
An Explanation Oriented Dialogue Approach for Solving Wicked
Planning Problems

Gengshen Du
University of Calgary

2500 University Drive NW
Calgary, AB, T2N 1N4, Canada

dug@cpsc.ucalgary.ca

 Michael M. Richter
TU Kaiserslautern

FB Informatik, P.O.Box 3049
67653 Kaiserslautern, Germany

richter@informatik.uni-kl.de

Guenther Ruhe
University of Calgary

2500 University Drive NW
Calgary, AB, T2N 1N4, Canada

ruhe@ucalgary.ca

Abstract
In this paper we discuss support for solving complex
“wicked” planning problems by dialogues and
explanations. Wicked problems are essentially imprecisely
formulated problems, i.e. those that do not have a clear
goal, well defined methods, and are subject to personal
opinions of involved stakeholders that may be changeable.
The method contains the following steps: (1) Reducing the
complexity of the problem by the selecting a specific
concern; (2) Obtaining a user defined ideal plan, called a
prototype; (3) Comparing the actually generated plan and
the prototype by a similarity measure. This will be aided
by an explanation oriented dialogue. A major problem for
the explanation is that we need to explain the result of an
optimization procedure which excludes classical parsing
oriented methods. The approach is generic and was
instantiated in release planning, investment, and urban
planning. We have simplified the original problems
significantly in order to illustrate the principal approach.

1. Introduction
Although wicked planning problems don’t have a precise
definition, they have several properties [Rittel, Webber
1973] [Rittel, Webber 1984] but not all of them may
occur:

• There is no definite goal of a wicked problem.

• There is no stopping rule and therefore one can
always improve the solution.

• Solutions are not true-or-false but good-or-bad.

• The problem is not static but changes dynamically.

• The view on problems and their solutions is
subjective and context dependent.

• One has different participants (called stakeholders)
with different preferences and this makes it
problematic to judge the quality of the solution.

Wicked is not the same as complex. For instance, chess is
complex but not wicked because there is a clear goal,
precisely defined moves etc. Complex problems can
usually be solved (at least theoretically) by computer

support.

Solving wicked problems calls for deep human insight
into these problems. On the other hand, the complexity of
the problems we consider necessitate tool support. As a
result, we get a situation where human and software
agents must cooperate. For a useful cooperation among
agents they need to communicate.

In this paper we consider an interactive and explanation
supported approach to planning problems that are both
wicked and complex. The involved software agents are
mostly optimization procedures.

In our approach we concentrate on the communication
between the different agents. There are two types of
communication: between humans and between humans
and software agents. For both types of communication,
computer support is useful.

In the first case – communication between humans –
mainly involves protocols, knowledge support and
guidelines.

In the second case – between humans and software agents
– communication is supported by an additional software
agent who has insight into the activities of both humans
and software agent participating in the communication.
Although we will also comment on the first
communication type our main concern is on the second
one.

A main problem with this communication is that humans
can think intuitively while software agents need exact
rules. The support is organized in the form of a dialogue
between the agents that has an explanatory character.

This explanation method essentially differs from the
methods used in traditional expert systems. During the
dialogue stakeholder opinions can be changed or
withdrawn, even if they are formulated as hard constraints
(i.e. the constraints that traditionally cannot change).

For the second type of communication this method has a
generic character and can, in principle, be applied to many
other wicked and complex planning problems. We will

mailto:dug@cpsc.ucalgary.ca
mailto:richter@informatik.uni-kl.de
mailto:ruhe@ucalgary.ca

illustrate the methods in applications from very different
areas: release planning, investment planning, and urban
planning. The last application is much more involved than
the other two, contains communications of both types, and
computer support is less developed. Nevertheless, all of
these applications share several essential properties. In
particular, there is a special stakeholder who is
responsible for the final decision; this is the leading
project manager or the leading architect; we simply call
this person the manager.

In summary, the scenario has the following participants:

• The stakeholders

• A particular stakeholder, the manager

• One or more software agents called planners

• If a human deals with a software agent we also refer
to this human as the user.

The user is presented with the discrepancy between ideal
solutions (from a certain point of view) and the actual
solution produced by planners. The discrepancy is
formulated using similarity measures. This allows a
problem reduction so that stakeholders can get an
overview of the situation and change their opinions.

In our approach presented later, we consider the
discussion between the manager and one particular
stakeholder. This is a necessary step that simplifies the
procedure but can only be regarded as a first step towards
the overall solution. This solution requires an integration
of the individual views and preferences, but is not
addressed in this paper.

2. General Problem Description
Because of the nature of wicked planning problems, their
modeling is an important but difficult issue.

In order to get computer support for modeling one has to
map all concepts, relations and intentions of the real world
situation to a mathematical model. Specifically:

Intuitive utility and preferences → Μοdel parameters

This mapping is based on the hope that the planner will
generate a useful or at least acceptable plan. To some
degree this is only a guess because if the planning

problem contains the difficulties described above one
cannot anticipate in which way the planner will use the
parameter values in order to generate the plan. In addition,
certain real world aspects may not be covered at all.

In such a situation a major problem arises. The user often
has no insight into the major reasons that lead to the
presented solution. In particular, if the solution is
somewhat surprising she/he has difficulties accepting it.
Therefore the user may not trust and may not accept the
solution.

Because of the lack of understanding, the feedback from
the user is mainly twofold:

• Asking for more (detailed) information

• Objecting to (parts of) the plan.

The support needed here involves bridging the gap
between the human and the software agent. A better
understanding between cooperating partners always
requires one to explain motivations and results to the other.
We concentrate on explaining the results of a software
agent to a human. This cannot usually be done in one step
and therefore we apply a dialogue approach.

