
A Framework for Explaining Reasoning in Description Logics ∗

Xi Deng and Volker Haarslev and Nematollaah Shiri
Concordia University

Dept. of Computer Science & Software Engineering
1515 de Maisonneuve West, Montreal, Quebec, Canada, H3G 1M8

{xi deng,haarslev,shiri}@cse.concordia.ca

Abstract

We present a resolution based framework to explain rea-
soning in description logics and demonstrate its applicabil-
ity to explain unsatisfiability and inconsistency queries w.r.t
TBoxes and ABoxes in ALC. During the construction pro-
cess, a refutation graph is used as the guide to generate expla-
nations.

Introduction
Description logics (DLs) have long been considered by
researchers in Knowledge Representation and Reasoning.
They have a wide range of applications such as domain mod-
elling, software engineering, configuration, and the semantic
web (Baader & Nutt 2003). However, existing DL reason-
ers, such as Racer (Haarslev & Möller 2001), do not pro-
vide users explanation services; they merely answer “Yes”
or “No” to a satisfiability and/or consistency query with no
further details about the sources. For applications with com-
plex knowledge to represent and reason with, errors due to
inconsistencies become quite common. For example, the
DICE (Diagnoses for Intensive Care Evaluation) terminol-
ogy (Schlobach & Cornet 2003) contains more than 2400
concepts, out of which about 750 concepts were unsatis-
fiable due to migration from other terminological systems.
Although Racer can detect such inconsistencies and generate
a list of unsatisfiable concepts, simply providing such a list
is of little help for knowledge engineers and ontology devel-
opers to identify the sources of inconsistencies. Therefore,
it is crucial to develop explanation services as an essential
feature and useful tool for DL reasoners.

There are two options, in general, to build an explanation
system. One is to construct a system specially designed to
provide explanations, as suggested in (Wick & Thompson
1992). Several approaches on explanations in theorem prov-
ing systems (Huang 1994; Meier 2000) follow this idea. The
other way is to add an explanation module to the reasoner so
that reasoning procedures can be traced to generate explana-
tions. Most research on explanations in logic programming

∗This work was supported in part by Natural Sciences and En-
gineering Research Council (NSERC) of Canada and by ENCS,
Concordia University.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

and deductive databases (Byrd 1980; Shmueli & Tsur 1990;
Arora et al. 1993) follow this approach.

In this paper, we propose to use resolution proofs to con-
struct explanations for DL reasoners, which mainly follows
the idea of the first approach mentioned above, while the
necessary interaction with the DL reasoner is also consid-
ered. The reason for our preference of the first option is
that most implemented DL reasoners use tableau algorithms
as the underlying reasoning calculus. Tableau rules are de-
signed to render the results faster but not necessarily easier
for the users to understand. For instances, for a subsump-
tion query, a tableau based reasoner first negates the sub-
sumer, conjuncts it with the subsumee, and then tries to con-
struct a model. The subsumption relationship holds if such
a model cannot be found. However, it would be inappropri-
ate to argue “A � B since A � ¬B is not satisfiable” in an
explanation. Besides, one possible unsatisfying explanation
of unsatisfiability, especially in the context of disjunctions,
is that every source is tried out but failed. Even if this is
extended to include a trace of what was tried and why it
failed, these traces may include many deduction paths and
quickly become unwieldy. Furthermore, some DL optimiza-
tion techniques, such as absorption1, are adopted to make
reasoning more efficient, but they are difficult to understand
if presented as explanations to general users. Hence in DL a
faithful trace of the reasoning is not a good explanation.

