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Abstract 
Our goal is to automatically recognize and enroll new 
vocabulary in a multimodal interface. To accomplish this 
our technique aims to leverage the mutually disambiguating 
aspects of co-referenced, co-temporal handwriting and 
speech. The co-referenced semantics are spatially and 
temporally determined by our multimodal interface for 
schedule chart creation. This paper motivates and describes 
our technique for recognizing out-of-vocabulary (OOV) 
terms and enrolling them dynamically in the system. We 
report results for the detection and segmentation of OOV 
words within a small multimodal test set. On the same test 
set we also report utterance, word and pronunciation level 
error rates both over individual input modes and 
multimodally. We show that combining information from 
handwriting and speech yields better results than achievable 
by either mode alone. 

Introduction 
Machines are moving closer to being observant and 
intelligent assistants for humans (Atkeson, Hale et al. 
2000; Bluethmann, Ambrose et al. 2003; Breazeal, Brooks 
et al. 2004). However, multimodal system interfaces 
(incorporating speech, gesture, gaze recognition and 
objection selection mechanisms, e.g. (Kaiser, Olwal et al. 
2003)), are typically implemented with static knowledge 
spaces, as are unimodal spoken dialogue systems. 
Automatically acquiring new knowledge as they are 
running, particularly by a single, natural demonstration, 
would significantly enhance the usability of such systems.  
Machines or systems that assist humans in real-time tasks  
need to be able to learn from being shown � through 
sketch (Chronis and Skubic 2003; Saund and Mahoney 
2004), handwriting (Landay and Myers 2001), 
teleassistance (Pook and Ballard 1994),  speech 
(Tenenbaum and Xu 2000), or multimodally (as in the 
work we describe here) through handwriting and speech. 
 Our aim, as for (Breazeal, Brooks et al. 2004) in their 
work on designing humanoid robots to be cooperative 
partners for people, is that our system will be able to 
�acquire new capabilities � as easy and fast as teaching a 

person.� To take some first step in this direction we have 
focused our efforts on a single, important capability 
(within the scope of what humans ultimately need to teach 
a cooperative machine): establishing a common, working 
vocabulary of spoken words � taught to the machine by 
natural demonstration as the system is running. We support 
this capability through our multimodal new-vocabulary 
recognition (MNVR) technique. 
 Most computer systems require users to type or speak 
the right words. However, users � particularly new or 
intermittent users � often use the wrong words. This is an 
aspect of the classic vocabulary problem (Furnas, 
Landauer et al. 1987). It has been noted in studies of 
information retrieval searches that users seldom use the 
same word to refer to a particular concept � even a set of 
the 15 most common aliases for a concept was shown to 
cover only 60-80% of the search vocabulary people used 
for that concept. Our MNVR approach combines 
handwriting recognition and out-of-vocabulary (OOV) 
speech recognition, to leverages two of the richest 
communicative modes we as humans have available for 
acquiring new vocabulary. Others have designed OOV 
speech recognition systems (Asadi 1991; Meliani and 
O'Shaughnessy 1996; Bazzi and Glass 2000; Galescu 
2002; Chung, Seneff et al. 2003), but they are not used in a 
multimodal context. Related multimodal systems that 
extract words from statistical associations of object/phone-
sequences or action/phone-sequences (Roy and Pentland 
2002; Gorniak and Roy 2003; Yu and Ballard 2003) do not 
leverage the grammatical and linguistic context in the same 
way we are proposing, nor do they use handwriting as 
input. 
 The key components of our approach are (1) highly 
constrained, real-time out-of-vocabulary (OOV) speech 
recognition, (2) standard handwriting recognition1, and (3) 
a multimodal task domain capable of assigning semantics 
on the basis of spatial, temporal and in some cases 
linguistic aspects of the input signals (depicted in Fig. 1). 
                                                 
1 Part of the NISSketch� recognition package from Natural 

Interaction Systems, LLC: http://www.naturalinteraction.com 



Previous Work 
Systems that augment speech recognition by visually 
extracted face and lip movement features (Neti, 
Potamianos et al. 2001) employ an early-fusion approach 
that discriminately combines both input streams in a single 
feature space. Previous work in our group (Johnston, 
Cohen et al. 1997; Kaiser and Cohen 2002; Kaiser, Olwal 
et al. 2003) as well as our MNVR technique instead 
employs a late-fusion approach to combining speech and 
handwriting outputs � combining the output of separate 
modes after recognition has occurred. For our test bed, 
schedule-chart application early-fusion is problematic, 
because the temporal relation between handwriting and 
speech associated with it is not yet clear. 

