
Interactive Natural Language Explanations of Cyc Inferences

David Baxter, Blake Shepard, Nick Siegel, Benjamin Gottesman, Dave Schneider

Cycorp, Inc., 3721 Executive Center Drive, Suite 100, Austin, TX 78731
{bshepard, baxter, nsiegel, bgottesm, daves}@cyc.com

Abstract*

This paper describes the inference explanation capabilities of
Cyc, a logical reasoning system that includes a huge “com-
monsense” knowledge base and an inference engine that sup-
ports both question answering and hypothesis generation.
Cyc allows the user to compose queries by means of English
templates, and tries to find answers via deductive reasoning.
If deduction is fruitless Cyc resorts to abduction, filling in
missing pieces of logical arguments with plausible conjec-
tures to obtain provisional answers. Cyc presents its answers
and chains of reasoning to the user in English, provides drill-
down to external source references whenever possible, and
reasons about its own proofs to determine optimal ways of
presenting them to the user. When a chain of reasoning relies
on conjectures introduced via abduction, the user can interact
with the inference explanation to confirm or deny the ab-
duced supports. These capabilities are grounded in the inte-
gration of Cyc’s natural language components with the
knowledge base and inference engine, and in Cyc’s capacity
to maintain an explicit in-memory record of the facts, rules,
and calculations used to produce successful proofs during in-
ference.

Introduction: The Cyc System
The user of a rule-based system will find, ideally, that the
system responds to queries by returning informative and
possibly surprising answers. Depending on the task at hand,
the user might want to see how the system has reasoned to
obtain its results. Indeed, the more important the task and
informative or surprising the results, the more we might
expect the user to want to assess the soundness of the rea-
soning that produced the results. The utility of a rule-based
system for high-impact, money- or life-saving, mixed initia-
tive applications, therefore, is often proportionate to the
transparency of its explanations.
 The challenges to be surmounted in order to clearly pre-
sent complex proofs grow as the sheer number of relevant
facts and rules in the knowledge base (KB) increases, and as
the variety of inference patterns used to generate proofs
multiplies. These challenges are especially extreme for
Cyc, a knowledge-based reasoning system that includes a
huge KB, an inference engine, Cyc’s Semantic Knowledge
Source Integration (SKSI) facility, and several natural lan-

*Copyright © 2005, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

guage (NL) components. The knowledge stored in the Cyc
KB is represented in a formal language, CycL, which sub-
sumes and extends the predicate calculus of first-order logic.
The KB contains 2.7M assertions (facts and rules) that inter-
relate 300K concepts, encoding both “commonsense”
knowledge (consensus reality) and specialized domain
knowledge. Cyc’s millions of assertions are distributed
over thousands of explicitly represented and semantically
significant logical contexts, or microtheories.
 Cyc’s inference engine can produce a single inference
result (answer set) by combining information from a myriad
of contexts, and by employing an armory of defeasible rea-
soning procedures, both sound (resolution, class subsump-
tion, argumentation) and unsound (abduction). The infer-
ence engine consists of a “harness” that invokes any of 800
pattern-specific reasoning modules, and falls back on gen-
eral resolution-based theorem proving as a last resort. Each
module implements an efficient inference procedure for a
common type of problem, such as a technique for calculat-
ing the transitive closure of a binary predicate. One signifi-
cant suite of modules implements abductive inference, and
thereby enables Cyc to introduce new conjectures (hypo-
thetical statements) during inference. The SKSI facility
allows Cyc to access the structured contents of external data
sources of information, such as relational databases and web
pages.1 Once the structure and meaning of an external
knowledge source have been described by assertions in the
KB, the inference engine can automatically create special-
ized inference modules for the source and can treat it,
thenceforth, as a virtual extension of the KB.
 An explicit in-memory record of completed proofs under-
pins Cyc’s capacity to explain its own reasoning. Cyc can
reason about the features of it own proofs when the user
asks to view them, determining which statements are the
most salient, which statements are too trivial to show, and
which statements are most appropriate for the different lev-
els of detail supported in the display.
 Cyc’s NL components include modules for parsing Eng-
lish to CycL, template-based generation of English from
CycL, and discourse management, along with a general-
purpose lexicon and several smaller, domain-specific lexi-

1 For more information about the development of SKSI, see [Mas-
ters and Güngördü 2003]. For more information about Cyc, past
and present, see [Lenat and Guha 1990], [Lenat 1995], and the
whitepapers and other material available on Cycorp’s web site:
http://www.cyc.com .

http://www.cyc.com/

Figure 1: Cyc’s Query Library (QL) interface displaying a query and answers.

cons. Nearly all of Cyc’s grammatical and lexical knowl-
edge is represented in CycL and stored in the KB, thus mak-
ing it available for use by the inference engine. Cyc sup-
ports several text-based and graphical user interfaces. Most
notable for the focus of this paper is the Query Library (QL)
interface, which allows the user to construct queries, submit
them to the inference engine, view the resulting answers
(Figure 1), and obtain a detailed display of the proofs that
support each answer (Figures 2 and 3). The QL employs
Cyc’s natural language generation capabilities to display
queries, answers, and proofs (also referred to as justifica-
tions) in English, rather than in CycL.

An Inference Example
To illustrate the complexity of a typical Cyc justification,
here we consider an example of interest to intelligence ana-
lysts that draws on Cyc’s knowledge of recent events in the
Middle East. Let us suppose that the date is February 16,
2005, and that an analyst (user) has constructed the follow-
ing English query with the QL interface:

[EQ1] Who had a motive for the assassination of Rafik

Hariri?

