping (SLAM). One formulation has
the state set S compilation of all states in all possible
maps and the transition function 7 the union of all
individual transition functions. Thus, the SLAM problem of
distinguishing between possible maps becomes the problem
of localizing in space of disconnected, similar regions, one
of which is the true map.

The route instruction text does not uniquely specify

action sequences, but constrains navigation by providing
a plan skeleton, with exploration sub-goals the follower
must accomplish. This follower is akin to the examples
on route instruction following by Agre & Chapman (1990).
Where they explained “plan-as-communication”, I explain
communication as a partial plan, or, more precisely, a
Markov policy.

When the follower interacts with the route director, it
can also optimize dialog. The follower decides when to
interrupt the route director with a question, trading off the
cost of asking a question against the likelihood of missing
the destination. To the SLAM formulation above, the
action set adds speech acts or dialog moves that clarify,
disambiguate, or fill in needed knowledge. Roy, Pineau, &
Thrun’s Nursebot reasoned about when and how to extend
the dialog to increase understanding (2000).

Finally, the follower can decide when to interact and ask
for route instructions, balancing the benefit of more likely
reaching the destination against the cost of interrupting
and querying someone. This adds actions of finding a
knowledgeable director and initiating dialog, as well as the
state the location of directors. Thus, the most capable
agent must optimally chose when to seek help by asking
for route instructions, optimally query for route instructions,
and optimally navigate using the route instructions.

Discretely adding to the action set A captures progres-
sively more capable agents, which accomplish, in turn,
route modeling, route navigation, route dialog management,
and route dialog initialization. Discretely adding to the
state set S captures reasoning about uncertainty over the
most likely route, uncertainty about position on the route,
and uncertainty about possible routes. Finally, varying the
reward function moves smoothly among follower’s devotion
to slavishly following the given route (vs. looking for
shortcuts), willingness to ask questions of the director,
independence in executing the route (vs. finding help), and
diligence in reaching the goal with certainty (vs. guessing
wildly or giving up short of the goal).

Ideal route instruction director

A partially observable Markov decision process can balance

the cost of longer or more complex route instructions against

the marginal increase in probability of success. Fist, the

director can reason about a known or generic follower

correctly following route instructions:

S is the set of places and path segments;

A is a set of spatial and action descriptions;

T comes from the connectivity of the route map and the
likelihood of correctly executing each route instruction;

R is gives a reward for the follower reaching the destination
and a penalty for each movement and utterance;

2 and O are empty.

The director aims to produce the route instruction set that

is the most reliably and easily followed to the destination.

If the director expands the transition function 7T to include

the likelihood of understanding the route instructions and

the reward function R to cover the cost of understanding,

the agent will trade off the costs of text generation and

follower cognition against the likelihood of the follower



understanding and knowingly reaching the destination. By
adding observations of the follower navigating or rephrasing
the instructions, the director can account for feedback.
Finally, action set S can include speech acts such as
questions, to actively ensure comprehension or query spatial
knowledge. This POMDP can generate the optimal route
instruction dialog, adding generating interrogative sentences
to the declarative and imperative sentences of a stand-alone
set of route instructions.

Conclusions

A computational model of route instructions addresses in-
teresting questions in cognitive psychology, computational
linguistics, artificial intelligence, and software engineering.
Route instructions are a window into spatial cognition
and communication. Discovering how people describe
routes informs cognitive science how people communicate
and reason about complex spatial sequences. In artificial
intelligence, the benefits are grounding verbal symbols from
a route instruction text to symbols in the cognitive map
and to action in an environment. This project will advance
robotic cognitive mapping both by interfacing it with a
human communication system and by applying it to new
domains.

The engineering benefits include a system that can
produce route instructions which are easier to understand
and follow. Route instruction giving systems, such as map
kiosks, web, phone, and in-car services, can be improved.
By recognizing and carefully describing the more difficult
segments in route instructions, a system can generate route
instruction texts which are more natural, more easy to
follow, and more reliable. Another application could check
route instruction texts from other sources for completeness,
clarity, coherence, and conciseness. By understanding the
semantic content of route instructions and the distinctions
between good and bad route instructions, a route instruction
following system can repair poor route instructions by
asking for additional information. For a system following
route instruction texts, such as a mobile robot, a smart
wheelchair, or a handheld navigation aid, modeling the
semantic structure of route instructions will improve text
understanding and speech recognition.

One result of this research is a software system that
parses meaning from a route instruction text, combines the
new knowledge with any previous cognitive map, follows
the route instruction set by taking appropriate navigation
actions, and finally generates route instruction texts. A
system that can parse route instructions to learn about the
world and follow a route, while conversely being able to
produce route instruction texts which are reliable and easy
to follow, has connected linguistic forms with semantic
representations grounded in action. Applications for a route
instruction understanding system include mobile robots
which can both follow and provide verbal route instructions,
street route instruction generation systems, and assistive
technologies that can guide users through large, complicated
spaces.
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