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Abstract 

We are presently developing a tool to help field experts to 
design the series of steps they need in order to be able to 
recognize the linguistic instances of a set of concepts in 
texts relative to their field. This involves several challenging 
steps, from cleaning to concept tagging.  
 Our approach relies on two basic principles. One is that 
only a field expert can develop tools able to solve these 
problems. It follows that the computer scientist should 
develop user-friendly tools enabling the expert to transfer 
the expertise to the programs. The second is that inductive 
tools must also be provided, otherwise the workload is so 
high that nothing substantial can ever be achieved. The 
difficulty is that induction has to take place from data that is 
both incomplete and very noisy; this is a well-known cause 
of failure in most of the existing inductive programs. 
 In this paper, we shall describe the way we ask the expert 
and inductive techniques to cooperate in order to solve three 
of the crucial steps of knowledge extraction, namely the step 
of Part-of-Speech tagging, the step of ‘terminology’ and the 
step of coreference resolution. 

Introduction 

The system we are developing tends to favor an AI 
approach to Knowledge Retrieval, as opposed to the purely 
statistical one. We thus have to use the knowledge of the 
domain expert in order to improve the way our system will 
simulate understanding the content of a text, so as to 
retrieve significant information from it. We checked this 
approach in TREC ‘Novelty’ in 2004 (Amrani et al. 2004), 
and we are presently competing with this approach in the 
categorization task of TREC ‘Genomics’. 
 Our system can be divided, more or less arbitrarily, in 
several steps that actually depend very heavily on each 
other. In the present paper, and in order to underline its 
aspects of interactive reasoning, we shall present our 
system as a linear one, which is almost correct. 
 Once a corpus has been gathered, the first step is its 
normalization, also called ‘cleaning’. In fact, it includes 
also the creation of a lexicon, i.e., a list of all the known 
words, associated with their possible part-of-speech 
categories. This step is extremely tedious and requires a 
large number of man-machine interactions that are more of 
the nature of information exchange than of a shared 
reasoning. 

 The second step is the one of Part-of-Speech tagging 
that will be developed below in section 2. The third step is 
the one of the locutions, or groups of words, that are 
significant for a field expert. It will be described in section 
3. Finally, section 4 describes briefly our interactive 
approach to coreference resolution. 

Part-of-Speech Tagging  

Part-of-Speech Taggers 

Part-of-Speech tagging associates to each word with a 
Morphosyntactic category (Noun, verb, adjective, etc), 
according to word morphology and context. There are two 
main approaches for part of speech tagging: the linguistic 
and the data-driven.  
 Several data-driven approaches have been applied to 
Part-of-Speech tagging. Among them, Inductive Logic 
Programming (Cussens 1997), Transformation-Based 
Learning (Brill 1994), decision trees learning (Marquez 
and Rodriguez 1998), support vector machine (Giménez 
and Marquez 2004) and statistical approaches (Brants 
2000) (Cutting et al. 1992) (Toutanova et al. 2003) can be 
cited. Other sophisticated techniques were used, based on 
the combination of several kinds of taggers (Brill and Wu 
1998) (Halteren, Zavrel, and Daelemans 2001). These 
techniques are based on the fact that differently designed 
taggers produce different errors. Thus, the combined tagger 
shows a higher precision than each isolated ones. Whatever 
the technology on which they are based, the current taggers 
obtain a very satisfactory level of precision. The published 
results are usually about 96-97% of correct tags. 
 The linguistic approach consists of coding the necessary 
knowledge in a set of rules written by a linguist. The 
pioneer system TAGGIT (Greene and Rubin 1971) was 
used to create the initial tagging of the Brown Corpus, 
which was then hand revised. One of the most important 
works of this direction is the development of Constraint 
Grammars (Karlsson et al. 1995) and their application to 
POS tagging (Voutilainen 1995), which can be considered 
the best existing tagger (above of 99% accuracy is 
reported). 