The corresponding CycL version of this query, and the form
in which it must be posed to the inference engine, is as fol-
lows:

[Q1] (agentHasMotiveForAction ?WHO

 TerroristAttack-February-14-2005-Beirut)

This query asks the inference engine to find terms that can
be substituted for the variable ?WHO to yield a closed logical
sentence. When the analyst poses the query [Q1], the

inference engine tries to find answers by using heuristic
search, drawing on data and rules stored in the KB, and
possibly in other sources accessible through SKSI. After a
few seconds, the inference engine obtains the following
substitution terms (CycL values) for ?WHO, each of which
constitutes an answer to [Q1]: UnitedStatesOfAmerica,
Syria, Israel, and AlQaida. The rest of this section
describes part of the chain of reasoning that produces one of
the answers, Syria.
 First, the inference engine selects rule [R1], since the
predicate in the consequent of [R1] matches the predicate in
[Q1]:

[R1] (implies

 (and

 (adoptionTypeOfNormByAgent

 ?POLICY ?ADOPTER ?ADOPT-TYPE)

 (policyForAgent ?POLICY ?ADOPTER)

 (isa ?AGENT IntelligentAgent)

 (negativeVestedInterest ?AGENT ?POLICY)

 (normProponents ?POLICY ?VICTIM)

 (preventsFromPlayingRoleInType

 ?ACT

 ?VICTIM

 keyParticipants

 ?ADOPT-TYPE))

 (agentHasMotiveForAction ?AGENT ?ACT))

[R1] means that an agent (i.e., a person or an organization)
has a motive for a particular action if the agent opposes a
particular policy, and if the action prevents some proponent
of the policy from being a key participant in its adoption.
 Once the inference engine has selected [R1] as a relevant
rule, it then transforms the original query into a new sub-
query formed from the antecedent of [R1]:

Figure 2: The justification display panel as it first appears to the user.

[Q2] (and

 (adoptionTypeOfNormByAgent

 ?POLICY ?ADOPTER ?ADOPT-TYPE)

 (policyForAgent ?POLICY ?ADOPTER)

 (isa ?AGENT IntelligentAgent)

 (negativeVestedInterest ?AGENT ?POLICY)

 (normProponents ?POLICY ?VICTIM)

 (preventsFromPlayingRoleInType

 TerroristAttack-February-14-2005-Beirut

 ?VICTIM

 keyParticipants

 ?ADOPT-TYPE))

The inference engine next considers how to solve [Q2]. At
this point it could, in theory, address any one of the individ-
ual conjuncts. The most efficient tactic, however, would be
to proceed with the conjunct that is likely to be most quickly
solved without first having solved any of the other con-
juncts. After analyzing [Q2], the inference engine deter-
mines that it would probably be most efficient to solve this
sub-problem first:

[Q3] (adoptionTypeOfNormByAgent

 ?POLICY ?ADOPTER ?ADOPT-TYPE)

The inference engine’s choice is based on its knowledge that
the KB and all other accessible sources of data happen to
contain comparatively few assertions formed with the predi-
cate adoptionTypeOfNormByAgent. Indeed, simple
look-up suffices for the inference engine to find this relevant
fact in the KB:

[F1] (adoptionTypeOfNormByAgent

 LebaneseEconomicReform

 Lebanon

 (AdoptionTypeOfNormByAgentFn

 LebaneseEconomicreform

 Lebanon))

This statement means that the nation-state Lebanon is the
agent responsible for its own economic reform. The infer-
ence engine still must solve the remainder of [Q2], which,
restricted by the values found in [F1], is:

[Q4] (and

 (policyForAgent

 LebaneseEconomicReform Lebanon)

 (isa ?AGENT IntelligentAgent)

 (negativeVestedInterest

 ?AGENT LebaneseEconomicReform)

 (normProponents

 LebaneseEconomicReform ?VICTIM)

 (preventsFromPlayingRoleInType

 TerroristAttack-February-14-2005-Beirut

 ?VICTIM

 keyParticipants

 (AdoptionTypeOfNormByAgentFn

 LebaneseEconomicreform

 Lebanon)))

After analyzing the structural properties of [Q4], the infer-
ence engine determines that this conjunctive query is now
best approached as three independent problems between
which no remaining variables are shared:

Figure 3: The justification display panel with the “Detailed Justification” section partially expanded.

[Q5] (policyForAgent

 LebaneseEconomicReform Lebanon)

[Q6] (and

 (isa ?AGENT IntelligentAgent)

 (negativeVestedInterest

 ?AGENT LebaneseEconomicReform))

[Q7] (and

 (normProponents

 LebaneseEconomicReform ?VICTIM)

 (preventsFromPlayingRoleInType

 TerroristAttack-February-14-2005-Beirut

 ?VICTIM

 keyParticipants

 (AdoptionTypeOfNormByAgentFn

 LebaneseEconomicreform

 Lebanon)))

 It is possible to prove [Q5] via simple look-up, because
this fact is directly asserted in the KB:

[F2] (policyForAgent

 LebaneseEconomicReform Lebanon)