3. Interactive Planning, Communication
and Dialogues

The simplest planning strategy, and the one applied in
Artificial Intelligence in the past, is the sequential one.
This means that there is a strict order: First the
requirements are collected, then the planning itself takes
place, and at the end the plan is executed. For many
applications, in particular for wicked problems, this
strategy is obviously not applicable. One has to cope with
incomplete, imprecise and sometimes incorrect
requirements and has to start with planning and partial
execution on such a basis. In addition, correcting
requirements is often only possible if the plan is partially
executed. Because execution is expensive it is often
replaced by simulation.

Because of the interleaving of the activities in interactive
planning the generation of a plan is not the end of
planning, it is rather considered a step in the overall
planning process. A plan may be changed or completed
and at the same time the requirements in the plan may also
undergo the same treatment.

In addition, it is often useful not to present a single plan
but to offer several ones [Ruhe, Ngo-The 2004].

This whole process is a joint effort of the participating
agents. As mentioned above, it requires communication
between agents who exchange information and explain to
each other their motivations and decisions.

An important point in any explanation is that it has to be

Solution

Formalization
Real World

Planning
Formalized
Planning

Figure 1: Mapping between real world situation and
formalized situation

simple enough to provide a general overview, otherwise
the information may not be understood. For this purpose
we employ techniques that reduce the complexity of
problem formulations.

4. Background of Explanations

4.1 General
Explanation is studied in many disciplines such as
philosophy, artificial intelligence, teaching etc. The
general background of the explanation methodology has
its roots in these areas; we will not discuss this here,
however.

If different agents participate in a scenario, those agents
need to communicate with each other. To large degree this
means that they explain their decisions to each other. Such
an explanation has two major parts:

• Information to other agents about facts

• Information to other agents about opinions and
motivations

The communication can take place between humans and
between humans and software agents.

In this paper we concentrate mainly on situations where a
result produced by a software agent is explained to a
human. Explanations of activities by software agents play
an essential role in interactive processes. An overview is
given in [Wooley 1998].

In the explanation scenario there are three participants:

• The system or a system agent that provides the plan
or decision etc.

• One or more users who are the addressees of the
explanation.

• The explainer who presents the explanation to the
user(s). The user applies the explanation in some way
and the explainer is interested in the way how this is
done. With this application a utility is connected,
either for the user or for the explainer.

In our applications where the results of a software agent
have to be explained the explainer is itself a software
agent. This agent is based on the computational elements
presented in the section on formalizations.

In principle, and in particular in a dialogue, explanations
are always answers to questions, whether they are raised
or not. The fundamental approach for the logic of question
and answer is given in [Belnap, Steel 1976].

The approach of Case Based Reasoning (CBR, see e.g.
[Lenz et a. 1998] also has some explanatory character
built in. The central concepts are the similarity measure

and the nearest neighbor notion. There is no explanation
about the nearest neighbor itself, but rather an explanation
as to why an object was chosen as a nearest neighbor.
There are, however, some restrictions on what makes a
convincing explanation. The major ones are:

• There should only be few attributes of high
importance.

• The nearest neighbor selection should essentially rely
on those attributes.

This allows one to reduce the complexity in problem
formulations and to draw the attention of the user to a few
but essential aspects.

Our main concern is explanations in the context of
problem solving and decision making, in particular to the
“Why” and “Why not” questions of the form:

Q = Why did you do/not do X?

We introduce a new classification of explanation that is
intuitively understandable and also useful for
implementation issues. When dealing with wicked
problems we introduce two methods below that may be
combined.

4.2 Backward Explanations
Backward explanations refer to something that happened
in the past. A (backward) answer to Q is: Because you
forced me to do/not do X. This can be formulated in form
of a constraint or rule. The purpose of backward
explanation is to increase the acceptance of a solution.

Besides this cognitive science view there is a pragmatic
computer science view. This type of explanation was the
traditional approach when dealing with knowledge based
systems using declarative programming languages. In such
systems constraints and rules have been stated explicitly; a
condition was that the search for them was sufficiently
efficient. In many classical knowledge based systems this
was the case and backward explanations were made
popular by following the parsing paradigm.

This approach was, however, not possible for procedural
programs because the rules and constraints were implicit
and hidden in the program. As a consequence, explanation
components for procedural programs as optimization
procedures were almost nonexistent.

4.3 Forward explanations
Forward explanations look into the future. The (forward)
answer to a “why” question Q is: If I would have done/not
done X then the following unwanted consequence Y
would have occurred. The forward explanation can in
certain situations also increase the acceptance of decision
or solution.

In addition, it can be used to improve and complete the
solution itself. The reason is that such explanations can be
employed during the interactive problem formulation and
solution process. In this respect it is closely related to the
“What – If” analysis technique that is guided here by the
stakeholder.

A technical advantage is that such explanations are not
restricted to any kind of programming language or style.
In particular, they can be used for optimization procedures.

A general restriction for both types of explanations is that
they have to be simple and easy to understand, sometimes
even at the cost of total correctness. The simplification is
therefore an activity that applies to both types of
explanations.

Because computer support for wicked problems uses a
variety of programs, backward as well as forward
explanations may be useful and applicable. In our
applications we have emphasized forward explanations,
but backward explanations will also occur.

5. A View on Constraints
In some respects wicked problems can be viewed as
Constraint Satisfaction Problems (CSP, see [Tsang 1993]).
Traditionally, one distinguishes between hard and weak
constraints and the hard ones were not up to change while
the weak ones gave rise to optimization problems so can
be changed.

In situations where stakeholders are not sure about their
opinions and may revise them, another distinction is
useful:

• Factual constraints are constraints that cannot be
weakened or withdrawn. They arise from logic,
mathematics, physics, moral laws or anything that
never can be revised under any circumstances.

• Normative constraints are the result of decisions by
certain persons or organizations. Despite the fact that
they are stated as being “hard” or “weak” they can be
changed by withdrawing previous decisions and
making new ones.