Hybrid Fusion for Speech to Phone Recognition 
A third possibility, aside from either early or late fusion, is 
a hybrid re-recognition (HRR) approach that takes initial 
recognition results from all input modes, and then uses 
information from one input mode to constrain a subsequent 
re-recognition pass on the input from another mode. We 
are now actively exploring this approach for MNVR. A 
variation of this approach has been used by (Chung, Seneff 
et al. 2003)  in their speak and spell technique that allows 
new users to enroll their names in a spoken dialogue 
system. User�s first speak their name and then spell it, in a 
single utterance. Thus, there is a single input mode 
(speech) but separate recognition passes: the first pass 
employs a letter recognizer with an unknown word model, 
followed by a second pass OOV recognizer constrained by 
a sub-word-unit language model and the phonemic 
mappings of the hypothesized letter sequences from the 
first pass. On a test set of 219 new name utterances this 
system achieves a letter-error-rate (LER) of 12.4%, a 
word-error-rate (WER) of 46.1%, and a pronunciation-
error-rate (PER) of 25.5%. 
 The sub-word-units used by Chung et al for modeling 
OOV words are those of (Bazzi and Glass 2000). These are 
multi-phone sub-word units extracted from a large corpus 
with clustering techniques based on a mutual information 
(MI) metric. (Bazzi 2002) shows that using MI generated 
sub-word-units outperforms a system that uses only 
syllabic sub-word units; however, it is interesting to note 
that 64% of his MI sub-word units are still actual syllables. 
Chung et al extend the space of sub-word units by 
associating sub-word-unit pronunciations with their 
accompanying spellings, thereby making a finer grained, 
grapho-phonemic model of the sub-word-unit space. 
 (Galescu 2002) uses an approach similar to Chung et 
al�s in that he chooses grapheme-to-phoneme 
correspondences (GPCs) as his sub-word-units. He uses an 
MI mechanism like Bazzi�s to cluster multi-GPC units 
(MGUs). His language model (in which MGUs are treated 
as words) was trained on 135 million words from the 
HUB4 broadcast news transcriptions, with MGUs first 
being extracted from the 207,000 unique OOV occurrences 
in that training data. He tested OOV word modeling on the 
individual OOV terms occurring in 186 test utterances, 

yielding between a 22.9% - 29.6% correct transcription 
rate, and between a 31.2% - 43.2% correct pronunciation 
rate. Applying the OOV language model to the complete 
utterances in the 186 instance test sets yielded a false alarm 
rate of under 1%, a relative reduction in overall WER of 
between 0.7% - 1.9%, with an OOV detection rate of 
between 15.4% - 16.8%. For a large vocabulary system 
these are encouraging results: there is a reduction in WER, 
whereas other systems report increases in WER. 
 In designing the algorithm for OOV recognition and 
multimodal new vocabulary enrollment we have chosen 
not to use GPCs because they require a large training 
corpus, whereas our static syllable grammar requires none. 
Since there is evidence that many if not most MI extracted 
clusters are actual syllables (64% in Bazzi�s work ), we 
feel that the loss in recognition accuracy may be balanced 
out by the savings in not having to acquire a task-specific 
corpus. 