 The inference engine is also able to prove deductively
that the term Syria is a valid substitution for ?AGENT in
[Q6]. That is, the inference engine is able to prove that
Syria is an intelligent agent with a negative vested interest

in Lebanese economic reform. It solves the latter part of the
problem first, determining that Syria is opposed to Lebanese
economic reform by finding this assertion in the KB:

[F3] (negativeVestedInterest

 Syria LebaneseEconomicReform))

The KB also contains this assertion:

[F4] (isa Syria LevantCountry)

The inference engine uses [F4] along with its class sub-
sumption reasoning modules to prove that Syria is an intel-
ligent agent. These modules allow the inference engine to
quickly conclude from class subsumption assertions already
in the KB that a Levant country is a country, a country is a
political entity, a political entity is a geographical agent, a
geographical agent is a multi-individual agent, and, finally,
a multi-individual agent is an intelligent agent.
 To solve [Q7], the inference engine splits it into these two
sub-problems:

[Q8] (normProponents

 LebaneseEconomicReform ?VICTIM)

[Q9] (preventsFromPlayingRoleInType

 TerroristAttack-February-14-2005-Beirut

 ?VICTIM

 keyParticipants

 (AdoptionTypeOfNormByAgentFn

 LebaneseEconomicReform

 Lebanon))

It then performs a heuristic analysis to determine the relative
cost of attempting to solve [Q8] before [Q9], and vice versa.
As it happens, the inference engine can easily prove [Q9]
because the KB contains the following forward rule (i.e., all
the rule’s dependents are eagerly cached in the KB):

[R2] (implies

 (and

 (dateOfEvent ?EVENT ?DATE)

 (ist-Asserted ?MT

 (organismKilled ?EVENT ?ORGANISM)))

 (ist

 (MtSpace ?MT

 (MtTimeWithGranularityDimFn

 (IntervalStartedByFn ?DATE)

 TimePoint))

 (preventsFromPlayingRoleInType

 ?EVENT

 ?ORGANISM

 deliberateActors

 Event)))

[R2] means that if an organism is killed in an event, then
forever after this event the organism is prevented from being
a deliberate actor in any other (future) event. An immedi-
ately derived consequence of this rule is the following:

[F5] (preventsFromPlayingRoleInType

 TerroristAttack-February-14-2005-Beirut

 RafikHariri

 deliberateActors

 Event)))

The quaternary predicate preventsFromPlayingRoleIn-
Type is transitive through the collection-specialization rela-
tion in its fourth argument position, and is also transitive
through the predicate-specialization relation in its third ar-
gument position. These constraints are expressed by the
following assertions:

[F6] (transitiveViaArgInverse

 preventsFromPlayingRoleInType genls 4)

[F7] (transitiveViaArgInverse

 preventsFromPlayingRoleInType genlPreds 3)

Now, because the collection denoted by the non-atomic,
functionally created term

(AdoptionTypeOfNormByAgentFn

 LebaneseEconomicReform Lebanon)

is a specialization of Event, and because the predicate
keyParticipants is a specialization of the predicate
deliberateActors, the inference engine can draw on

[F5], together with specialized reasoning modules designed
for predicates about which transitiveViaArgInverse
assertions have been made, to prove this assertion:

[F8] (preventsFromPlayingRoleInType

 TerroristAttack-February-14-2005-Beirut

 RafikHariri

 keyParticipants

 (AdoptionTypeOfNormByAgentFn

 LebaneseEconomicReform

 Lebanon))

With [F8] as a solution for [Q9], Cyc is able to pose the
following restricted version of [Q8] as the next pertinent
problem to solve:

[Q10] (normProponents

 LebaneseEconomicReform RafikHariri)

At the time of the analyst’s query, no knowledge sources
accessible to the inference engine contain information about
Rafik Hariri’s advocacy of economic reform in Lebanon.
Because no deductive tactic is successful at this point in
inference, the inference engine falls back on abduction and
posits a hypothetical support for [Q10]:

[H1] (normProponents

 LebaneseEconomicReform RafikHariri)

The introduction of conjectures generated through abductive
reasoning is a tactic of last resort, employed by the inference
engine when all purely deductive means of obtaining an
answer have failed. This tactic becomes available to the
inference engine only when the user specifies, at query time,
that this sort of unsound but possibly fruitful reasoning is
permitted. The use of abductive reasoning at this point in
the proof allows the inference engine to return Syria as a
plausible but strictly provisional answer to the top-level
query, [Q1]. The validity of this answer hinges on the truth
or falsity of [H1].
 The chains of reasoning that enable the inference engine
to return Israel, UnitedStatesOfAmerica, and AlQaida as
additional answers to [Q1] rely on different facts and rules,
but are equally complex. In the remaining sections of this
paper, we will describe how Cyc reasons about the complex
sets of supports generated in inference to produce under-
standable explanations of the inference engine’s results.

The Display of Explanations
The QL interface provides several types of information for
each answer returned by the inference engine. The first type
appears as an extra column labeled “Speculation Level” in
the tabular display of answers. This column is shown only
when the user has permitted Cyc to resort, if necessary, to
hypothetical (abductive) reasoning during a query session.
The second type is information about the provenance
(sources) of the facts used during inference. This informa-

tion is initially conveyed via source icons associated with
each inference answer (Figure 1). The third type consists of
detailed, interactive NL renditions of the proofs for each
answer. This information is displayed in justification dis-
play panels that are launched when the user selects an an-
swer and clicks the “Justify Answer” button (Figures 2 and
3).