In wicked problem solving normative constraints and their
underlying decisions rarely contain value in themselves.
They are rather stated in the hope that they have a positive
influence on the problem solution and the real utilities are
maximally satisfied.

This is closely related to the difference between values
and goals. Values are the aspects in which one is really
interested and goals are the aspects that are subject to
optimization. These two are usually not the same. What
makes the problems wicked is that the values are difficult
to grasp. In [Keeney 1992] deep insights into this area
were given but the practical solutions provided were more

of an art than the results of a systematic development.

A particular kind of normative constraint occurs when the
user wants to change a solution. This is done by fixing the
value of a solution parameter and this change should be
formulated as a hard (but of course normative) constraint.
It should be mentioned, however, that not all constraint
solvers accept such kind of input.

Constraints are partially ordered by logical deduction.
This allows the removal of some factual constraints by
going up the hierarchy until one finds a normative
constraint where the responsible agent is willing to
withdraw it.

The role of normative constraints in solving wicked
problems is that a (forward) explanation may convince a
stakeholder to withdraw it because certain unwanted
consequences become visible.

6. The Generic Approach

6.1 Overview
We consider a wicked planning problem and look for a
solution that is acceptable to a set of given stakeholders.
In such problems there may be one or more software
systems involved; here we restrict ourselves on one
system at a time, called the planner. We also restrict
ourselves to one stakeholder at a time. In order to cover
more planners and stakeholders one has to repeat the
approach. Next we mention the applications for which our
approach is intended to cover in a generic manner.

For the planner we have on the following assumptions:

• The planner can accept modifications of the solution
as an input.

• The planner presents several solution alternatives.

• The system is stable in the sense that small
modifications of the input result in small
modifications of the result.

• For each plan, changing the consequences under the
hard factual constraints can be independently
computed, and for each such consequence the
responsible constraints can be named (this is a partial
backward explanation).

We assume that some stakeholder (or the manager who
takes his/her position) discusses a presented plan with the
system via dialogues. This stakeholder (the user) is
assumed to prefer certain plans, possibly from different
perspectives. The collection of these plans that the
stakeholder prefers is not clearly defined and hence is not
a set in the classical sense. It is rather a category (see
[Lackoff 1987]) that has no membership function but
certain ideal elements that are called prototypes. We call

the perspective of some stakeholder a concern C and
denote a prototype with respect to C by prot(C). In an
abstract setting the concerns form a set. For the
stakeholders we assume:

• A stakeholder is able to define a prototype prot(C)
for each concern C.

In order to discuss a solution with a stakeholder the actual
solution should be compared with the prototype of the
stakeholder. If the solution looks fairly good then no
objection will take place, otherwise the stakeholder will
probably oppose the solution. In order to measure degrees
of coincidence and distance between plans we use
similarity measures (see [Burkhard, Richter 2000]).

The generic approach proposed in this paper is called
EXPLAIN-DIALOGUE. This system is the explainer in
the explanation scenario. It carries out a dialogue between
a system (planner) and one stakeholder, as mentioned in
the introduction. The main steps of the approach are:

• Step 1: Generate of one or more solution alternatives
from the planner.

• Step 2: The stakeholders formulate the values of
some input parameters to the planner. We call the set
of these values a vote of the stakeholders. The voting
is done for each concern C.

• Step 3: Transform the votes into prototypes prot(C).
Here we assume that this can easily be done (Step
3.1). Select one of the best solutions from the
solution alternatives generated in Step 1. If there is
only one solution generated by the planner, it is
already the best one (Step 3.2).

• Step 4: Compare the prototype for C and the best
solution chosen in Step 3.2 by a similarity measure
simC. In order to simplify the situation the system
shows a reduced form of the best plan to the user that
just contains the attributes that are relevant, and
where the prototype and the actual plan differ
significantly.

• Step 5: Allow the user to propose a minimum number
of possible changes in the solution and to remove or
weaken normative constraints which are the decisions
made by humans.

• Step 6: Show the consequences of the changes that
are stated explicitly under the hard factual constraints
and the participating constraints.

• Step 7: Generate one or more solutions and again
choose one among them. Go to step 5 if no feasible
plan can be generated. Otherwise, repeat the process.
The presentation of the new plan and the reduced
comparison with the old plan and the prototype is a
forward explanation. The user may now react in three
different ways: (1) prefer the new plan or (2) still
accept the old plan because the reasons are now

understood better or (3) choose another concern and
iterate the process.

If desired, the process can be repeated with another
concern.

The complexity reduction in this approach is performed in
two ways:

• By focusing on one concern at a time. This can be
repeated but only one concern is handled at a time
(step 2).

• Simplifying the comparison of plans by presenting
only the relevant attributes (step 4).

In addition, the use of qualitative descriptions also
contributes to a better understanding and focusing the
attention of the user to a specific but important view (the
concern).

In particular, the forward explanation is shown in a
reduced way by showing major qualitative consequences
of proposed plan changes.

6.2 Formalization
In this section we will present a formal basis of the
dialogue approach. It is the basis of the explainer, a
software agent.

First we introduce the dialogue approach, without going in
too many details (see Section 7.1). The user interface of
the dialogue is standard. The user is presented with a
template with questions or answers where the user can
enter information. Examples are shown in Section 7. From
the implementation point of view the user interactions are
events. Events are handled in the standard way using
Event-Condition-Action (ECA) rules (see e.g. [Dellen,
Maurer 1998]).

We first introduce the major functions and predicates that
are invoked in the dialogue.

If many applications are to be covered, it is important that
only a few undefined and application dependent terms
occur while the remaining dependent terms have
application independent definitions.