Multimodal Semantic Grounding 
(Roy 2003) developed robotic and perceptual systems that 
can perceive visual scenes, parse utterances spoken to 
describe the scenes into sequences of phonemes, and then 
over time and repeated exposure to such combinations 
extract phonetic representations of words associated with 
objects in the scene � multimodal semantic grounding. 
Rather than using string comparison techniques for 
measuring the similarity between two speech segments 
(represented as phone-sequences), he generates an HMM 
based on a segment�s best phone-sequence representation. 
Then each segment�s speech is passed through the other 
segment�s HMM. The normalized outputs are then 
combined to produce a distance metric. Of the words 
extracted by this method with audio only input only 7% 
were lexically correct, while with both visual and audio 
input (combined through a further Mutual Information 
measure) 28% of the words extracted were lexically 
correct, and of those half were correct in their semantic 
association with the visual object. In related work (Gorniak 
and Roy 2003) use these techniques to augment a drawing 
application with an adaptive speech interface, which learns 
to associate segmented utterance HMMs with button click 
commands (rather than associating OOV recognitions with 
handwriting and contextual semantics as we do). 
 (Yu and Ballard 2003) have developed an intelligent 
perceptual system that can recognize attentional focus 
through velocity and acceleration-based features extracted 
from head-direction and eye-gaze sensor measurements, 
together with some knowledge of objects in the visual 
scene � based on head-mounted scene cameras. Within 
that context, measurements of the position and orientation 
of hand movements (tracked by tethered magnetic sensor) 
are used to segment spoken utterances describing the 
actions into phone-sequences associated with the action 
(e.g. stapling papers, folding papers, etc.), and over time 
and repeated associations phonetic representations of 
words describing both the objects and the actions 
performed on those objects can be statistically extracted.  



Figure 3: Charter�s Gantt schedule-diagram display with before 
(foreground) and after (background) views of handwriting input.

 Rather than using individual HMMs as the basis of 
measuring distance between phonetic sequences (as Roy 
does), Yu & Ballard use a modified Levenshtein distance 
measure based on distinctive phonetic features. In 960 
utterances (average six words per utterance) they identify 
12% of the words as either action verbs or object names 
that their system attempts to pair with meanings expressed 
in the other perceptual modes (gaze, head and hand 
movement). Their system identifies actions and attentional 
objects (thus the semantics/meanings of the actions) in 
non-linguistic modes in 90.2% of the possible cases. Of all 
possible word-meaning pairs they recall 82.6% of them, 
and over those recalled pairs achieve an accuracy of 87.9% 
for correctly pairing words with their associated meanings.  
The word-like units their method extracts have boundaries 
that are word-level correct 69.6% of the time. In general 
the phone-level recognition rate is 75% correct, but their 
system is offline and as they do not attempt to update the 
system�s vocabulary they don�t report phone-error rates. 

Our Approach 
Our technique enrolls new words into the vocabulary of a 
system that tracks a collaborative, multi-person scheduling 
meeting (Fig. 1): one person standing at a touch sensitive 
whiteboard creating a Gantt chart, while another person 
looks on in view of a calibrated stereo camera, for vision-
based body-tracking (Demirdjian, Ko et al. 2003; Kaiser, 
Demirdjian et al. 2004). When a user at the whiteboard 
speaks an OOV label name for a chart constituent, while 
also writing that label name on a task-line of the Gantt 
chart, the OOV speech is combined with letter sequences 
hypothesized by the handwriting recognizer to yield an 
orthography, pronunciation and semantics (OPS-tuple) for 
the new label (Fig. 4). The best scoring OPS-tuple, 
determined through mutual disambiguation (MD) (Oviatt 
1999), is then enrolled dynamically in the system to 
become immediately available for future recognition.  

 Because the handwriting, speech and application 
modules are imperfect recognizers uncertainty is a major 
concern. In our previous work on handling uncertainty in 
multimodal interfaces (Oviatt 1999; Kaiser, Olwal et al. 

2003) we have illustrated the importance of mutual 
disambiguation (MD). MD derives the best joint 
interpretation by unification of meaning fragments across 
the ranked inputs of the various modes (Fig. 2). 

 Our hypothesis is that handwriting and speech are also 
capable of substantially disambiguating each other, 
particularly in a constrained task domain like the creation 
of a Gantt scheduling chart, where the temporal/spatial 
ontology of the task itself offers clear indications of the 
user�s semantic intent for a given set of handwriting and 
speech inputs (e.g., creation of a schedule grid must 
precede the creation of task-lines, which in turn must 
precede the creation of task milestones). We believe that 
this constrained inference of semantic intent both allows 
for and supports the use of our OOV speech recognition 
techniques. 