It is acknowledged by both DL and first-order logic (FOL)
communities that standard methods of automated theorem
proving in FOL are not suitable for DL tasks, especially if
a significant number of negative tests is involved (Hustadt
& Schmidt 1999). However, FOL proof procedure such as
resolution can shed light on how explanations of DL rea-
soning can be formulated. Compared to natural deduction
proofs or tableau proofs, the resolution technique is more
focused, as all the literals involved in a proof contribute di-
rectly to the solution. Moreover, in the framework of reso-
lution proofs, reasoning with global axioms and ABoxes is
not more complex than reasoning about concept expressions
alone, in contrast to the complexity of reasoning for most
description logics. Below is a natural deduction proof style

1The basic idea of absorption is to transform a general axiom,
e.g., C � D, to the form of a primitive definition A � D′, where
A is an atomic concept name and C may be a non-atomic concept.

explanation of a variant of the example in (Huang 1996).
Suppose A and A � B are the premises, and B is the con-
clusion. The first column represents the line number. The
second represents the logical hypotheses on which a line de-
pends on. The third column is the conclusion formulas. The
last column represents the inference rule that justifies a line,
followed by the premise lines.

No Hypothesis Formula Reason
1. 1 � A (Hypothesis)
2. 2 � A � B (Hypothesis)
3. 3 � ¬B (Hypothesis)
4. 2 � ¬A ∨ B (Tautology 2)
5. 5 � ¬A (Hypothesis)
6. 1, 5 � ⊥ (¬E 1 5)
7. 7 � B (Hypothesis)
8. 3,7 � ⊥ (¬E 3 7)
9. 1, 2, 3 � ⊥ (Case analysis 4 6 8)
10. 1, 2 � B (Indirect 9)

Considering that this problem can be proved with two
steps of resolution as shown below, with the other columns
representing the same thing as above and the third column
representing the clauses of the conclusions, the natural de-
duction proof is indeed long and somewhat tedious.

No Hypothesis Clause Reason
1. 1 {A} (Hypothesis)
2. 2 {¬A, B} (Hypothesis)
3. 3 {¬B} (Hypothesis)
4. 1, 2 {B} (Resolution 2 3)
5. 3, 4 ⊥ (Resolution 3 4)

Most existing explanation facilities in resolution based
automated theorem proving (ATP) transform the proofs
into natural language style explanations (Lingenfelder 1996;
Huang 1994; Meier 2000). They are specifically designed to
solve problems in theorem proving, particularly in mathe-
matics. Since ATPs focus on proving conclusions using the-
orems, lemmas and premises, their approach is not suitable
for indirect proofs. Our approach uses resolution proofs for
explanations of DL reasoning, especially unsatisfiability and
inconsistency reasoning, with a goal different than others in
ATP.

The rest of this paper is organized as follows. First we
provide a brief introduction to Description Logics as a back-
ground. Then we presents the main components of the
framework, and provides the algorithms for generating ex-
planations. It also includes examples to illustrate the pro-
cedure to construct explanations. At last we conclude with
some open issues and future work.

Background
Description logics are a family of concept-based knowledge
representation formalisms. It represents the knowledge of a
domain by first defining the relevant concepts of the domain.
These concepts are used to specify properties of the objects
and individuals in the domain. Typically a DL language has
two parts: terminology (TBox) and assertion (ABox). The
TBox includes intensional knowledge in the form of axioms

whereas the ABox contains the extensional knowledge that
is specific to elements in the domain, called individuals.

Among DL frameworks, ALC (AL stands for Attribute
language and C stands for Complement) has been consid-
ered as a basic DL language of interests in numerous stud-
ies in DL. In ALC and other DL languages as well, basic
descriptions are atomic concepts, designated by unary pred-
icate symbols, and atomic roles, designated by binary sym-
bols and used to express relationships between concepts. Ar-
bitrary concept descriptions such as C and D are built from
atomic concepts and roles recursively according to the fol-
lowing rules:

C, D → A| (atomic concept)
¬C| (arbitrary concept negation)

C � D| (intersection)
C 	 D| (union)
∀R.C| (value restriction)
∃R.C (existential quantification)

where A denotes an atomic concept and R denotes an atomic
role. The intersection (or union) of concepts, which is de-
noted C � D (or C � D), is used to restrict the individuals
to those that belong to both C and D (or either C or D).
The value restriction, denoted ∀R.C, requires that all the
individuals that are in the relationship R with the concept
being described belong to the concept C. The existential
quantification, written ∃R.C, shows that there must exist an
individual that is in the relationship R with the concept be-
ing described and belongs to the concept C. The universal
concept � is a synonym of A � ¬A. The bottom concept ⊥
is a synonym of A � ¬A.