For simplicity, we model plans as an attribute-value
representation, hence a plan is represented as:

plan = (pi |i ∈ I)

and PLANS is the set of plans. Next we assume similarity
measures that compare plans:

simC: PLANS x PLANS → [0,1]

The similarity measures are, in general, concern-
dependent. They are formulated as weighted sums with a
weight vector:

w = (w1, ...,wn)

of non-negative coefficients and local similarity measures
simC,i ; i.e. we take the most common form of similarity
measures (see [Burkhard, Richter 2000]):

simC((a1, ..., an), (b1, ..., bn)) =
∑ (wi× simC,i(ai, bi) | 1≤ i ≤ n)

where ai and bi (1≤i≤ n) represent the given plans.

The following similarity measure functions are essential
for the dialogue approach.

First we introduce concepts related to the similarity of the
actual plan and the prototype. These two plans may differ
significantly and may violate the interests of the
stakeholder. We call this prototype is in danger. The
comparison can take place in a numerical as well as in a
qualitative way:

• DangerDegree(C, plan) = 1 – simC (plan, prot(C))

• QualitativeDanger(C, plan) is introduced by taking
three qualitative regions 0< α< β< 1 in which the
function takes the values low, medium and high,
respectively.

• The predicate DangerC is defined by:

DangerC(plan) ↔ QualitativeDanger(C, plan) = high

Next the user is shown a reduced view on the danger that
still contains the essential elements.

• The reduced comparison of two plans plan1 and
plan2 is:

comparered(plan1, plan2, sim) =
((plan1i, plan2i)|i ∈ I, simC,i (plan1i , plan2 i)) < s, w i> t))

• Given a concern C the reduced representation of a
plan p is obtained by comparison with the prototype:

planred(p, C) = (pi |i ∈ I, simC,i (pi , prot(C)i) < s, w i > t))

The thresholds s and t are user determined. This means the
reduced plan shows those attributes that are the major
reasons for the deviation from the prototype.

• The function comparered(plan1, plan2, sim) takes two
plans, computes their similarities and produces the
reduced comparison.

Finally the consequences and the hard factual constraints
are computed. These are the absolutely necessary
consequences, independent of any opinions or
optimizations

• The function computeConsequences() takes as input
the values of some (changed) solution variables and
the hard factual constraints. It generates the logical
consequences of fixed values for the variables under
the constraints.

• The function involvedConstraints(changes) are those
explicitly formulated constraints that were involved in

the computation of computeConsequences().

7. Applications

7.1 Release Planning
This example is relatively less “wicked” than other wicked
problems; in particular, not all properties of wicked
problems are present. This is due to the fact that the
number of stakeholders as well as the number of technical
constraints is quite limited. Nevertheless, release planning
presents a problem that currently is not solved, overall, in
a satisfactory way. Quite a number of partial problems can
be formalized but creative aspects remain. Complex
optimization procedures are applied but it is not clear how
to formulate the input and to see a priori what the
significance of the result is. It is typical (also for other
problems like investment planning, see below) that
formalisms lack the ability to completely encode the
equivalent of the analytical mind with which the human
decision-maker evaluates problem situations.

Release planning is conducted in early stages of software
development to generate release plans. A release plan
assigns requirements (the tasks) {R} = {R1,…, Rn} to be
developed for a (large) software product to release options
k ∈{1,2,…K}, and an options K+1 if the requirement is
postponed.

Requirements → Release options

The releases are usually executed in a temporal order.
Here we assume K =2.

A release contains a maximum number of requirements so
that the total effort of the segment fit into the effort
constraints allowed for a release, all the technology
constraints (see below) are met, and the stakeholders’
satisfaction is maximized according the objective function
of the planner (see [Ruhe, Ngo-The 2004]).

Release planning is a problem that has many of the
previously mentioned properties of the wicked planning
problems. Specifically, its difficulties are [Ruhe, Ngo-The
2004]:

• Many aspects, even the objectives, are not stated
explicitly and precisely in a formal way and are, in
addition, context dependent. Hence the planner may
not be a true image of the real world problem.

• There are different stakeholders who have diverging
and unclearly formulated interests. The customers
have a complex cost structure in their mind
(consisting of direct and many types of indirect costs)
that are difficult to map onto the input parameters of
the planner.

• The complex interactions between the constraints are

difficult to understand.

• The demands of the customers are often in conflict
with each other and the demands of the manager.

• There are uncertain estimates concerning effort (this
is a standard problem in software development).

We consider two types of stakeholders. In reality there are
many more:

• The customers: They do not know each other and
have no communication.

• Members of the company, in particular the manager:
As mentioned in the introduction, the manager knows
the customers and communicates with them.

In this paper, we refer to the web-based decision support
system ReleasePlanner® (http://www.releaseplanner.com).
It is based on the hybrid intelligence approach proposed
by [Ruhe, Ngo-The 2004]. The overall architecture of this
approach, called EVOLVE*, is designed as an iterative
and evolutionary procedure mediating between the real
world problem of software release planning and the
available tools of computational intelligence
(optimization).

The planner uses an objective function that has to be
maximized. The optimization itself takes care of the weak
constraints. The objective function and the optimization
are dealing with the interests of the company and on
preferences of the stakeholders expressed in terms of
votes (see below). These different aspects give rise to
different objective functions that are integrated by the
planner. To address the inherent uncertainty, the system is
offering a set of qualified alternative solutions. These
solutions form the starting point for the dialogue with the
user of the system.

For our purposes, namely to illustrate the dialogue
component, we have simplified the voting and do not go
into further technical aspects of the planner.

The planner considers the following constraints [Ruhe,
Ngo-The 2004] which are formulated explicitly:

• Precedence constraints between requirements Ri and
Rj that specify Ri must be implemented before Rj
(hard, factual).

• Coupling constraints between requirements Ri and Rj
that specify that Ri and Rj must be implemented in
the same release (hard, factual).

• Resource constraints that indicate the available
capacity for each release and the needed capacity for
each requirement (weak).

• Pre-assignments that fix the release of a requirement
(hard, normative).

The resource constraints are hard factual. A plan is called
feasible if all the hard constraints are satisfied.