Grouping Answers by “Speculation Level”
Cyc uses abduction to generate conjectures (hypothetical
statements) during reasoning, which is one method for dis-
covering plausible but uncertain explanations [Paul 1993].
As mentioned in the inference example above, Cyc’s infer-
ence engine performs abduction by invoking reasoning
modules that posit truth values for sentences, or bindings for
variables, when these cannot be found via deductive search.
Figure 1 shows the answers produced by the inference en-
gine sorted into display groups by a “Speculation Level”
metric. For answers supported by proofs with no conjec-
tures, the displayed speculation value is “No Speculation”.
For all other answers, the speculation level is a relative
measure determined by the ratio of conjectural supports
(assumptions obtained via abduction) to non-conjectural
supports (statements obtained via deduction and look-up) in
each answer’s least abductive proof. (A given answer may
be justified by multiple proofs, some of which may require
more use of abduction than others.) Thus, for example, the
abductive proof for the answer “Syria” is deemed only
“Mildly Speculative” because, as indicated in the inference
example section above, the proof for the answer “Syria”
contains only one abductive support among several deduc-
tive supports.
 While primitive in its current implementation, the display
of speculation level values gives the user an indication of
the number of guesses the system has made to obtain a
given answer. The ranking of abductive inference results is
possible because the inference engine keeps track of all
proof components in the interest, ultimately, of marshalling
them to explain proofs to the user.

Displaying Source Icons with Inference Answers
When presenting inference answers, the QL also displays
icons that denote information sources. The motivation for
showing the icons along with the initial presentation of the
answers is to provide the user with a simple, mnemonic
means of “credibility assessment” based information prove-
nance. For example, in Figure 1, “the United States” and
“Israel” are included among the answers displayed for the
query “Who or what had a motive for the murder of Rafik
Hariri?”, and these answers are marked as being provable
with “No Speculation”. Here, Cyc’s reasoning is based on
information for which the ultimate provenance is Syrian
state-run newspapers, reprinted by the Al-Jazeera news
agency. The icons shown in the “Sources” column, on the
far right of the QL interface’s answer table, indicate imme-
diately that the information used to obtain the answers “Is-
rael” and “the United States” was distributed by Al-Jazeera.

Prominent display of provenance information with each
answer makes the inference results more immediately com-
prehensible to a user who may already be overloaded with
information. The user need not memorize the meanings of
all the icons, because simply hovering over any icon with
the mouse pointer causes a pop-up window to display the
full source citation. The QL interface shows as many source
icons as are pertinent to the answer displayed in the corre-
sponding table row.
 To find the sources for a given answer, the inference en-
gine iterates over all of the assertions that contribute to (i.e.,
are part of) the justification (proof) for the answer. (An
answer may be supported by multiple, independent proofs.)
For each such assertion ai, the inference engine executes the
following query:

[Q11] (sourceOfAssertion-NonTrivial ?SOURCE ai)

If the inference engine finds a binding for ?SOURCE, then
that binding is considered a contributing, citable source for
the answer supported by ai. Whenever users add knowl-
edge to the KB, they are actively encouraged by Cyc’s
knowledge-entry interfaces to include explicit source infor-
mation that can be retrieved by the query shown above. The
types of entities that may be referenced as sources include
people, news articles, web pages, books, magazines, ency-
clopedias, almanacs, databases, and many others.
 To retrieve the correct icon for a specific source, such as
an individual journal article, the inference engine tries to
find an entity that can be considered the source’s prove-
nance (both in the sense of “place of origin”, and in the
sense of “indictor of credibility/reliability”). In general,
provenance entities are distributors, repositories, or points of
access for individual information source objects, such as
articles or web pages. Examples of provenance entities in-
clude organizations such as the United States Department of
Energy, CNN, Reuters, and Al-Jazeera. Cyc does not di-
rectly associate every newspaper article, encyclopedia arti-
cle, or web page with a distinctive icon. Rather, when pos-
sible, the more general provenance entities are associated
with icons via assertions in the KB. Thus, given that an
assertion in the KB is explicitly linked to a particular ency-
clopedia entry or newspaper article, Cyc must then call on
inference to determine the provenance (publisher, issuer,
originating entity) of the assertion. Specifically, to retrieve
an appropriate display icon for a given information object
<SOURCE

i
>, the inference engine tries to find bindings for

?PROVENANCE and ?ICON by running the following query:

[Q12] (and

 (tinyIconTermImagePathname

 ?PROVENANCE

 ?ICON)

 (or

 (issuerOfCW <SOURCE> ?PROVENANCE)

 (subWorks ?PROVENANCE <SOURCE>)

 (thereExists ?EDITION

 (thereExists ?DATE

 (and

 (subWorks ?EDITION <SOURCE>)

 (editionOfPeriodicalByDate

 ?PROVENANCE

 ?DATE

 ?EDITION))))

 (publisher <SOURCE> ?PROVENANCE)))

In other words, the inference engine performs a heuristic
search to determine whether the source has as a provenance
entity a known “issuer” (e.g., a quote with a known
speaker), or a containing work of which it is a part (e.g., an
article in an encyclopedia), or an agent (person or organiza-
tion) that is its publisher.
 If the KB contains no icon reference (URI) for the par-
ticular provenance entity retrieved, then the inference en-
gine determines the type of the specific source in question
(e.g., web page, book, journal article), and the QL interface
displays a default icon for that type of source (e.g., a picture
of a generic book, or a picture of a generic magazine).