An interpretation I defines a formal semantics of con-
cepts and individuals in ALC. It consists of a non-empty
set ΔI , called the domain of the interpretation, and an inter-
pretation function, which maps every atomic concept A to
a set AI ⊆ ΔI , and maps every atomic role R to a binary
relation RI ⊆ ΔI × ΔI . In addition, I maps each individ-
ual name a to an element aI ∈ ΔI . The interpretation I is
extended to concept descriptions, as shown in Table 1.

Constructors Semantics

A AI

¬C ΔI\CI

C � D CI ∩ DI

C 	 D CI ∪ DI

∀R.C {a ∈ ΔI | ∀b.(a, b) ∈ RI → b ∈ CI}
∃R.C {a ∈ ΔI | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
a : A aI ∈ AI

(a, b) : R (aI , bI) ∈ RI

Table 1: Interpretations of DL constructors in ALC.

Axioms express how concepts and roles are related to
each other. Generally, an axiom is a statement of the form
C � D or C ≡ D, where C and D are concept descriptions.

An interpretation I satisfies C � D if CI ⊆ DI . It satisfies
C ≡ D if CI = DI .

The basic inference services in TBoxes include satisfiabil-
ity, subsumption, equivalence, and disjointness. A concept
in a TBox T is said to be satisfiable w.r.t T if there exists
an interpretation I that is a model of T . A model for T is
an interpretation that satisfies it. The other three inference
services can all be reduced to (un)satisfiability. Another im-
portant reasoning service in TBoxes is to check whether a
TBox T is consistent, i.e., whether there exists a model for
T . The basic reasoning tasks in ABoxes are instance check,
realization, and retrieval. The instance check verifies if a
given individual is an instance of a specified concept. The
realization finds the most specific concept that an individual
is an instance of. The retrieval finds the individuals in the
knowledge base that are instances of a given concept. An
ABox A is consistent w.r.t a TBox T , if there is an interpre-
tation that is a model of both A and T . Similar to the infer-
ence services in TBoxes, the other three inference services
in ABoxes can also be reduced to the consistency problem of
ABoxes. Further details of description logics can be found
in (Baader & Nutt 2003).

Resolution Based Framework
Our explanation procedure consists of three components, de-
scribed as follows. The architecture of the system is shown
in Figure 1.

1. Preprocessing: The explanation system communicates
with a DL reasoner, e.g., Racer, and provides the answer
to a query, normally in the form of “Yes” or “No” for a
concept satisfiability, or an ABox consistency query, or
a list of unsatisfiability concepts for a TBox consistency
checking. If the answer is “No”, i.e., a concept is un-
satisfiable or a TBox/ABox is inconsistent, together with
the original TBox/ABox, they will be translated into FOL
formulas or clauses by the translation component.

2. Rendering resolution proofs: A resolution based au-
tomated theorem prover is used to generate resolution
proofs, taking the translated formulas or clauses as inputs.
It is important to note that since a DL reasoner is used first
to get the result of the query, hence the unsatisfiability of
the concept or the inconsistency of the TBox/ABox is al-
ready known. The complexity of the resolution based de-
cision procedure of the guarded fragment of FOL is dou-
ble exponential in the worst case as shown in (Ganzinger
& de Nivelle 1999). Since ALC can be embedded into the
guarded fragment and decided by (Ganzinger & de Niv-
elle 1999), theoretically the termination is guaranteed.

3. Explaining: The resolution proof is sent back to the ex-
planation kernel to be reconstructed for better human un-
derstanding. Our approach transforms the proof into its
corresponding refutation graph (Eisinger 1991), a more
abstract representation, for reconstruction of the explana-
tion. A refutation graph is a graph whose nodes are literals
(grouped together in clauses) and its edges connect com-
plementary literals. As shown in (Eisinger 1991), for each
resolution proof, there is a minimal refutation graph, but

DL
Reasoner
(Racer)

Translation
Component

Resolution
Based ATP

Refutation Graph
Transformation

Component

Graph Traverse
Component

Resolution Proof

Refutation Graph

Tbox/Abox/Query Answers
FOL Formulas/
Clauses

Explanations

Explanation
 Kernel

 User
Interface

Tbox/Abox

Figure 1: The system architecture.

one refutation graph can represent multiple different se-
quences of resolution steps. Since one of these sequences
may have better explanation quality over others, we can
dynamically choose among them to find the one with the
best outcome. At last the clauses involved in each res-
olution step are traced back to the contributing DL ax-
ioms/assertions or FOL formulas and later transformed
into natural language explanations.