Pre-assignments are hard but normative constraints. They
are employed in plan changes. Only the manager can
perform pre-assignments, but they can be demanded by
customers.

The other stakeholders are customers that do not
communicate with each other (usually they do not even
know each other). The only communication that takes
place is between customers and the manager. Customers
do not exchange information but they may object to a
given plan and express this in terms of demands for pre-
assignments. These demands may very well contradict
earlier votes.

In addition, other weak constraints are supposed to reflect
opinions and preferences of different stakeholders
involved in voting.

In what follows, we will instantiate the approach
described in Section 6 for the case of software release
planning.

We assume that ReleasePlanner® has generated a set of
five alternative release plans summarized in the set
PLANS. PLANS is represented in the following form.
Each requirement Ri (1≤i≤ n, n is the total number of
requirements) gives rise to some attribute that assigns a
release rel(Ri) to Ri. Therefore a plan P from PLANS is
represented to the customer as a vector:

P = (rel(R1), …, rel(Rn))

Additional attributes for the manager depend on the
specific situation. An example attribute is resource, i.e.
how to balance resource consumptions Resi over K
releases (here K=2).

The concerns are expressed as a voting of the stakeholders
or aspects of the company management like balancing of
resources. An example concern in release planning may be
“balance of resource Res1”. That means that ideally there
should be a relatively stable level of consuming resources
for the K releases. So far, the optimization done for
ReleasePlanner® focuses mainly on maximizing
stakeholder satisfaction. However, less attention is put on
balancing of resources. Therefore, here in this instantiated
example we take the concern as “balance of resources”
and this, with the explanation component, provides added
value to the current release planning.

For the releases we assume a temporal ordering and we
also assume that stakeholders prefer in general earlier
releases.

The votes of the stakeholders indicate the priority of
requirements which a stakeholder wants to see released as
early as possible. ReleasePlanner® offers many other
possible stakeholder voting options, such as value-based
or urgency-based voting. For a more detailed description
see [Ruhe, Ngo-The 2004]. One typical format of votes by
one stakeholder is of the following form:

http://www.releaseplanner.com

Requirement R1 R2 … Rn

Priority 7 8 … 5
Table 1: Stakeholder votes

With “balance of resources” as the concern, a best plan
Pbest with the best resource balance is chosen from PLANS
set {S}. The following table shows the resource Res1’s
consumption in each release of Pbest.

Release Release 1 Release 2

Res1 Consumption in Pbest 87.2% 73.6%
Table 2: Res1 Consumption in Pbest

A greedy algorithm is used to generate a prototype, based
on the concerns and the votes of one stakeholder. A
prototype for this concern is a plan in which the balance is
ideal. Particularly, there are two ways to use the votes to
come up with a prototype plan (this can also be used for
investment planning mentioned in Section 7.2):

• Rank requirements according to one stakeholder’s
votes: the higher the vote is for a requirement, the
earlier the release it should be put in.

• Rank requirements according to combined votes from
more than one stakeholder: similarly, the higher the
combined vote is for a requirement, the earlier release
it should be put in. However, different stakeholders
have different votes and therefore different similarity
measures on the prototype.

No matter which of the above two ways is used, before
assigning a requirement to a feature, feasibility in terms of
available resources is checked.

For the similarity measure simC, used to compare Pbest and
the prototype, we take a very simple approach:

• The local measures have only the values 1 (in case of
equality) and 0 otherwise.

• The weights correspond to the priority to develop a
requirement in Release 1. As mentioned above,
earlier releases are always preferred over later ones.

The stakeholder may now object to the plan. This is done
by demanding certain new pre-assignments in
ReleasePlanner®. The number of new pre-assignments
should be as low as possible because the results generated
by ReleasePlanner® are near optimal. These near optimal
plans may be in conflict with a stakeholder’s votes and
indirectly the stakeholders wish to revise them. For this
purpose the stakeholders are shown a template of the
following form:

Name requirements to move to another release

Move requirement R1 to release 1
Table 3: Identify changes

This corresponds to the question Q: Why is R not in

release 1? For the answer several computations have to be
performed. The answer will be presented to the customer
in the form:

The following requirements are connected with R1 by:

Precedent constraints: (R3, R1), (R4,R1)
Coupling constraints: R5

In addition to R, the planner has moved: R6, R7, R8

The planner has moved out of release 1 the following
requirements despite high votes for them: R2

Table 4: Consequences of the changes

Upon the request of new requirement pre-assignment, a
set of new feasible plans are generated by
ReleasePlanner® and Pbest’ is chosen as the best plan in
terms of the concern.

Finally, the result is summarized in the following diagram
where the plans are compared:

Release Release 1 Release 2

Res1 Consumption in Pbest 87.2% 73.6%

Res1 Consumption in Pbest’ 92.2% 83.1%
Table 5: Comparison of two plans in terms of the concern

The following table is also provided to the user to show
the differences in the assignment of requirements between
Pbest and Pbest’.

Requirement R1 R2 … Rn

Priority 7 8 … 5

Desired
Release in
Prototype

1 1 … Postponed

Actual
Release in

Pbest
2 1 … Release 2

Actual
Release in

Pbest’
1 2 … Postponed

Table 6: Comparison of two plans in terms of requirement
assignment

As a summary for the above two tables, they not only
show the improvement of Pbest in terms of the chosen
concern, but also highlight the consequential changes in
terms of requirement assignments to releases.

The user sees, however, only that part of the diagram
where differences between attributes of high importance
occur. These are forward explanations for the original
decision of the planner, Pbest. The user can now react in
different ways:

• Accept the new plan

• Stay with the old plan

• Select a new concern and iterating the procedure

In the first two situations, some normative constraints
have to be revised.

This view on release planning can be refined in many
different ways in order to have a more detailed view on
the preferences of the stakeholders. For example, the
value or urgency of requirements can be considered
directly; here we have summarized them in terms of a
single vote. Similar arguments apply for constraints
concerning the internal preferences of the company.