 In our system users layout a schedule grid using our 
sketch-recognition agent named Charter (Fig. 3). It 
employs a 2D sketch recognizer for the necessary 
constituents of the scheduling chart (dot, line, axis-grid, 
diamond, area, etc.), and has an associated handwriting 
recognizer (Calligrapher 5). Charter also displays the 
beautified Gantt chart produced by the multimodal 
integration of observed, interpreted speech, sketch and 
handwriting (Fig. 3). 
 To implement OOV speech recognition (SR) we have 
augmented CMU�s Sphinx2 speech recognizer to use an 
embedded Recursive Transition Network (RTN) grammar 

 

 
Figure 2: Mutual Disambiguation (MD) over various 
constraint-related input modes (darker path is correct). 

 
Figure 1: Using handwriting and speech to label task-lines on a 

Gantt chart in a multimodal, multi-person schedule meeting.



in place of a standard n-gram language model. The 
grammar writer can semantically label specific contextual 
locations in the grammar where out-of-vocabulary (OOV) 
words are licensed to occur. At run-time, when these 
grammatical contexts occur in the speech input, OOV 
words are recognized as sequences of phones (speech-
phones, SP), as illustrated in Fig. 4, using a syllabic sub-
grammar2. These phone sequences are then mapped to 
orthographies using a sound-to-letter (STL) module  
(speech-letters, SL). If semantically interpretable 
handwriting recognition (HR) occurs co-temporally then 
the letter string hypotheses from the handwriting 
recognizer (handwriting-letters, HL) are mapped to 
corresponding phone strings (handwriting-phones, HP) by 
an embedded letter-to-sound (LTS) module (Black and 
Lenzo 2001) and paired with the OOV-based OPS-tuples 
using a combined edit distance measure: EDL = edit-
distance between letter strings, EDP = edit-distance 
between phone strings (Fig. 4). The edit distance is 
modified to take matching as well as mismatching symbols 
into account, following (Yu and Ballard 2003). The best 
scoring OPS-tuple (score = SR x EDL x HR x EDP) is 
then dynamically enrolled in the system at points pre-
specified during creation of the grammar. For example, 
task-line labels may be specified to act as modifiers for 
spoken references to milestones occurring on that task-line, 
like �move that �signoff� milestone to year two,� where the 
modifier has been enrolled simultaneously along with the 
new task-line�s label, �signoff�. 

Baseline Performance Test 
To provide baseline performance test results we ran our 
test bed system � with a scenario of scheduling the tasks 
and milestones involved in collaboratively designing, 
creating and presenting a demonstration system � and 
collected 54 instances of a single user labeling task-lines 
on a Gantt chart. The labeling events involved both 
speaking key phrases like, �Let�s call this task-line 
concur,� or �Label this one the trial task-line,� (where 
concur and trial are examples of OOV words) and co-
temporally writing the OOV label names (in this example, 
concur and trial respectively) on the task-line (Fig. 1). The 
54-instance test set included 18 unique key phrases with 30 
unique embedded OOV words. 
 The OOV recognizer�s syllabic sub-grammar has 19006 
unique syllable entries spread across four categories (first-
last-syllable, first-syllable, last-syllable, middle-syllable). 
Since we have no large corpus of task-specific speech in 
this domain on which to build a plausible n-gram model 
over sub-word units, we instead rely on a symbolic 
grammar. Thus we have no probabilities on either syllable 
sequences or rule occurrences over the non-terminal 
categories (as would be the case with either an n-gram 
model or a stochastic context free grammar model). We 
view this as an advantage of our approach, because in 
modeling OOV terms it neither desirable to (1) model only 
                                                 