Part-of-Speech Tagging Issues 

Although the linguistic approach produces high quality 
language models, it is a large time-consuming one since 
many years of human resources are required to develop a 
good language model. 
 A prerequisite for the construction of a data-driven PoS-
tagger is the availability of a large ‘hand-tagged’ corpus. 
Acquiring such a corpus is expensive and time consuming 
and it is often the bottleneck to build a tagger for a new 
application or domain. 
 Most of the available taggers are learned from general 
corpora. The test and training corpora are of similar nature, 
and that might explain their high performances. The 
problem is that the accuracy of general taggers drops down 
dramatically when applied to new specialized corpora and 
high quality taggers are not available in specialized 
domains where a domain expert is needed. 
 Even when the tagging is very accurate, authors tend to 
forget to report the nature of the mistakes made by their 
taggers. For instance, we checked Brill’s tagger (Amrani, 
Kodratoff, and Matte-Tailliez 2004) on a specialized 
corpus (molecular biology) where it was fairly accurate but 
some tags reached a high error rate. In fact, some errors are 
much more harmful than some others. For instance, the 
word ‘that’ is very ambiguous, and a mistake on its Part-
of-Speech tagging can destroy the structure of the 
sentence. Similarly, confusions between nouns and verbs 
entail a large misunderstanding of the sentence. The ‘Part-
of-Speech tagging community’ should develop a register of 
such harmful errors, and the error rates on these errors 
should be specified in papers claiming high accuracy. 
 Some errors occur in doublets or triples that make their 
correction especially difficult and their destructive role all 
the more important. In this case, we ‘tricked’ recursion by 
using time and side-effects of the transformations. For 
instance, if we meet the couple alternate/VBP 
projects/VBZ (meaning that alternate is tagged as a verb 
and projects as a 3

rd
 person singular present verb – and 

supposing we want to correct it as alternate/JJ 
projects/NNS, meaning that an adjective is followed by a 
plural noun) we introduce a special tag signaling the origin 
of the corrected tag, say NNS_exVBZ. We then write two 
rules. The first one says that, in some contexts, if projects 
follows alternate/VBP then it has to be re-tagged 
NNS_exVBZ. The second one says that, in the same 
context, if alternate/VBP is followed by either 
projects/VBZ or projects/NNS_exVBZ then it has to be 
tagged as an adjective. Finally, all tags NNS_exVBZ are 
transformed back into NNS tags. The actual 
implementation is a bit more complex to avoid so many 
particular cases, but it uses this very simple idea. 

Part-of-Speech Tagging Methodology: Progressive 

Induction 

The correction of difficult Part-of-Speech ambiguities is a 
significant stage to obtain a ‘perfectly’ tagged specialized 
corpus. To correct these ambiguities and to decrease the 

number of tagging mistakes, we use an approach we call: 
Progressive Induction. 
 Progressive Induction starts with a general tagger, and 
corrects gradually the tagging to adapt it to a specialized 
corpus. The process of correction is iterative. This 
approach is a combination of machine learning, of rules 
written by the expert (using a devoted language we 
developed and called CorTag, described in the next 
section), and of manual corrections that are iteratively 
combined in order to obtain an improvement of the tagging 
while restricting the actions of the expert to the resolution 
of increasingly delicate problems. The general process is as 
follows. The expert writes some rules with CorTag so as to 
decrease the amount of errors relative to a fixed ambiguity. 
These rules are applied to an initial corpus C0 and generate 
an improved corpus C0Expert. A rule learning algorithm is 
used to generate a model of the change from corpus C0 to 
C0Expert. These rules are applied to C0 and generate a third 
corpus, C0Ind. The differences between C0Expert and C0Ind are 
then analyzed by the expert, with the help of ETIQ. These 
differences help to  

• point at mistakes made by the expert. 

• improve the rules of the expert. The rules that ‘won over’ 
the expert are shown and help in this improvement 
process. 

• when corrected on the fly by the expert, critical tags are 
made correct and the corpus itself is improved for a 
better future use. 

Below we will describe in detail the CorTag language and 
our approach to progressive induction. 