Figure 2 shows the instantiated EXPLAIN-DIALOGUE
procedure within the context of release planning.

This approach exclusively looks at one specific
stakeholder without considering the impact to other
stakeholders. This more general approach would need
additional negotiation components to find a solution that
all involved stakeholders agree on [Denzinger, Ruhe
2004].

7.2 Investment
7.2.1 Investment Planning as a Wicked Problem

In investment planning [Bodie et al. 1993] the task is to
invest resources into projects:

Resources → Projects

There are many factual constraints, e.g. one investment
can necessitate others. In addition, there are usually many
personal opinions of the participating stakeholders. The
economical purpose of investment is ultimately to increase
profit (ROI, Return Of Investment). This is the difference
between benefit and costs where one distinguishes the
following aspects:

• Predictable consequences

• Consequences that can be estimated

• Unpredictable and unforeseen consequences.

The two latter aspects can only be evaluated in the future,
and give rise to various kinds of risks. A particularly
difficult aspect is concerned with the strategic influence of
the investment, and here is a point where stakeholders
often have quite different opinions.

The benefits are almost always in the future and are hard
to predict. But also costs are often invisible. We will
restrict the discussion on costs.

Investments can be classified into different types. A
popular classification is:

• New business (completely new company or new
branch)

• Investment in extensions (more capacity, avoiding
outsourcing)

• Investment for change (replacing old equipment by

No

Figure 2: Instantiated EXPLAIN-DIALOGUE procedure for release planning

Explanation Component

Continue explanation?

No

ReleasePlanner®

Step 3.1: Generate a
prototype based on C
and stakeholder votes

Step 3.2: Select one
plan Si from {S}

Step 2: Select a concern
C

Step 1: Generate a set of
release plan alternatives {S}

Step 4: Compare the prototype with Si by
a similarity measure simC

Step 5: Identify new pre-
assignment

Step 6: Show reasons for consequence
changes, i.e. dependency, coupling,
optimization, or pre-assignment

Step 7: Generate a set of new
release plan alternatives {S’}
and select Si’

{S’} feasible?

Yes

Yes

Stakeholder

new ones that are more economical). An example is
investment into the IT-structure of the company.

• Investment in ecology

• Long range investment (diversification in order to be
equipped for changing demands, to get closer to the
market (e.g. in foreign countries), etc. There are
direct and indirect costs involved, and all of these
aspects give rise to different kinds of constraints to be
reflected in the voting.

Not only uncertainties, but also different opinions and
interests of the participating stakeholders are involved
here. Often the uncertainties are modeled as probabilities,
but it should be mentioned that they are not based on a
model. Rather, they are subjective probabilities and
therefore depend on the person, see [Fishburn 1986].

There are many kinds of constraints. Three important ones
are:

• Coupling constraints: Two investments are only
possible if done together.

• Consequence constraints: One investment necessitates
another one (possibly at a later time).

• Predecessor constraints: One investment necessitates
that another investment was done earlier.

The difficulty that arises here is that the second involved
investment may be invisible at a later time and may be
difficult to predict. This may result in a change of the plan.

There are different approaches to describe cost. A simple
example was given by the Gartner group, see [Emigh
1999]. There the term “Total Cost of Ownership” was
introduced and described for investment in IT- business:

The indirect costs are often invisible and there are
different opinions about their size. Experimentation with
the TCO model shows that in IT investment they cover on
the average 50% of the costs, and are often much higher.

In practice there exists quite a number of optimization

algorithms for investment planning. Here we do not refer
to a specific one in detail but will rather mention a few
ones in general:

• The Black/Scholes model [Hommel, Pritsch 1999].
This algorithm considers buying and selling as
options and has various input parameters to statistical
computations.

• Various tools to support the TCO model.

• The Balanced Scorecard tool [Kaplan, Norton 1993].
This algorithm combines financial measures with
non-financial measures, such as customer satisfaction,
internal processes and innovation. An important
property of the scoreboard is that it can be extended
at a later time.

As long as financial computations with exact input are
concerned all of these tools are precise, but cover only
part of the situation. The non-financial considerations are
based on subjective input and can be revised. They are not
only imprecise but also depend on the interests of the
stakeholder. This gives rise to discussions among
stakeholders and also to discussions between humans and
software agents representing the tools used. For this
purpose we suggest another instance of the generic
explanation method.

7.2.2 Investment Planning as an Instance of the
Generic Approach

In an abstract view, release planning can be seen as the
problem of distributing objects (the requirements) to
boxes (the releases) under a number of constraints.

Objects → Boxes

Some stakeholders have preferences to put certain objects
in specific boxes while other stakeholders are concerned
with the internal management of the boxes that are
assumed to be of limited capacity. The real motivations
for this distribution may not be clear and easy to formulate.

In a simple setting of investment planning we can assume
that there are only financial resources in the form of
monetary units, each unit can be used for every project
and the set of potential projects for investment is fixed.
This means that the monetary units are the objects and the
projects are the boxes.

Such a view opens the possibilities for applications that
are closely related. First, there are two ways of
optimization, depending on where the shortage is:

• Type 1: There is a limited capacity in the boxes.

• Type 2: There are a limited number of objects to
distribute.

In both cases one wants to put as many objects into the
boxes, respecting the demands of the stakeholders.

Figure 3: TCO overview

TCO

Direct
Cost

Indirect
Cost

Hardware/
Software

Operations

Administration

End-user
Operations

Downtime

There are two major differences between release planning
and investment planning that play a role in our
considerations.

• Release planning is of Type 1, a box can only contain
a limited amount of requirements, while this is not the
case in investment planning.

• In investment planning there is no natural ordering of
the boxes (like a temporal ordering), i.e. the projects,
while release planning has an ordering.