Let us now consider two examples illustrating the appli-
cability of our framework. The first example is a TBox as
follows. We can find out that A1 is unsatisfiable, because if
A1 is satisfiable, then A2 � ¬A is satisfiable, consequently
A � ¬A is satisfiable, which obviously is a contradiction.

1. A1 � A2 � ¬A � A3
2. A2 � A � A4

The second example is an inconsistent ABox w.r.t an
empty TBox. Intuitively, we can see the contradiction is due
to i being an instance of ∀ S.¬D as a known fact, but at the
same time i belonging to ∃ S.D because k: ∀ R.∀ R.∃ S.D,
(k, j): R and (j, i): R.

1. i: ∀ S. ¬D 2. (i, j): R
3. (j, i): R 4. (j, k): R
5. (k, j): R 6. k: ∀ R.∀ R.∃ S.D

In the following sections, we will show how such expla-
nations are generated mechanically in our framework.

Translation between DL and FOL
The translation between DL and FOL is straightforward
based on the semantics of DL. For ALC, concepts can be
translated into the first order predicate logic over unary and
binary predicates with 2 variables, say x, y, which is de-
noted as L2. Table 2 shows such a translation from ALC
into L2. An atomic concept A is translated into a predicate
logic formula φA(x) with one free variable x such that for
every interpretation I, the set of elements of ΔI satisfying
φA(x) is exactly AI . Similarly, a role name R can be trans-
lated into binary predicate φR(x, y). An individual name a
is translated into a constant a. More details of the translation
can be found in (Baader & Nutt 2003).

DL Constructor FOL Formula

A φA(x)

¬C ¬φC(x)

C � D φC(x) ∧ φD(x)

C 	 D φC(x) ∨ φD(x)

C � D ∀x(φC(x) → φD(x))

∃R.C ∃y(φR(x, y) ∧ φC(y))

∀R.C ∀y(φR(x, y) → φC(y))

a : A φA(a)

(a, b) : R φR(a, b)

Table 2: Translation from ALC into L2.

In the circumstances of TBoxes inconsistency queries,
there are two possible scenarios: a set of unsatisfiable con-
cepts or an inconsistent TBox, i.e., the whole TBox is incon-
sistent thus causing all the concepts in the TBox to be un-
satisfiable. In the context of ABoxes inconsistency queries,
there are two possible situations: an individual is asserted as
an instance of an unsatisfiable concept or it is asserted to be-
long to an inconsistent concept description. Consequently,
these cases are distinguished in the translation.

Definition 1 Let T be a TBox, and C be an unsatisfiable
concept in T . An unsatisfiability translation function Γ
maps T ∪ {C} into the corresponding set of FOL formu-
las.

For example, suppose T = {C � B � ¬B}. C is un-
satisfiable, so C and the axiom in T form the input set of
Γ.

Definition 2 Let T be a TBox and A be an ABox (either T
or A can be empty). An inconsistency translation function
Λ maps T ∪ A into the corresponding set of FOL formulas.

For example, suppose TBox T consists of {C � B �
¬B,A�¬A � C}. These two axioms form the input set of
Λ.

The first example can be translated into FOL formulas and
clauses as illustrated below, where Ri is the line number of
the FOL formulas and Ci is the line number of the clauses,
with i = 1, . . . , n representing the line number of the corre-
sponding DL axiom.

R0. ∃xA1(x).
R1. ∀xA1(x) → A2(x) ∧ ¬A(x) ∧ A3(x).
R2. ∀xA2(x) → A(x) ∧ A4(x).