The Justification Display Panel
Clicking on the “Justify Answer” button in the QL interface
launches a justification display panel for the highlighted
answer. This panel shows NL versions of CycL proofs that
have been constructed by the inference engine. Each proof
comprises an entire chain of reasoning that supports the
answer, and a single answer may be supported by multiple
proofs. A pull-down list at the top of the panel allows users
to toggle the display between different proofs.
 The justification display panel contains four sections,
labeled: “Query/Answer,” “Because,” “Detailed Justifica-
tion,” and “External Sources”. Each section can be ex-
panded or collapsed by clicking on the small triangular icon
to its left. When the panel is first displayed, all of the sec-
tions except “Detailed Justification” are fully expanded.
Figure 2 illustrates what the justification display panel looks
like when it is opened to display the proof for the answer
“Syria” in our inference example.

The “Query/Answer” Section. This section of the justifi-
cation display panel provides context for the other sections
by showing an NL version of the query posed, together with

an NL version of the answer the justification supports. In
the example in Figure 2, the query portion of this section
reads: “Who or what had a motive for the murder of Rafik
Hariri?” The justification displayed is for the answer
“Syria”. In each of these cases (and, indeed, in every case
where NL is produced in the QL interface), the NL is gener-
ated heuristically from CycL by the Cyc system, using para-
phrase techniques that we will describe below in the section
entitled “NL Paraphrases of CycL Assertions”.

The “Because” Section. This section displays ground
statements (closed, non-rule supports) in the proof that are
either facts obtained from the KB or other sources accessi-
ble to the inference engine, or conjectures generated via
abduction. This section is supposed to provide the user with
a minimal explanation: a quickly comprehensible list of the
basic facts used to support the inference answer. When an
external published source is the origin of a ground statement
displayed in this section, an icon for the source appears to
the right of the assertion, and footnote number links the as-
sertion to a full citation in the “External Sources” section of
the display.

The “Detailed Justification” Section. This section is sup-
posed to provide the user with rich explanations that include
sufficient information to review, understand, and validate
Cyc’s proofs (Figure 3). When the user expands this section
of the justification panel to reveal its content, it provides
most of the detail of a complete proof tree, which is a com-
plex Cyc datastructure that contains the entire justification
for an inference result, including sub-proofs of intermediate
results. Cyc stores proof trees in memory until explicitly
told to destroy them, so they are readily available for render-
ing in NL in this display.
 When first expanded by the user, the detailed justification
section displays the proof tree at one level deep. The first
level of depth is constituted by the first rule used to trans-
form the top-level problem (thus, in our example, [R1]) to-
gether with all of the supports used to prove the conjuncts of
the antecedent of the first rule (from our example, supports
[F1], [F2], [F3], [F4], [F5] and [H1]). When completely
expanded by the user, the “Detailed Justification” section
reveals almost the complete structure of the proof tree for
the relevant inference results, one level at a time, including

Figure 4: What the “Because” section would look like if no supports in the proof tree were suppressed.
“Duh!” arrows point at trivial facts that users do not need to see. “Huh?” arrows point at sup-
ports that would only confuse users if included in the display.

rules and omitting only uninteresting details.
 When preparing to show a detailed proof, Cyc deems
certain classes of supports uninteresting and, therefore, wor-
thy of suppression. Suppressed supports are not available to
the user through drill-down: they are not displayed even
when the “Detailed Justification” section is fully expanded.
 The justification display panels of the QL interface rou-
tinely suppress three kinds of inference supports. The first
two kinds encompass supports that are judged too trivial for
users to see, and those that are judged too confusing for us-
ers to see. The third kind consists of “structural links” in
proofs.
 Figure 4 illustrates what the “Because” section of the
justification display panel would look like if the interface
did not suppress trivial and confusing supports. Without
such suppression, the effect on the “Detailed Justification”
section of the display would be even more extreme, with
myriad trivial and confusing sentences.
 The process of determining at runtime which elements of
a proof tree to expose in the “Detailed Justification” section,
and which elements to completely suppress, is guided by
inference using knowledge stored in the KB. For example,
Cyc deems uninteresting any support that the inference en-
gine can prove is trivial for justification paraphrase. Unary
predicates such as

ruleTrivialForJustificationParaphrase

(which applies to whole assertions) and

 predTrivialForJustificationParaphrase

(which applies to predicates) encode this sort of knowledge.
For example, assertions that state trivial translations be-
tween synonymous CycL expressions are tagged with
ruleTrivialForJustificationParaphrase:

[F9] (ruleTrivialForJustificationParaphrase

 (implies

 (trueSentence ?SENT)

 (sentenceTruth ?SENT Truth)))

Also, if a term mentioned in a support in a proof tree is la-
beled in the KB with the unary predicate keIrrelevant,
then that support is suppressed in the justification display.
For example, in Figure 4, which shows what the display
would look like with no supports suppressed, one of the
confusing supports displayed is: “Argument 4 of #$pre-
ventsFromPlayingRoleInType is transitive with respect
to the inverse of #$genls”, and another is “Argument 3 of
#$preventsFromPlayingRoleInType is transitive with
respect to the inverse of #$genlPreds”. These supports
are the NL renderings of [F6] and [F7] in the example infer-
ence. Because the KB contains this assertion,

[F10] (keIrrelevant transitiveViaArgInverse)