Because the shortages are just the opposite in release
planning it is suitable to reverse the roles of attributes and
values. Hence the attributes are of the form
project(investment), where investment denotes a number
of monetary units.

Given are n projects {projecti} (1≤ i ≤ n) and a number of
N monetary units. An investment plan is represented in
this way as a vector:

plan = (projecti(investmenti) | 1≤ i ≤ n)

In analogy to Section 7.1 a plan is called feasible if the
sum of all investments is no more than N. In our approach
only feasible plans are considered. The prototypes of
stakeholders are just their votes; they describe simply how
much money they want to invest in various projects.

vote = (projecti(investmenti, wi) | 1≤ i ≤ n)

where wi is a an integer between 1 and 10.

The corresponding prototype is:

prot(projecti(investmenti) | 1≤ i ≤  n)

The similarity measures are asymmetric. The first
argument is always the query that is demanded by a
stakeholder, i.e. the prototype. The local measures are of
the form:

• simC,i(projecti(investment1), projecti(investment2)) = 1,
if (investment1)  ≤ (investment2), and

• simC,i(projecti(investment1), projecti(investment2)) =
(investment2)/(investment1), if (investment1)  ≥
(investment2), i.e. higher investment is always better
in the view of the stakeholder.

For the global similarity the votes are just the weights. In
our simplified approach the voting is very easy because
the stakeholders can directly name the weight in the form
of the importance of the project.

The remaining parts of the formalism can be instantiated
as for release planning.

7.3 Urban Planning
Urban planning belongs to the earliest types of wicked
planning problems, and made this term popular (see
[Rittel, Webber 1973, 1984]). The use of a dialogue
component arose from discussions with Karsten Droste
from the ETH Zurich. We present mainly perspectives for
applications here. There are several differences between
urban planning and release planning as well as investment
planning which we will shortly mention.

In urban planning many stakeholders are participating
who all know or can know each other. There are three
major types of stakeholders:

Figure 4: Some stakeholders in an urban planning project [Christiansen et al. 2006] (City of London)

• Active stakeholders that perform urban planning
(usually architects and technicians, civil engineers).

• Active stakeholders that have to be asked about their
opinions (like local authorities, railway companies,
churches, business organizations etc.).

• Passive stakeholders who watch the planning process.
These are usually citizens. However, citizens may
switch to the group of active stakeholders.

Figure 4 gives an impression of major stakeholders in an
urban planning problem in the city of London.

All of these stakeholders communicate with each other.
Technically, the best way to communicate is via a web
portal. For an example see [Hillenbrand, Reuther 2003];
we will not discuss this here. In human conversations and
documents many factual constraints occur such as legal
arguments. If properly recorded, backward explanations
are quite helpful in this situation.

The stakeholders usually have clear opinions on what they
ultimately want, but it is not easy to formulate this directly
in terms of votes. They can usually formulate an ideal
prototype in terms of the resulting system that can be the
input to an optimization procedure as a hard constraint,
where the distance from the actual plan is measured by a
similarity measure. In practice, this is actually done but
only manually.

Presently the dialogue among humans in this application is
done with very little computer support. . The dialogue
component must have more knowledge of different kinds
of constraints than in release planning because it is not
possible that all the stakeholders provide a vote in the
beginning of the dialogue.

Another major difference to release planning is that there
is (presently) no universal software agent that acts as a
planner and optimizer. Instead, there are usually many
software agents and each of them causes the same
problems as a single planner. Some of the problems that
need software agents are:

• Classical planning aspects like planning resources or
establishing schedules: This is, in principle, an
optimization problem as in release planning, although
more complex because specification, planning and
execution are more interleaved. Urban planners make
heavy use of optimization algorithms. Here
interactive planning is used, in particular the
technique of “What-If” analysis, which is a
rudimentary form of forward explanation.

• Shortest paths: Planning should observe that citizens
can reach supermarkets, schools, offices etc. in the
shortest possible time. This is again an optimization
problem.

• Waste optimization: Simulation is used in [Baetz
1990].

• The shade problem: High buildings throw shade on
neighboring buildings. The shade problem involves
minimizing this kind of shade. However, there are
other constraints when buildings are moved, e.g.
those arising from railway organizations or churches
[Christiansen et al. 2006].

The present computer support for the man – machine
communication is quite limited, despite the fact that many
optimization algorithms exist. The only advanced support
is done by offering simulations.

A twofold support is needed:

• Support communication among humans. A first step
was done in [Hillenbrand, Reuther 2003] where a web
portal for urban planning was introduced. Presently
an extension to more powerful support is going on.

• Support the human-machine interaction, e.g. with a
dialogue system as proposed here. This is not yet
done but urban planners have seen the need for it.

8. Implementation and Evaluation
In [Du 2004], the formal approach was preliminarily
implemented for release planning using ReleasePlanner®

as a release planning tool. It essentially uses
(modifications of) the templates mentioned in Section 7.1
and has, in particular, Table 6 as the final template.

A real statistical valid evaluation is in progress. However,
the approach was qualitatively tested in a graduate course
at the University of Calgary. In this course the students (6
groups of four students each) had to simulate a company
with three customers of different importance. These
customers together with the project manager voted and
these votes were the input to the ReleasePlanner® tool. In
this experiment three releases were considered, Release 1,
Release 2 and Release “postponed”.

The groups considered between 23 and 62 requirements.
The concerns considered were mostly from the viewpoint
of a customer, but also the view of the project manager
was considered. The analysis of the generated output used
the dialogue method from Section 7.1. The following
observations were made:

• The plan initially generated always gave rise to
objections from the view of the concerns.

• The system was stable in the sense that only new pre-
assignments were demanded and they led to few
further changes in the plans.

• In three experiments one new plan had to be
generated, in one experiment two plans and in one
experiment five plans.