C0 ={A1(c)}
C11 = {¬A1(x), A2(x)}
C12 = {¬A1(x),¬A(x)}
C13 = {¬A1(x), A3(x)}
C21 = {¬A2(x), A(x)}
C22 = {¬A2(x), A4(x)}

Since A1 is unsatisfiable, all the FOL formulas Ri or the
clauses Ci, i = 1, . . . , n, and the unsatisfiable concept A1

form the input set of the unsatisfiability translation function
Γ.

Similarly, since the second example is an ABox incon-
sistency query, all the FOL formulas Ri or the clauses Ci,
i = 1, . . . , n, form the input set of the inconsistency trans-
lation function Λ. The corresponding FOL formulas and
clauses after the translation are as following, with f(y, z)
symbol being result of Skolemization.

R1. ∀y (S(i, y) →¬D(y)).
R2. R(i, j).
R3. R(j, i).
R4. R(j, k).
R5. R(k, j).
R6. ∀y∀z∃x (R(k, y) → (R(y, z) → S(z, x) ∧ D(x))).

C1 ={¬S(i, y), ¬D(y)}
C2 ={R(i, j)}
C3 = {R(j, i)}
C4 ={R(j, k)}
C5 = {R(k, j)}
C61 = {¬R(k, y), ¬R(y, z), D(f(y, z)}
C62 = {¬R(k, y), ¬R(y, z), S(z, f(y, z))}

Refutation graph
In ordinary resolution proofs, the order in which a sequence
of resolutions is done can have a significant impact on the
result. For example, we can obtain two different proof trees
in the first example by rearranging the orders of the resolv-
ing clauses, as shown in Figure 2. For the sake of simplicity,
variables are omitted in the figure. The difference between
these two proofs is due to the choice of resolving {¬A2, A}
with {¬A} or {A2} first. Obviously, Proof 1 is better for hu-
man understanding, because later when original DL axioms
of each resolution step are traced back to render explana-
tions, the axiom A2 � A is more appropriate to be used
as an inference rule to explain A is the consequence of A2
than ¬A2 is the consequence of ¬A. If resolution proofs
are transformed into refutation graphs, it does not mater in
which order the resolutions are done, as the resulting refuta-
tion graph can be made the same. The final refutation graph
can be built using the resolving ordering of Proof 1 in Fig-
ure 2, but the explanations can be constructed by the resolv-
ing order of Proof 2.

We will use the following definitions of refutation graphs
in our presentation. See (Eisinger 1991) for more details.

{A1}

{ A}

{ A2, A}

{ A1, A2}

{ A1, A}

{A}

{A2}

{A1}

{ A2, A}

{ A1, A}

{ A1, A2}

{ A2}

{ A}{A1} {A1}

{A2}

{ } { }

Proof 1 Proof 2

Figure 2: Two different results from resolutions on Ex.1.

A

A1

A2

A2

A1 A

A1

Figure 3: The refutation graph of Ex.1.

Definition 3 A refutation graph is a quadruple
G = (L, C,ML,K), where L is a finite set of literal
nodes in G, C is a partition of the set of literal nodes and
its members are clause nodes in G. ML is a mapping from
L to a set of literals, which labels the literal nodes with
literals. The set of links K is a partition of a subset of L. All
the literal nodes in one link are labeled with literals which
are unifiable. There are no pure literal nodes in a refutation
graph, i.e., every literal node belongs to some link in K.

The refutation graph of the first example is shown in Fig-
ure 3. We extend the above notions to explain DL reasoning.

Definition 4 A labeled refutation graph is a quintuple
G′ = (L, C,ML,K,MD). MD is a mapping from L to a
FOL formula, which labels the literal nodes with their orig-
inating FOL formulas. Other symbols have the same mean-
ing as in the definition of a refutation graph.

In the first example, one of the mappings in MD is
{¬A1(x)} �→ ∀ x A1(x) → A2(x) ∧ ¬A(x) ∧ A3(x).
Definition 5 A traversing path of the labeled refutation
graph involving clause nodes C1, . . ., Cn is a sequence
(M1, C1), (L2, C2), (M2, C2), (L3, C3), (M3, C3), . . . ,
(Ln, Cn), where Li and Mi, i = 1, . . . , n, are literal nodes
in Ci and Li �= Mi. Also for all i < n, Mi and Li+1 unify,
i.e., there is a link between them.