A Tagging Language: CorTag. All this explain why we 
developed a language to correct the tags in the texts. Since 
we suppose that we have already a lexicon and tagged texts 
(both certainly with mistakes) this language deals 
essentially with the relational tagging problems. It is in the 
form of rules handling triplets describing, in this order, the 
place of the words in the sentence relative to a fixed word 
of interest placed at ‘0’, the word itself, and its tag. For 
instance, in order to avoid writing overly specific rules, we 
would build up list1 containing ‘alternate’ and list2 
containing ‘projects’, and the rules described earlier would 
be written: 
 if [context] (0,@list1,VBP) (+1,@list2,VBZ) then (+1, 
,NNS_exVBZ) 
 if [context] (0, @list1,VBP) (+1, 
@list2,or(VBZ,NNS_exVBZ)) then (0, ,JJ) (+1,,NNS) 
 This language will be put in free access on the Internet 
as soon as its user’s guide is ready. We thus shall not give 
too many details about it here. The rules we gave above 
describe the simplest cases. In general, it is designed to 
write, using relatively simple formula, quite complex 
relationships among words of one sentence. For instance, 
for tagging properly a ‘that’ as an ‘IN’ (Preposition or 
subordinating conjunction) , we wrote a rule stating: 
“tag as ‘IN’ a ‘that’ when the first verb before this ‘that’ 
belongs to a given list, except when there is a singular or 
plural noun (not a name) between ‘that’ and this verb.” 



A very important feature of the language is that it easily 
describes the cases where optional words exist inside a 
relation. For instance, the premise of a rule describing a 
determiner followed by a noun is written as 

(-1,,DT) (0,,NN) 
If between the noun and the determiner, one adverb (called 
‘RB’) and two adjectives with coordination between them 
are possible but not necessary, we simply write this 
premise as: 
 (?,,DT) (*1,,or(JJ,RB)) (*1,,JJ) (*1,,CC) (*1,,JJ) (0,,NN). 

Tagging by Progressive Induction. The initial stage of 
progressive induction (Stage 0, corpus C0) consists in the 
obtainment of a corpus of specialty tagged by a Part-of-
Speech tagger trained on a general corpus (which is of 
different nature of our corpus).  
 The expert then identifies the confusions that seem to be 
the most significant ones, and writes correction rules for 
each confusion. These rules can be written within ETIQ 
(Amrani, Kodratoff, and Matte-Tailliez 2004) or, if they 
are strongly contextual rules, by using the language 
CorTag, which is dedicated to the drafting of these rules. A 
fast description of this language is given above. Each rule 
applies to a precise context and is used to fix a specific 
confusion. The expert thus produces a certain number of 
rules, which are applied to the corpus (stage 1, producing 
C0Expert) and he thus checks the validity of his rules. A 
quasi insolvable problem arises when the expert works on 
a large corpus: the number of application of the rules can 
be of several thousands, thus the expert can check the 
validity of his rules only on a subcorpus of the initial one.  
 A learning base is generated from C0Expert and C0. This 
base contains the examples modified by the rules of the 
expert (positive examples) and the non-modified examples 
(negative examples). Applying the induced rules on the 
corpus at its 0 stage, we can generate a third version,  
corpus C0Ind, the one of stage 2.  
 Lastly, the corpora of stages 1 and 2 are presented at the 
expert when the corrections made by the rules of the expert 
differ from those brought by the induced rules. The expert 
examines these cases. A significant point is to notice that 
the expert must either confirm ‘his’ tagging, or that the 
induced rules are right to contradict his rules. When this 
case happens enough frequently (i.e. the inductive process 
is of good quality), this produces a kind of competition 
between the expert and the induction, so that his attention 
stays constantly excited.  
 Thus we have three successive versions of the same 
corpus: ExpRulCorp0, IndRulCorp0 and SureCorp0.  

• ExpRulCorp0 is the result of applying the expert rules to 
the starting corpus.  

• IndRulCorp0 is the result of applying the induced rules to 
the starting corpus.  

• SureCorp0 is the corpus in which we keep the labels 
manually fixed (if the induction ‘won’) or confirmed by 
the expert (if he ‘won’) during the process.  