• In half of the experiments the old plan was preferred
because the new plans showed unexpected and

unwanted results.

• In one experiment there were two plans with big
differences from the concerns of two customers, and
the project manager had to make a decision.

Although most of the explanation procedure was
performed manually, the usefulness of the procedure
became evident.

9. Conclusion
We presented an explanation based dialogue approach to
improve solutions of wicked planning problems. It was
based on the observation of the properties of wicked
problems: Humans with unclear and contradicting
opinions and software agents are involved. For the
dialogue we focused on the communication between
human and software agents. The dialogue has an
explanatory character that gives insight into decisions so
that the user may change previous opinions, or may stay
with existing decisions. For this we proposed the forward
explanation type.

In our approach a stakeholder is actively involved. First
the stakeholder presents an ideal plan called a prototype.
This plan is then compared with the actual plan using a
similarity measure. The result is shown to the stakeholder
in a simplified form and the stakeholder is asked for
changes to the plan. These changes are given to the
problem solver and the results are made visible in the
same way by using the similarity measure. This then leads
either to an improved plan or a better understanding of the
old plan.

Therefore the proposed generic approach aims not only at
increasing user trust on wicked planning results but also at
improving the plans interactively. This approach can be
instantiated and applied to many applications, e.g. release
planning, investment planning, and urban planning.
Release planning was the original motivation for our
approach, and was the application where it was worked
out in most detail and partially implemented.

Future work is concerned with the fact that the presented
approach focuses on only one stakeholder’s votes. An
improved approach in the future should be able to
integrate different stakeholders’ votes together, and the
explanations through dialogues should reflect this overall
view. A second and theoretically important aspect is that
presently there is no use made of dialogues for future
problems. A learning support approach is underway, by
the authors, which could contribute to bridging the gap
between explanation and learning.

Acknowledgements
The authors would like to thank the Alberta Informatics

Circle of Research Excellence (iCORE) for its financial
support of this research. Many thanks are also due to Jim
McElroy for his paper review and stimulating discussion.

References
[Baetz 1990] Baetz, B. J. W. 1990.
Optimization/Simulation Modeling for Waste Capacity
Planning Management. Journal for Urban Planning and
Development 116, p.59-79.

[Belnap, Steel 1976] Belnap, N. D., Steel, T. B. 1976. The
Logic of Questions and Answers. Yale University Press,
New Haven, CT.

[Bodie et al. 2002] Bodie, Z., Kane, A., Marcus, A. J.
2002. Investments (5th edition). MacGrawHill, Irwin.

[Burkhard, Richter 2000] Burkhard, H.D., Richter, M. M.
2000. On the Notion of Similarity in Case Based
Reasoning and Fuzzy Theory. Soft Computing and Case
Based Reasoning (Pal, S. et al eds). Springer Verlag.

[Christiansen et al. 2006] Christiansen, K., Droste, K.,
Hovestadt, L., Lehnerer, A.. 2006. To appear: 2006
Bishopsgate - A Society of Towers Performance Driven
Simulation in Urban Design.

[Dellen, Maurer 1998] Dellen, B., Maurer, F. 1998.
Change Impact Analysis Support for Software
Development Processes. International Journal of Applied
Software Technology, ISSN 1198-5577, Vol 4, No 2/3,
International Academic Publishing, Scarborough, Ontario,
Canada.

[Denzinger, Ruhe 2004] Denzinger, J., Ruhe G. 2004.
Decision Support for Software Release Planning Using e-
Assistants. Journal of Decision Support Systems, Vol 13 -
No. 4, p. 399-421.

[Du 2004] Du, G. 2004. Design and Realization of an
Explanation Component for Software Release Planning.
Masters Thesis, Dept. of Computer Science, University of
Calgary.

[Emigh 1999] Emigh, J. 1999. Total Cost of Ownership.
Computerworld 51/1999, p.17-19.

 [Fishburn 1986] Fishburn, P.C. 1986. The Axioms of
Subjective Probability. Statistical Science, p. 335-358.

[Hillenbrand, Reuther 2003] Hilllenbrand, M., Reuther, B.
2003. Building Block for Web Application. 7 th IASTED
IMSA, Hawaii, p. 757-761.

[Hommel, Pritsch 1999] Hommel, U., Pritsch, U. 1999.
Marktorientierte Investitionsbewertung mit dem
Realoptionsansatz. Management 13, p.121-144.

[Kaplan, Norton 1993] Kaplan, D., Norton, R. 1993.
Putting the Balanced Scoreboard to Work. Harvard
Business Review, p.71-79.

[Keeney 1992] Keeney, R. L. 1992. Value Focused
Thinking: A Path to Creative Decision Making . Harvard
University Press.

[Lackoff 1987] Lakoff, G. 1987. Women, Fire and
Dangerous Things: What Categories Reveal about the
Mind. Chicago. IL: The University of Chicago.

[Lenz et al. 1998] Lenz, M., Bartsch-Spoerl, B., Burkhard,
H. D., Wess, S. (eds) 1998. Case-Based Reasoning
Technology: From Foundations to Applications . Springer
Verlag.

[Rittel, Webber 1973] Rittel, H., Webber, M. 1973.
Dilemmas in a General Theory of Planning. Policy

Sciences 4, p. 155-169.

[Rittel, Webber 1984] Rittel, H., Webber, M. 1984.
Planning Problems are Wicked Problems. Developments
in Design Methodology (Cross, N. eds). Wiley.

[Ruhe, Ngo-The 2004] Ruhe, G., Ngo-The, A. 2004.
Hybrid Intelligence in Software Release Planning.
International Journal of Hybrid Intelligent Systems, Vol 1,
p. 99-110.

[Tsang 1993] Tsang, E. 1993. Foundations of Constraint
Satisfaction. Academic Press.

[Wooley 1998] Wooley, B. A. 1998. Explanation
Component of Software Systems. ACM CrossRoads.