Definition 6 A preferred literal node is a literal node that
is originated from a unit clause or the left hand side of an
implication in FOL formulas translated from original DL
axioms. A literal node associated with a preferred literal
node is the corresponding right hand side of the implication.
For example, in the FOL formula ∀x(A(x) → (B(x) →
C(x))), literal nodes ¬B(x) and C(x) are associated with
¬A(x) and node C(x) is associated with ¬B(x).

In the first example, the preferred literal nodes are
¬A1(x) and ¬A2(x).

Explanation based on labeled refutation graphs
The main idea of explanations based on the labeled refuta-
tion graph is to start from a literal node (or nodes) and tra-
verse the graph. The traversal order is decided by a prefer-
ence assigned to each node. For example, the axiom A � B
is more appropriate to be used as an inference rule to explain
B is the consequence of A than ¬A is the consequence of
¬B. Therefore, accordingly there is a preference on A in-
stead of B, i.e., the literal node ¬A should be traversed be-
fore B is traversed. When a literal node is being traversed,

its label is added to the explanation list. The procedure ter-
minates if the graph traversal is complete. After the traversal
is completed, each label is translated into an entry in an ex-
planation list consisting of its source axioms in DL or formu-
las in FOL. After some clean-up, e.g., deleting duplicates,
this explanation list can be further transformed into natural
language style explanations.

Explaining unsatisfiable concepts The algorithm in Fig-
ure 4 provides explanations for unsatisfiability queries. It
uses a stack, called SOT , which includes the labeled literal
nodes which are yet to be traversed. It also uses a queue data
structure, called QOT , which includes the labels of already
traversed nodes.

UnsatisfiableTraverse
(labeled refutation graph G′, the unsatisfiable concept C)

push the associated literal node of C into SOT
for all the literal nodes Li in SOT

put the labels of Li into QOT
for all Lj such that there is a link between Li and Lj ,

Lj is a preferred literal node
for all the unpreferred literal nodes Lk that are

associated with Lj

push Lk into SOT
put the labels of Lj into QOT

pop Li from SOT
return QOT

Figure 4: Unsatisfiable concept traverse algorithm.

Figure 5: The refutation graph and its explanation of Ex.1.

The refutation graph and the traversal order of the first ex-
ample are shown on the left in Figure 5, with the number on
the link denoting the traversal order, the arrow indicating the
traversal direction, and the axiom below each clause node in-
dicating its corresponding label. For the sake of simplicity,
variables are omitted. The graph on the right of this figure
shows the labels organized as explanations after the traver-
sal and its explanation list in FOL formulas form is shown
as bellow:

L1: A1(c), A1(x) → A2(x) ⇒ A2(c)
L2: A1(c), A1(x) →¬A(x) ⇒¬A(c)
L3: A2(x) → A(x), A2(c) ⇒ A(c)

where Li, i = 1, . . . , n, is the line number of the list and the
comma on the left hand side denotes conjunction.

Explaining inconsistent TBoxes/ABoxes For inconsis-
tency queries, it is difficult to know where to begin the
traversal since the whole TBox/ABox is inconsistent. This
is where resolution proofs come into the picture. All the lit-
eral nodes involved in the first step of the resolution proof
will be put into the starting set. The algorithm is shown in
Figure 6, with SOT and QOT designating the yet-to-be tra-
versed literal nodes which are yet-to-be traversed nodes and
already traversed nodes.

InconsistencyTraverse
(labeled refutation graph G′)

push the preferred literal nodes involved in the first step of the
resolution proof into SOT
push the grounded unit clause nodes into SOT
for all the literal nodes Li in SOT

put the label of Li into QOT
for all the literal nodes Lj that has a link with Li,

Lj is a preferred node
for all the unpreferred literal nodes Lk that

are associated with Lj

push Lk into SOT
put the labels of Lj into QOT

pop Li from SOT
return QOT

Figure 6: Inconsistent TBoxes/ABoxes traverse algorithm.