Once again, if the corpus is sufficiently small, the expert 
can fix all the errors and it is not really necessary to 

reiterate this process. As we work on the assumption that 
the corpus is bulky, the expert cannot examine the 
thousands of cases where there is a difference between his 
rules and the induced ones. On the other hand, he can 
notice some of the cases where he ‘lost’ against induction 
and he can then use ETIQ to display the ‘winning’ induced 
rule. This rule can be analyzed to provide some indication 
on the way of improving the existing rules.  
 It then applies these new rules to SureCorp0 which 
becomes the starting corpus of the next iteration, so as to 
generate ExpRulCorp1 by applying to it the rules deduced 
during the preceding iteration.  
 It is of course theoretically possible that the expert is 
completely mistaken and that iteration ‘n+1’ contains more 
errors than iteration ‘n’, and that would be a case of failure 
of our method, pushing the expert to quit. In fact, being 
shown his errors, the expert tends rather to correct them 
and to obtain more effective rules. The danger would be 
that the system induces rules making the same errors as 
with the preceding iteration, and than the expert re-
examines these same errors at each iteration (and that 
would make him quit by being bored). We never noted this 
behavior because our inductive system learns very 
different rules when the training sets are different. Note in 
the passing the importance of the manual corrections of the 
expert, even if they are relatively few, in order to start with 
a really different tagging.  
 Consequently, and in practice, the expert will notice a 
decrease, at each iteration, of the number of times when the 
inductive system wins. As a consequence, after some 
iterations he can examine all the differences and, if 
required, he can fix all his errors manually, without 
resorting to rules. The final corpus, SureCorp0p is then 
perfectly tagged from the point of view of the tagging error 
considered at the beginning.  
 It is obviously necessary to repeat the whole process for 
each tagging error that needs to be fixed.  
 The most significant mistakes are those which prevent 
the comprehension of the sentence by destroying its 
syntactic structure. The ones we corrected on the two 
corpora on which we worked (the one of TREC Novelty of 
approximately 9 megabytes and the training one of TREC 
Genomics of approximately 32 megabytes) are as follows:  

• tagging mistakes of ‘that’ which can be conjunction, 
relative, determinant or pronoun  

• confusion of the -ed and –ing forms in their verbal use 
and their use as premodifiers (and which we then label 
as adjectives)  

• confusion of the nouns and the verbs, including the 
special case of the 3rd person of the present singular 

• with less importance, confusion between past participles 
and verb in the past tense.  

Thus, the process must be entirely repeated 3 or 4 times, 
which is not too much in view of the advantage to have a 
correctly tagged corpus. 
 Example: Let us consider the confusion between the tags 
NNS (Noun, plural) and VBZ (Verb, 3

rd
 person singular 



present). By examining, C0, the expert imagines some rules 
that improve the tagging situation over the automatic 
tagger. Using these rules, the rule improved corpus, 
ExpRulCorp0, is obtained. Using ETIQ, we display the tags 
VBZ and NNS that are different in these two corpora and, 
as explained above, we learn rules based on this difference. 
In the experiment we did to generate the present example, 
it happened that 50 rules were generated. Among them, let 
us examine the rule: 
“IF the word under study is already tagged by NNS or by 
VBZ AND it is followed by a determinant (DT) THEN tag 
it VBZ” (that is, a VBZ is often followed by a DT). 
Relative to ExpRulCorp0, this rule applies correctly 630 
times (in the corpus we used) and incorrectly 20 times. We 
display the 630 sentences where a VBZ is followed by a 
DT and realize that these 630 tags are correct. This rule 
must thus contain some linguistic truth. We then display 
the 20 sentences where a NNS is followed by a DT. We 
observe five cases.  
Case 1: the DT is ‘both’ or ‘each’. Therefore, the rule was 
a bit over general and should read “… followed by a DT, 
except ‘each’ or ‘both’”. This hints at the fact that all DT 
are not equivalent, and we create classes of DT that solve 
this problem. These classes may be (and actually were) 
useful in order to solve other kinds of overgeneralizations. 
Case 2: a coma that should appear after the NNS, but it has 
been omitted. We make a list of the nouns plural after 
which the authors tend to forget the coma, and add this list 
in the exceptions to the above rule. 
Case 3: the ‘DT’ is in fact an ‘A’ (as in “proteins A and 
B”) and the ‘A’ was incorrectly tagged as a DT. We have 
to correct this mistake anyhow by applying a rule that 
corrects this wrong tagging. 
Case 4: the word of interest was incorrectly tagged as an 
NNS, this mistake should also be corrected. 
Case 5: the word of interest was incorrectly tagged as an 
NNS by the expert rules, and should be a VBZ. as 
expected. 
 This very simple example illustrates the power of 
combining human and machine inductive abilities, 
especially in cases were the mistakes cannot be corrected 
all at once but ask for corrections that are embedded. A 
complex recursive program would be needed to solve 
automatically these cases, while the human reactions cut 
down the complexity. 
 Once an ‘almost perfectly’ tagged subcorpus has been 
obtained on a significant part of the corpus (we evaluate it 
at some 1/10 of the corpus), powerful statistical learning 
techniques, such as the Hidden Markov Chains can be 
applied with success. We noticed, however, that the above 
described 4 difficult cases are badly handled by these 
techniques (most humans have problems handling them 
properly!) and we need to clean the statistically tagged 
corpus by using rules specific to these hard cases. In other 
words, the collaboration between expert and machines 
never stops being useful. 