[F6] and [F7] are omitted from the standard justification
display panel in both the “Because” and the “Detailed Justi-
fication” sections.
 Also not included in the NL justification display are
structural links that indicate the order in which the inference
engine has solved the sub-problems of a proof. These struc-
tural links are useful to Cyc’s developers for debugging the
process of inference. The detailed justification presented in
the justification panel, however, is intended to allow end
users to examinine the proofs that result from inference,
rather than to debug the inference process itself. Structural
links encode procedural information that is not relevant for
assessing a proof’s validity, and therefore is generally not
pertinent to the task-directed interests and concerns of most
end-users. For instance, a structural link contained in the
full justification of our inference example, above, captures
the fact that the inference engine deemed it appropriate to
split problem [Q4] into the independent problems [Q5],
[Q6] and [Q7]. Interfaces to the inference engine designed
for debugging inference must make this structural link ex-
plicit, but it is suppressed in the justification display panel.
 In the “Detailed Justification” section, the ground state-
ment, “Rafik Hariri is a proponent of Lebanese economic
reform”, is displayed in blue font to indicate that it is a con-
jecture obtained by the inference engine via abduction.
Other ground facts in that section are displayed in black
font. In addition, the abduced conjecture has a drop-down
menu to its right that reads “Options”. If the user clicks on
this menu, it expands to reveal three choices: “Confirm”,
“Deny”, or “Research”. Selecting “Research” causes a
complex Boolean web query generated from the CycL ver-
sion of the abduced conjecture to be passed to an online
search engine (such as AltaVista or Google), and also
causes a web browser to display the search results. Select-
ing “Confirm” causes Cyc to enter the assertion into the Cyc
KB. If the justification contains no additional hypothetical
statements it will, thenceforth, be considered a valid deduc-
tive proof for the answer, and the blue font of the displayed
conjecture will change to black. Selecting “Deny” causes
the statement to be entered into the KB with an explicit
truth-value of false, after which the displayed justification
will disappear, since it can no longer possibly be a valid
proof for the answer.
 Any supports that depend on conjectures will also be dis-
played in blue, which makes it easy for the user to distin-
guish those parts of the explanation that rely on abduction
from those that are purely deductive. Thus, in the “Detailed
Justification” section in Figure 4, both the sentence “Rafik
Hariri is a proponent of Lebanese economic reform” and the
sentence “Syria had a motive for the assassination of Hariri”
display in blue font, because the latter depends for its sup-
port on the former, which has only abductive support.
 The “Detailed Justification” section of the justification
panel presents the results obtained by specialized inference
modules, but does not automatically show the sub-proofs
constructed by the modules. We adopted this tactic after
finding, in general, that the results of specialized Cyc infer-
ence modules are intuitive and rarely beg for user drill-

down. In most cases, however, Cyc can be prompted by the
user to provide arbitrary levels of detail. For example, in
Figure 3 the interface displays this fact as part of the de-
tailed justification: “Syria is an intelligent agent”. This fact
is not explicitly asserted in the KB, but rather is calculated
based on the explicit assertion that “Syria is a Levant coun-
try” and the further fact that in Cyc’s hierarchy of classes,
“Levant country” is a specialization of “intelligent agent”.
Indeed, if a user clicks on the triangle to the left of the claim
that Syria is an intelligent agent, Cyc will show these sup-
ports: “Syria is a Levant country” and “A Levant country is
a kind of intelligent agent”. The latter claim can be further
expanded to show the explicit chain of subsumptions that
enables Cyc to conclude that a Levant country is a kind of
intelligent agent.

NL Paraphrases of CycL Assertions
To illustrate how Cyc generates English from the CycL
structures that are the actual nodes of a proof tree, we will
explain step-by-step how Cyc paraphrases the following rule
from our example inference:

[R1] (implies

 (and

 (adoptionTypeOfNormByAgent

 ?POLICY ?ADOPTER ?ADOPT-TYPE)

 (policyForAgent ?POLICY ?ADOPTER)

 (isa ?AGENT IntelligentAgent)

 (negativeVestedInterest ?AGENT ?POLICY)

 (normProponents ?POLICY ?VICTIM)

 (preventsFromPlayingRoleInType

 ?ACT

 ?VICTIM

 keyParticipants

 ?ADOPT-TYPE))

 (agentHasMotiveForAction ?AGENT ?ACT))

Ultimately, Cyc paraphrases [R1] as:

[PR1] “If

• some intelligent agent opposes some policy;
• a second intelligent agent, ?VICTIM, is an ad-

vocate of the policy;
• a third intelligent agent, ?ADOPTER, is respon-

sible for according with the policy;
• the policy is adopted by ?ADOPTER in some

?ADOPT-TYPE; and
• some ?ACT prevents ?VICTIM from playing

the role "key participants" in any ?ADOPT-
TYPE;

 then the first intelligent agent has a motive for ?ACT.”

To paraphrase [R1], Cyc proceeds through the following
sequence of steps. First, it checks to see if a special para-
phrase template has been written for [R1] as a whole. In
this case, there is no such rule-specific template, so Cyc
proceeds to the next step, which is to determine the specific
type of object it is paraphrasing.