2 Based on syllabifications of the CMU Dictionary, version 6. 

the OOV labeled words in a corpus, nor to (2) model 
cross-word occurrences for OOV words only at the 
boundaries occurring in the corpus. Both can result in 
over-training (Bazzi and Glass 2000). We argue that for 
task-independence, it is better to use a large dictionary (we 
use CMU Dictionary, version 6) to model a more general 
representation of the possible sub-word unit combinations 
of which OOV terms may be comprised. 
 Our choice of non-terminal categories is very similar to 
those used by (Galescu 2002); however, we restrict sub-
word unit combinations to a 3-syllable length limit. This is 
somewhat longer than Bazzi�s length limit of 3-5 phones 
(Bazzi and Glass 2000), while both Chung et al�s and 
Galescu�s systems have built in language-model-based 
length biases determined by the types of OOV terms 
occurring in their respective corpora. Our systems� current 
3-syllable length limit is partly due to tractability issues 
that arise from not having a stochastic language model. 
Since our second-pass search cannot rely on term sequence 
statistics (from a language model) for pruning, and since 
our syllabic vocabulary is relatively large, we cannot 
tractably perform a complete backward-forward A* search. 
So, we instead rely on a depth-first beam search with a one 
term look-ahead (over normalized acoustic scores) that 
attempts to heuristically guess the best partial paths to keep 
in the beam. If the search dead-ends then it back tracks to 
the closest previous point where a new group of partial 
paths outside the previous beam limit can be found and 
moves forward again until either the specified number of 
alternatives has been found or the search space is 
exhausted. Transitions into the syllabic sub-grammar are 
weighted, similar to the approach used by (Bazzi 2002). 
 The 54 test instances of multimodal speech and 
handwriting for labeling a Gantt chart task-line were fed 
into the system via the regression testing mechanism 
described in (Kaiser and Cohen 2002). There were an 
average of 4.5 in-vocabulary (IV) terms in each of the 54 
test instances. Of the total 297 word instances 18.2% were 

 

Figure 4: Out-of-Vocabulary (OOV) recognition & system 
enrollment, via co-temporal, multimodal handwriting and speech.



OOV words (Table 1). The OOV recognizer (OR) 
correctly detected the occurrence of an OOV term in all 54 
instances (100% detection as shown in Table 1). 
 Our approach uses syntactic fragments in a grammar-
based speech recognizer to frame and constrain OOV 
recognition to a small set of licensed linguistic contexts. 
These framed syntactic fragments are designed with the 
fact in mind that human caregivers naturally use intuitively 
simple syntax in addressing infants (Gogate, Walker-
Andrews et al. 2001). Our intuition is that the use of 
linguistic constructions used for teaching language to 
human infants may also come naturally to people for 
instructing a computer system. Certainly the 100% OOV 
detection rate we see in these test results bears witness to 
the effectiveness of leveraging sentence final position of 
new words (a characteristic of the prosodic delivery typical 
of infant caregivers) to more effectively segment the phone 
sequences to be learned. With this approach we don�t need 
the large number of correlated occurrences required by the 
associative statistical categorizers in systems like those of 
(Roy 2003) or (Yu, Ballard et al. 2003). With a single 
multimodal demonstration, we not only accomplish OOV 
detection with a high degree of accuracy, but also achieve 
accurate segmentation � recognizing 9 out of 10 of the 
utterances at the IV word level completely correctly 
(88.89% Utterance correct rate, Table 2, line 1). So we 
achieve an OOV segmentation error rate  (SER) of 
10.11%. While our implementation has the ability to learn 
generally from a single demonstration, it will still be able 
to benefit from multiple presentations over time to refine 
pattern recognition accuracy. 
 We reduce the scope of the language acquisition 
problem to that of recognizing out-of-vocabulary (OOV) 
words in grammatically specified positions. Thus, instead 
of posing the problem as that of language acquisition we 
modify the problem to be additional language acquisition 
for an established language syntax. By using both the 
temporal/spatial coherence constraints of the scheduling 
task itself, and the contextual grammatical constraints to 
isolate the system�s efforts at OOV recognition, we are 
able process new words in real-time. 
 The recognition rate over IV utterance words was 
88.89% (Table 2), with 63% of the IV recognition errors 
being due to deletions. For example, in the utterance, 
�Let�s label this the handover task-line,� (in which 
handover is OOV) the word �task-line� is deleted because 
the OOV recognizer doesn�t find the correct boundary for 
stepping out of the syllable-based OOV sub-grammar in 
the weighted recursive-transition-network (RTN) parser 
embedded in the speech recognizer. Instances similar to 
this example account for four out of the five of the 
utterance level deletion errors. Adjusting the weights on 
the transitions between the task grammar and its embedded 
syllabic sub-grammar (within the RTN language model) 
can ameliorate this error; however, we currently have no 
mechanism in place for dynamically adjusting this weight. 
This is a topic for future research. 
 Note that the IV statistics given in Table 1 are computed 
over the best five transcript alternatives produced by the 