Similar Approaches 

Let us now discuss two similar approaches. ANNOTATE 
is an interactive tool for semi-automatic tagging (Plaehn 
and Brants 2000) similar to ours. This system interacts 
with a statistical tagger (Brants 2000) and a "parser" to 
accelerate the tagging. Grammatical tagging works as 
follows: the tagger determines the tag of each word on the 
basis of the tag frequency probability, the system then 
displays the sentences and calls for confirmation or 
correction of the non reliable labels. In this system, the 
annotator does not write rules. The internal model is 
updated gradually with the confirmations and the 
corrections carried out. These changes are thus exploited 
immediately. 
 KCAT (Won-Ho et al. 2000) is a semi-automatic 
annotation tool to build a precise and consistent tagged 
corpus. It combines the use of a statistical tagger, and 
lexical rules of clarification acquired by an expert. The 
rules used are limited to word similarity. The method 
enables correcting the words with non-reliable labels. The 
expert does not have to repeat the same action on two 
words in the same context because lexical rules are 
generated automatically. The expert tags words by lexical 
rules, the remaining words are tagged by the statistical 
tagger, then the expert has to correct directly the unreliable 
tags. These rules are very specific. In order to obtain a 
well-tagged corpus, the expert must insert a large quantity 
of tags. This increases human costs and slows down the 
speed of execution. 

Terminology 

In order to find all the ‘interesting’ collocations in a 
technical text, we developed a method which is finally 
quite complex but relies on a large amount of information 
exchange between the expert and a system that learns 
interactively to detect significant collocations. 

Determining the Syntactic Properties of an 

‘Interesting’ Collocation 

The expert is requested to find ways, typical of his field, to 
underline important sequences of words. For instance, in 
biology, a sentence of the form : 
‘the function of’ + ‘adjectives and nouns’ + ‘verb’ 
underlines the idea that the sequence of ‘adjectives and 
nouns’ constitutes a significant collocation of them. They 
are obviously many such typical forms, and the expert 
must provide some of them. These syntactic properties are 
then expressed in our language CorTag in order to gather 
all the collocations in this position. In the case, of TREC 
Genomics, for example, since the corpus amounts to some 
450 megabytes of usable text, the total number of such 
collocations is very large. 
 The inverse approach is then followed : knowing a first 
set of such significant collocations, find in which syntactic 
environment they occur.  



 These two methods alternate under the field expert’s 
control until no new collocations are detected. 
 This enables us to set up a list of words that tend to 
generate interesting collocations, such as ‘gene’, ‘site’ etc. 
The expert could not directly provide such a list. For 
instance, we presently use a list of some 15 000 such 
words. 

Using an Automatic Term Generator 

As we underline in (Roche et al. 2003), many statistical 
methods have been used in order to take into account the 
degree of surprise or coincidence of collocations. The user 
of our system can chose one of the available methods, but 
it is always weighted by the presence of the words in the 
list of words found in the already built list of interesting 
collocations. 
 Besides, we developed an interactive implementation in 
which the user can directly accept or reject a collocation. 
 In this case, there is no inductive system, but a statistical 
system, the parameters of which are interactively modified 
by a user who inputs what field knowledge shows to be 
important. As in the case of Part-of-Speech tagging, a 
completely manual approach is totally impossible. For 
instance, on the training set of TREC Genomics, we 
already spotted some 300 000 important terms, many of 
them occurring only once within the 32 megabytes of this 
training set. 