 In the case of [R1] Cyc recognizes that it needs to para-
phrase an assertion (as opposed to, e.g., a single first-order
reified term, such as Syria). Next, Cyc makes explicit any
hitherto implicit quantification of the assertion. All rules in
Cyc are implicitly universally quantified, and [R1] is a rule.
Making explicit the implicit universal quantifiers in [R1]
therefore yields [R1’]:

[R1’]

(forAll ?AGENT

 (forAll ?POLICY

 (forAll ?VICTIM

 (forAll ?ADOPTER

 (forAll ?ADOPT-TYPE

 (forAll ?ACT

 (implies

 (and

 (adoptionTypeOfNormByAgent

 ?POLICY

 ?ADOPTER

 ?ADOPT-TYPE)

 (policyForAgent ?POLICY ?ADOPTER)

 (isa ?AGENT IntelligentAgent)

 (negativeVestedInterest

 ?AGENT

 ?POLICY)

 (normProponents

 ?POLICY

 ?VICTIM)

 (preventsFromPlayingRoleInType

 ?ACT

 ?VICTIM

 keyParticipants

 ?ADOPT-TYPE))

 (agentHasMotiveForAction

 ?AGENT

 ?ACT))))))))

The next step is for Cyc to identify the type of [R1’], which
in this case is “universal sentence”, since the outermost
quantifier of [R1’] is a universal quantifier. The first action
Cyc performs on universal sentences is to determine the
most specific types of things over which their universally
quantified variables can range. These types are determined
by the semantic argument constraints that pertain to the
predicates in the rule. For example, the KB contains the
following constraint:

[F11] (arg2Isa policyForAgent IntelligentAgent)

This assertion means that any term occurring as the second
argument to the predicate policyForAgent must be an
instance of IntelligentAgent.
 Upon examining all the relevant semantic argument con-
straints in [R1’], Cyc registers ?AGENT, ?ADOPTER, and
?VICTIM as most narrowly constrained to instances of
IntelligentAgent, ?ADOPT-TYPE as constrained to in-
stances of AdoptingANorm, ?POLICY as constrained to

instances of Policy, and ?ACT as constrained to instances
of Action.
 Cyc next registers all the variables in [R1’] as universally
quantified, and removes the clauses from [R1’] that serve
merely to type the variables, since Cyc has just registered
variable types independently. Thus, all of the quantifiers
and the sole isa clause in [R1’] are removed, yielding
[R1’’]:

[R1’’] (implies

 (and

 (adoptionTypeOfNormByAgent

 ?POLICY

 ?ADOPTER

 ?ADOPT-TYPE)

 (policyForAgent ?POLICY ?ADOPTER)

 (negativeVestedInterest ?AGENT ?POLICY)

 (normProponents ?POLICY ?VICTIM)

 (preventsFromPlayingRoleInType

 ?ACT

 ?VICTIM

 keyParticipants

 ?ADOPT-TYPE))

 (agentHasMotiveForAction ?AGENT ?ACT))

During all this rephrasing (from [R1] to [R1’] to [R1’’])
Cyc’s paraphrase code keeps track of how argument posi-
tions in the new formula correspond to argument positions
in the original formula, since at the end it must be able to
determine how individual terms inside the formula were
paraphrased.
 Next, Cyc tries to use variable-typing clauses to para-
phrase variables as typed noun phrases. Thus ?AGENT
(which, recall, has been registered as constrained to in-
stances of IntelligentAgent) is now paraphrased as
“some intelligent agent”, based on these two assertions in
the KB:

[F11] (multiWordString

 (TheList "intelligent")

 Agent-TheWord

 CountNoun

 IntelligentAgent)

[F12] (singular Agent-TheWord "agent")

Although logical quantification is universal, Cyc knows that
in the “if” section of an implication universally quantified
variables should generally be paraphrased as existentially
quantified, thus here generating the English quantifier
“some”.
 The other intelligent agents mentioned in the “if” section
of [R1’’] are referred to when they first occur in the para-
phrase as “some other intelligent agent ?VICTIM”, and
“some other intelligent agent ?ADOPTER”, to emphasize that
they are distinct from one another and from ?AGENT. When
they occur subsequently in the paraphrase, they are referred

to simply as “?VICTIM” and “?ADOPTER”, because their
types have already been mentioned.
 Cyc keeps track of the occurrences of each variable in the
rule and generates a phrase for the variable that is appropri-
ate to the context in which the variable occurs. For exam-
ple, ?POLICY is referred to three times: first as “some pol-
icy”, then as “that policy”, and finally as “the policy”.
?AGENT is referred to in the consequent (the “then” section
of the implication) as “that intelligent agent”, whereas, as
mentioned above, it had been referred to in the “if” section
of the implication as “some intelligent agent”.
 The text surrounding the variables is generated from NL
template assertions on the predicates that occur in the initial
(0th-argument) positions of each paraphrased sub-sentence.
For example, the KB contains this generation template for
the predicate negativeVestedInterest:

[F13] (genTemplate

 negativeVestedInterest

 (ConcatenatePhrasesFn

 (BasicTransitiveSentenceFn

 (TermParaphraseFn-NP :ARG1)

 Oppose-TheWord

 (TermParaphraseFn :ARG2))))

This assertion means that any CycL assertion with nega-
tiveVestedInterest in the initial position should be
paraphrased as a basic transitive sentence with “oppose” as
the verb, and the terms in the 1st- and 2nd-argument positions
as the subject and direct object, respectively, of the verb.
 In the final step of paraphrase the paraphrased elements
of the rule are assembled into a string:

If some intelligent agent opposes some policy, some other in-
telligent agent ?VICTIM is an advocate of that policy, some
other intelligent agent ?ADOPTER is responsible for accord-
ing with the policy, it is adopted by ?ADOPTER in some
?ADOPT-TYPE, and some ?ACT prevents ?VICTIM from
playing the role “key participants” in any ?ADOPT-TYPE,
then that intelligent agent has a motive for ?ACT.