recognizer. In multimodal systems it is not necessary that 
the best recognizer transcript be correct. Mutual 
disambiguation from other input modes can �pull-up� the 
correct transcripts (Kaiser, Olwal et al. 2003), so we take 
that into account by scoring over the top five alternative 
transcripts. For this test set there are only two instances in 
which the best word-level transcript is not the recognizer�s 
highest ranked alternative. For scoring phoneme 
recognition we also score over the five best alternatives 
from the speech recognizer, because each alternative 
represents a different pronunciation and only one of them 
has to be correct for the word to be recognized the next 
time it is uttered by a user. For phonetic pronunciations, 
the recognizer�s highest ranked alternative is the best 
match only 48.15% of the time. 
 For IV recognition, taking into account the number of 
substitution, insertion, and deletion errors, we achieve 
word-level recognition accuracy of 96.71%, and thus an IV 
word error rate (WER) of 3.29% (Table 1). The unimodal 
speech recognition of phonetic pronunciations is much less 
accurate. We achieve an accuracy of 52.67% (Table 2) for 
a phone error rate (PER) of 47.33%. Recall that Chung et 
al�s Speak and Spell system on a test set of 219 utterances 
achieved a word-error-rate (WER) of 46.1% (much higher 
than ours), a pronunciation-error-rate (PER) of 25.5% 
(much lower than our unimodal rate), and a letter-error-
rate (LER) of 12.4%. Currently our system�s word spelling 
(and thus LER) depends solely on the best alternative from 
the handwriting recognizer, because although there can be 
alternative pronunciations for the same lexical item we 
must still choose one single lexical representation for an 
item.  In future versions we intend to use orthographies 
generated via sound-to-letter (STL) rules from the speech 
generated phone-sequences to help in mutually 
disambiguating the best lexical representation, but here we 
have not done that. Thus, we achieved a letter-level 

Utterances 54 
Words 297 
OOV words 54 
OOV rate 18.20% 
OOV detection 100.00% 

 

Table 1: OOV Speech Recognition test set statistics 
(scored on best-of-5 output) 

IV Utterance correct 88.89% 
IV substitutions 0.41% 
IV insertions 0.82% 
IV deletions 2.06% 
IV accuracy 96.71% 
IV Word Error Rate (WER) 3.29% 
Phone-correct OOV words 9.26% 
Phone substitutions 18.33% 
Phone insertions 21.67% 
Phone deletions 7.33% 
Phone accuracy 52.67% 
Phone Error Rate (PER) 47.33% 

 

Table 2: Unimodal OOV Speech Recognition 
(scored on best-of-5 output) 



accuracy of 95.13% (Table 3) for a 4.87% LER (much 
lower than Chung�s above, indicating the accuracy of 
handwriting as opposed to spoken spelling for lexical 
identification). 
 Our unimodal PER of 47.33% is closer to that of 
(Galescu 2002) which was 31.2% - 43.2%; however, when 
we use LTS to generate phone sequences from the 
handwriting alternatives and then use these to 
disambiguate the speech phone sequences we improve our 
PER to 16.33% (Table 5) This surpasses the accuracy of 
Chung et al�s system (25.5%), and represents a 65.5% 
relative error reduction between unimodal speech 
pronunciations and multimodal speech plus handwriting 
pronunciations.  

 Of course, given such a large improvement in 
pronunciation recognition from unimodal speech to 
multimodal speech plus handwriting, we must ask how 
much of this improvement we could achieve solely by 
deriving pronunciations from the handwritten spellings 
transformed via LTS rules. It may be the case that speech- 
only information is simply not accurate enough, and we 
would be better off extracting pronunciations just from the 
handwriting. This certainly seems plausible when we recall 
that for this test set the letter-level accuracy of handwriting 
recognition is 95.13% (Table 3). Table 4 shows that using 
handwriting alone (with LTS transformations) we could 
achieve an accuracy of 80.67% in predicting the phonemic 
pronunciations � for a PER of 19.33%. However, when 