In our second example, the first step of the resolution
proof involves {¬R(k, y), ¬R(y, z), D(f(y, z)},{R(j, i)}
and {R(k, j)}. The literal nodes of these clauses form the
traversal starting set. The traversal procedure is shown in
Figure 7.

The following is the explanation list after the traversal of
our example terminates. It can be translated into a human
understandable explanation: Since R(k, j), R(j, i) and for
all y and z such that R(k, y) and R(y, z) there exists a x that
R(z, x) and D(x) hold, so D(x) must be true. Similarly, we
can conclude S(i, x). But for all i, the right hand side of S
must be not D. A contradiction arises, hence the ABox is
inconsistent.

L1: ∀y∀z∃x (R(k, y) → (R(y, z) → S(z, x) ∧ D(x))),
R(k, j), R(j, i) ⇒ S(i, f(j, i))
L2: ∀y∀z∃x (R(k, y) → (R(y, z) → S(z, x) ∧ D(x))),
R(k, j), R(j, i) ⇒ D(f(j, i))
L3: S(i, f(j, i)), ∀y S(i, y) → ¬ D(y) ⇒¬D(f(j, i))

Related Work
There have been several proposals to provide explanations
for DL reasoning. The earliest work is (McGuinness &
Borgida 1995) which provides an explanation facility for
subsumption and non-subsumption reasoning in CLASSIC
(Brachman et al. 1990). CLASSIC is a family of knowl-
edge representation systems based on description logics and
it allows universal quantification, conjunction and restricted
number restrictions. In (McGuinness & Borgida 1995),

R(k,j) R(j,i)

 R(k,y) D(f(y,z)) R(y,z)

 S(i,y) D(y)

 R(k,y) S(z,f(y,z)) R(y,z)
1 2

1 2

3

Figure 7: The traversal procedure of Ex.2.

they propose to explain in a proof-theoretic manner based
on structural subsumption, using inference rules to perform
structural subsumption comparisons. Lengthy explanations
are decomposed into smaller steps and a single step expla-
nation is followed by more detailed explanations. This work
was extended in (Borgida et al. 1999) by using sequent
rules to explain subsumption. The sequent rules are mod-
ified to imitate the behavior of tableau calculus as well as
the behavior of human reasoning. In contrast to these works,
(Schlobach & Cornet 2003) provides algorithms to pinpoint
the unsatisfiable concepts and related axioms.

Conclusion and Future work
In this paper, we proposed a resolution proof based frame-
work for explaining DL reasoning. We have developed
the basic algorithms to generate explanations and demon-
strated a first step towards the applicability of this frame-
work to explain unsatisfiability and inconsistency queries
w.r.t TBoxes/ABoxes in ALC. An implementation of the
proposed framework is underway.

Currently, this approach is still in a premature status and
we are working on the following limitations:

1. The algorithms for traversing the labeled refutation graph
need to be refined and more closely studied, especially
the algorithm to explain inconsistent TBoxes and ABoxes.
Proofs of their soundness and completeness should also
be presented.

2. To ensure that the first-order logic prover terminates in
reasonable time, more sophisticated translations from DL
axioms/assertions into FOL formulas should be used, but
then there will be a gap between the clauses used during
the resolution and the axioms in the DL knowledge base.
Besides, skolemization also blurs the relation between the
resulting clauses and its original DL axioms, which may
introduce complications for explanations. One possible
solution is to eliminate skolem functions from resolution
proofs as suggested in (de Nivelle 2003).

3. Currently the explanation is restricted to unsatisfiability
and inconsistency queries. Although we believe expla-
nations for this kind of queries are more useful for gen-
eral users to debug their terminologies, providing ex-
planations for satisfiability and non-subsumption queries
is also necessary. As pointed out in (McGuinness &
Borgida 1995), an explanation for satisfiability and non-
subsumption queries can be generated by returning a

model or a counter-example but more work needs to be
done.