This string is displayed in the “Detailed Justification” sec-
tion of the justification display panel for the example infer-
ence (Figure 3).

The “External Sources” section. Often, the KB will con-
tain explicit knowledge that specific assertions were derived
or extracted from the information found in a named, pub-
lished source. In this section of the justification panel, foot-
noted citations link such assertions to the relevant sources.
If the footnote text is the title of a web source and Cyc
knows the relevant URL, it will be displayed as a “live”
link, which, if clicked on by a user, will open the source
document with the default web browser.

Related Work
Cyc’s interactive justification presentation functionality
grew out of a static, one-shot explanation generation system

developed for the HALO project [Friedland et al. 2004].
The ability to drill down into different parts of the justifica-
tion for which greater detail is desired greatly enhances the
effectiveness of the current interface over the earlier system,
in which explanations – often several pages long for a single
chemistry problem – were printed out and judged by human
evaluators. An alternative approach, used in the P.rex sys-
tem for explaining mathematical proofs [Fiedler 1999], is to
model the user’s domain knowledge and predict which parts
of the proof will require more detailed explanations.
 Rather than displaying an entire proof at once, the P.rex
system uses a chat-like dialog system, showing one step in
the proof at a time, allowing the user to indicate if she has
understood that step or would prefer more (or less) detail,
and then moving on to the next step. This approach un-
doubtedly facilitates the system’s updating of its user
model, but also imposes linearity on the explanation process
that leaves the system in control. The user cannot easily see
all the top-level supports for the conclusion at once glance,
nor can she jump from a “later” part of the proof to an “ear-
lier” part. In Cyc’s approach, by contrast, the user decides
which parts of the justification to expand or collapse, and
can see the entire proof at once, or can focus on parts of it in
any order. However, the Cyc system currently does little
modeling of the user’s knowledge or preferences.
 Another system used in the HALO project, described in
[Barker et al. 2002], used hand-written explanation tem-
plates for each rule, specifying a gloss of the rule, a list of
“dependent facts” (corresponding generally to the antece-
dent of the rule), and a template for paraphrasing the con-
clusion. This system was able to produce very readable
results, but imposed an extra burden on rule authors. In the
Cyc system, the templates used to paraphrase facts and rules
for the QL interface’s justifications are the same ones used
in all other applications of Cyc’s natural language genera-
tion capabilities, including Cyc’s interfaces for browsing
KB content, creating fact sheets, and paraphrasing query
sentences. The approach used in the Cyc system ensures
that English inference explanations faithfully conform to the
actual proofs generated by the inference engine, because the
explanations are compositionally generated directly from
the underlying CycL of each proof.
 One could imagine a hybrid system in which explanation
templates are automatically generated by a system like
Cyc’s justification generation system and then hand-edited
for naturalness. A possible problem with this approach
would be that pre-formulated templates cannot be modified
in the context of a particular proof or user, whereas justifica-
tions generated on demand always have that possibility.

Concluding Remarks
The Cyc system provides an interactive interface for dis-
playing understandable, NL explanations of queries, an-
swers, and complex chains of inference. Cyc reasons about
the structure and content of its own proofs to filter trivial,
confusing, or merely “structural” supports from the explana-
tions provided to users. In addition, Cyc deduces optimal

ways of describing and displaying the provenance of sup-
ports, the most suitable placement of supports (paraphrases)
in explanation interfaces that allow the user to choose be-
tween varying levels of detail, and the most appropriate
manner of paraphrasing CycL supports in English.

Acknowledgments
Support for development of the capabilities described in this
paper was provided by the HALO project, and by ARDA’s
NIMD and AQUAINT programs.

References

Barker, Ken, et al. 2002. A Question-Answering System for
AP Chemistry: Assessing KR&R Technologies. Proceed-
ings of the Ninth International Conference on the Principles
of Knowledge Representation and Reasoning (KR 2004).
Whistler, 488-497.

Fiedler, Armin 1999. Using a Cognitive Architecture to Plan
Dialogs for the Adaptive Explanation of Proofs. In T. Dean,
ed., Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence, 358-363. Morgan Kauf-
mann, San Francisco, CA.

Friedland, N S., et al. 2004. Project Halo: Towards a Digital
Aristotle. AI Magazine 25(4): 29-47.

Lenat, D. B. and Guha, R.V. 1990. Building Large Knowl-
edge-Based Systems: Representation and Inference in the
Cyc Project. Addison-Wesley.

Lenat, D. 1995. Steps to Sharing Knowledge. In Toward
Very Large Knowledge Bases, ed. N.J.I. Mars. IOS Press.

Masters, J. and Güngördü, Z. 2003. Semantic Knowledge
Source Integration: A Progress Report. Proceedings of the
International Conference on Integration of Knowledge In-
tensive Multi-Agent Systems (KIMAS ’03), 562-566. Pis-
cataway, N.J.: IEEE Press.

Paul, G. 1993. Approaches to Abductive Reasoning: An
Overview. Artificial Intelligence Review 7:109-152.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