Coreference resolution 

Instead of the more classical pronominal anaphora, texts in 
Genomics tend to use sortal anaphora, as for example, 
“these genes”, “both proteins”, “the promoter”, that make 
reference to their antecedents using their semantic type. 
They are obviously loaded with semantics, and we decided 
to use an interactive approach in order to build the 
ontologies necessary to the solution of this type of 
coreferences. 

Interactive building of the leaves of the ontology 

With expert help, we decide of a few ‘canonical’ ways of 
expressing biological properties. The preceding tagging 
phase enables us to define contextual expression depending 
on words, and/or on the tag of a word, giving much more 
generality to the patterns to be recognized. For instance, 
the name of a protein is often given in between a 
determinant and the words ‘protein’ or ‘proteins’ as in “the 
p37 and p40 proteins”. A systematic survey of similar 
syntaxic forms over several hundreds of mega-bytes 
provides an impressive list of protein names. Importantly, 
these names are not as they are given in the classical 
biological repositories, but as they actually occur in the 
literature. Interactions are performed in order to increase 
the amount of our so-called canonical ways of writing, this 
yielding more instances of the concepts. By using our 
language CorTag, the field expert can develop and check 
the value of the proposed canonical ways of writing. 

Interactive building of the structure of the 

ontology 

In a well-known field, such as the organization of a 
company, an expert can provide the complete ontology 
structure, that is the ontology minus the instances of its 
concepts. In Biology, GeneOntology is a good example of 
a consistent attempt in this direction. However, building a 
complete ontology seems to be “a biologist’s dream”, as 
one of our expert stated, since it is so complex, since it 
evolves constantly, and since it has to be partly topic 
specific. The same approach as the one described just 
above proved to be very successful in providing the expert 
with a incomplete structure that can be modified. For 
instance, lexical constructs like:“the stress inducible 
proteins hsp60 and GRP94” or “CML is a clonal 
disorder” provide the following structuring information: 
“stress inducible protein” is a subclass of “protein” and 
“clonal disorder” is a subclass of “disorder”. Actually, 
the typical form of an explicit generalization construct is 
“A is a B that C”, and besides the generalization relation 
we can also infer the property C of the concept A. An 
example of such a case is: “necdin is a unique growth 
suppressor that blocks cell_cycle reentry and promotes 
survival of postmitotic neurons”. 
 The biology expert reacts to these proposals by asking 
specific information of interest and by proposing lexical 
patterns for its detection. In fact, we also use lists of verbs 
of biological importance that can mark the links in the 
ontology. For instance, the above sentence provides links 
of the nature “block” and “promote.” 

Learning to resolve sortal anaphora 

We built a scoring measure in order to sort the words or 
collocations being possible antecedents to a coreference, 
and we used version 2.0 of WordNet in order to check 
WordNet permitted structures in the ontology. After this is 
applied, the expert is asked to review the failures and to 
modify the structure of the ontology in order to resolve 
these failure cases. For instance, when applying our 
method to the sentences : ”...chronic myelogenous 
leukemia is a myeloproliferative disorder that, over time, 
progresses to acute leukemia. Both processes...” we tried 
to resolve both processes by inferring that leukemia is a 
disorder and disorder is a process. By exploring the 
ontology support we find knowledge that leukemia is a 
disorder but, as of version 2.0 of WordNet, a disorder does 
not appear as being a process. The field expert then is 
urged not only to specify that a disorder is a process, but 
also to make precise which disorders a looked upon as 
processes in Molecular Biology and which are not. The 
ontology thus obtained is specific to Molecular Biology 
and should not be applied, for instance, to airplane 
maintenance. Another ontology would have to be built, 
starting from texts relative to, say, airplane maintenance. 



Conclusion 

The simulation of the understanding of technical texts is 
certainly a vastly complex problem that requires to be dealt 
with by a system of high complexity. Depending on the 
problem at hand, various inductive or deductive techniques 
can solve this problem for a very small corpus. In order to 
deal with the extra complexity due to the large amount of 
texts to be processed, the field expert must be included 
inside each reasoning step. This cooperation can take 
various forms, again depending on the problem to be 
solved. 
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