References
Arora, T.; Ramakrishnan, R.; Roth, W. G.; Seshadri, P.;
and Srivastava, D. 1993. Explaining program execution
in deductive systems. In Deductive and Object-Oriented
Databases, 101–119.
Baader, F., and Nutt, W. 2003. Basic description logic. In
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and
Patel-Schneider, P. F., eds., The Description Logic Hand-
book: Theory, Implementation, and Applications. Cam-
bridge University Press. 5–44.
Borgida, A.; Franconi, E.; Horrocks, I.; McGuinness,
D. L.; and Patel-Schneider, P. F. 1999. Explaining ALC
subsumption. In 1999 International Workshop on Descrip-
tion Logics (DL1999).
Brachman, R. J.; McGuiness, D. L.; Patel-Schneider, P. F.;
and Resnick, L. A. 1990. Living with CLASSIC: when
and how to use a KL-ONE-like language. In Sowa, J., ed.,
Principles of semantic networks. San Mateo, US: Morgan
Kaufmann.
Byrd, L. 1980. Understanding the control flow of prolog
programs. Proceedings of the 1980 Logic Programming
Workshop 127–138.
de Nivelle, H. 2003. Translation of resolution proofs into
short first-order proofs without choice axioms. In Baader,
F., ed., Proceedings of the 19th International Conference
on Computer Aided Deduction (CADE 19), volume 2741 of
Lecture Notes in Artificial Intelligence, 365–379. Miami,
USA: Springer Verlag. An extended version will appear in
a special issue of selected CADE papers.
Eisinger, N. 1991. Completeness, Confluence, and Related
Properties of Clause Graph Resolution. Morgan Kaufmann
Publishers Inc.
Ganzinger, H., and de Nivelle, H. 1999. A superposition
decision procedure for the guarded fragment with equality.
In LICS ’99: Proceedings of the 14th Annual IEEE Sym-
posium on Logic in Computer Science, 295. Washington,
DC, USA: IEEE Computer Society.
Haarslev, V., and Möller, R. 2001. Racer system descrip-
tion. In R. Gori, A. Leitsch, T. N., ed., Proceedings of
International Joint Conference on Automated Reasoning,
IJCAR’2001, 701–705. Siena, Italy: Springer-Verlag.
Huang, X. 1994. Reconstructing proofs at the assertion
level. In Bundy, A., ed., Proc. 12th Conference on Auto-
mated Deduction, 738–752. Springer-Verlag.
Huang, X. 1996. Translating machine-generated resolu-
tion proofs into nd-proofs at the assertion level. In Foo,
N. Y., and Goebel, R., eds., PRICAI, volume 1114 of Lec-
ture Notes in Computer Science, 399–410. Springer.
Hustadt, U., and Schmidt, R. A. 1999. Issues of decidabil-
ity for description logics in the framework of resolution. In
Caferra, R., and Salzer, G., eds., Automated Deduction in
Classical and Non-Classical Logics, volume 1761 of LNAI,
192–206. Springer.

Lingenfelder, C. 1996. Transformation and structuring of
computer generated proofs,. Ph.D. Dissertation, University
of Kaiserslautern.
McGuinness, D. L., and Borgida, A. 1995. Explaining
subsumption in description logics. In Proceedings of the
tenth International Joint Conference on Artificial Intelli-
gence, IJCAI’95.
Meier, A. 2000. TRAMP: Transformation of Machine-
Found Proofs into Natural Deduction Proofs at the Asser-
tion Level. In McAllester, D., ed., Proceedings of the 17th
Conference on Automated Deduction (CADE–17), volume
1831 of LNAI, 460–464. Pittsburgh, USA: Springer Verlag,
Berlin, Germany.
Schlobach, S., and Cornet, R. 2003. Non-standard rea-
soning services for the debugging of description logic ter-
minologies. In Proceedings of the eighteenth International
Joint Conference on Artificial Intelligence, IJCAI’03. Mor-
gan Kaufmann.
Shmueli, O., and Tsur, S. 1990. Logical diagnosis of ldl
programs. In Warren, D. H. D., and Szeredi, P., eds., Logic
Programming: Proc. of the Seventh International Confer-
ence. Cambridge, MA: MIT Press. 112–129.
Wick, M. R., and Thompson, W. B. 1992. Reconstructive
expert system explanation. Artif. Intell. 54(1-2):33–70.