we again look at the results of combining speech and 
handwriting streams to arrive at pronunciations, where the 
PER is 16.33% (Table 5), we find that mutual 
disambiguation across multiple input modes still yields 
15.5% relative error reduction compared to extracting 
pronunciations unimodally from handwriting alone. 
 To see how using the speech-generated pronunciations 
helps us to improve on the handwriting generated 
pronunciations, we will analyze an example. The user says, 
�Call this task-line handoff,� (in which handoff is OOV) 
while writing handoff on the whiteboard chart to label a 
task-line (similar to the labeling event depicted in Figure 
1). The correct spelling (as the user wrote it) is handoff, 
but the handwriting recognizer reports the spelling to be 
handifi. Using LTS rules on handifi yields the 
pronunciation string, �hh ae n d iy f iy,� which is one 
substitution and one insertion away from the correct 
pronunciation of, �hh ae n d ao f.� In this case the best 
pronunciation alternative from the speech recognizer is, 
�hh ae n d ao f,� which is the correct pronunciation. So by 
using the phone string generated by the speech recognizer 
we are able to enroll the correct pronunciation despite 
errors in the handwriting recognition. This improvement 
due to speech occurs altogether seven times across this 
small test set of utterance/handwriting events, thus 
demonstrating the effectiveness of using multimodal 
speech and handwriting to achieve a level of pronunciation 
modeling accuracy for new (OOV) words not achievable 
by either mode alone. 

Conclusion 
We have described a system capable of multimodal speech 
and handwriting recognition (along with other recognition 
modes such as 2D and 3D gesture recognition which are 
not within the scope of this paper). We have described a 
test environment where speech and handwriting in 
combination are used to label elements of a whiteboard 
chart (e.g. task-lines, as depicted in Figure 1). Over a small 
test set of 54 speech and handwriting events we have 
shown that combining speech and handwriting information 
multimodally results in greater accuracy than that 
achievable in either mode alone. For example, the phone-
error-rate (PER) over phone sequence pronunciations 
generated by speech alone was 47.33%, by handwriting 
alone it was 19.33%, while by multimodal combination of 
speech plus handwriting it was 16.33%. That represents a 
65.5% relative error reduction compared to speech-only 
pronunciations, and a 15.5% relative error reduction 
compared to handwriting-only pronunciations (generated 
by LTS rules). This supports our hypothesis that 
handwriting and speech are capable of substantially 
disambiguating each other in a constrained task domain 
like the labeling of whiteboard Gantt chart constituents. 
 We have implemented a system that demonstrates the 
base-line capability of using multimodal speech and 
handwriting for new (OOV) word recognition. This 
capability allows users to teach our system their chosen 
vocabulary, thus shifting the burden of learning off the 

HW OOV Term letter correct 75.93%
HW OOV Term letter substitutions 1.43%
HW OOV Term letter insertions 0.57%
HW OOV Term letter deletions 2.87%
HW OOV Term letter accuracy 95.13%
HW OOV Term Letter Error Rate  4.87%

 

Table 3: Unimodal Handwriting (HW) letter recognition 
statistics. (Scored on first-best handwriting alternative) 

 
UM HW  Phone-correct OOV words 35.19%
UM HW  Phone substitutions 13.67%
UM HW  Phone insertions 1.00%
UM HW  Phone deletions 4.67%
UM HW  Phone accuracy 80.67%
UM HW  Phone Error Rate  19.33%

 

Table 4: Phone recognition via unimodal (UM) 
Handwriting (HW) using Letter-to-Sound (LTS) rules over 

handwriting letters. (Scored on top 5 alternatives) 
 

MM SHW Phone-correct OOV words 38.89%
MM SHW Phone substitutions 11.33%
MM SHW Phone insertions 1.33%
MM SHW Phone deletions 3.67%
MM SHW Phone accuracy 83.67%
MM SHW Phone Error Rate  16.33%

 

Table 5: Phone recognition via multimodal (MM) Speech 
+ Handwriting (SHW) using Letter-to-Sound (LTS) rules 
over handwriting, and Sound-to-Letter (STL) rules over 
speech phone sequences. (Scored on top 5 speech and 

handwriting alternatives) 



user and onto the system. We believe this is an important 
step towards making pen-based interaction more intelligent 
and natural.  
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