
Man-Machine Cooperation in Retrieving Knowledge from Technical

Texts

Yves Kodratoff
1
, Adrian Dimulescu

1
 and Ahmed Amrani

1,2

1LRI, Université de Paris-Sud 2ESIEA Recherche

 Bât. 490, 91405 Orsay. France 9 rue Vésale, 75005 Paris. France.

yk, dadi@lri.fr amrani@esiea.fr

Abstract

We are presently developing a tool to help field experts to
design the series of steps they need in order to be able to
recognize the linguistic instances of a set of concepts in
texts relative to their field. This involves several challenging
steps, from cleaning to concept tagging.
 Our approach relies on two basic principles. One is that
only a field expert can develop tools able to solve these
problems. It follows that the computer scientist should
develop user-friendly tools enabling the expert to transfer
the expertise to the programs. The second is that inductive
tools must also be provided, otherwise the workload is so
high that nothing substantial can ever be achieved. The
difficulty is that induction has to take place from data that is
both incomplete and very noisy; this is a well-known cause
of failure in most of the existing inductive programs.
 In this paper, we shall describe the way we ask the expert
and inductive techniques to cooperate in order to solve three
of the crucial steps of knowledge extraction, namely the step
of Part-of-Speech tagging, the step of ‘terminology’ and the
step of coreference resolution.

Introduction

The system we are developing tends to favor an AI
approach to Knowledge Retrieval, as opposed to the purely
statistical one. We thus have to use the knowledge of the
domain expert in order to improve the way our system will
simulate understanding the content of a text, so as to
retrieve significant information from it. We checked this
approach in TREC ‘Novelty’ in 2004 (Amrani et al. 2004),
and we are presently competing with this approach in the
categorization task of TREC ‘Genomics’.
 Our system can be divided, more or less arbitrarily, in
several steps that actually depend very heavily on each
other. In the present paper, and in order to underline its
aspects of interactive reasoning, we shall present our
system as a linear one, which is almost correct.
 Once a corpus has been gathered, the first step is its
normalization, also called ‘cleaning’. In fact, it includes
also the creation of a lexicon, i.e., a list of all the known
words, associated with their possible part-of-speech
categories. This step is extremely tedious and requires a
large number of man-machine interactions that are more of
the nature of information exchange than of a shared
reasoning.

 The second step is the one of Part-of-Speech tagging
that will be developed below in section 2. The third step is
the one of the locutions, or groups of words, that are
significant for a field expert. It will be described in section
3. Finally, section 4 describes briefly our interactive
approach to coreference resolution.

Part-of-Speech Tagging

Part-of-Speech Taggers

Part-of-Speech tagging associates to each word with a
Morphosyntactic category (Noun, verb, adjective, etc),
according to word morphology and context. There are two
main approaches for part of speech tagging: the linguistic
and the data-driven.
 Several data-driven approaches have been applied to
Part-of-Speech tagging. Among them, Inductive Logic
Programming (Cussens 1997), Transformation-Based
Learning (Brill 1994), decision trees learning (Marquez
and Rodriguez 1998), support vector machine (Giménez
and Marquez 2004) and statistical approaches (Brants
2000) (Cutting et al. 1992) (Toutanova et al. 2003) can be
cited. Other sophisticated techniques were used, based on
the combination of several kinds of taggers (Brill and Wu
1998) (Halteren, Zavrel, and Daelemans 2001). These
techniques are based on the fact that differently designed
taggers produce different errors. Thus, the combined tagger
shows a higher precision than each isolated ones. Whatever
the technology on which they are based, the current taggers
obtain a very satisfactory level of precision. The published
results are usually about 96-97% of correct tags.
 The linguistic approach consists of coding the necessary
knowledge in a set of rules written by a linguist. The
pioneer system TAGGIT (Greene and Rubin 1971) was
used to create the initial tagging of the Brown Corpus,
which was then hand revised. One of the most important
works of this direction is the development of Constraint
Grammars (Karlsson et al. 1995) and their application to
POS tagging (Voutilainen 1995), which can be considered
the best existing tagger (above of 99% accuracy is
reported).

Part-of-Speech Tagging Issues

Although the linguistic approach produces high quality
language models, it is a large time-consuming one since
many years of human resources are required to develop a
good language model.
 A prerequisite for the construction of a data-driven PoS-
tagger is the availability of a large ‘hand-tagged’ corpus.
Acquiring such a corpus is expensive and time consuming
and it is often the bottleneck to build a tagger for a new
application or domain.
 Most of the available taggers are learned from general
corpora. The test and training corpora are of similar nature,
and that might explain their high performances. The
problem is that the accuracy of general taggers drops down
dramatically when applied to new specialized corpora and
high quality taggers are not available in specialized
domains where a domain expert is needed.
 Even when the tagging is very accurate, authors tend to
forget to report the nature of the mistakes made by their
taggers. For instance, we checked Brill’s tagger (Amrani,
Kodratoff, and Matte-Tailliez 2004) on a specialized
corpus (molecular biology) where it was fairly accurate but
some tags reached a high error rate. In fact, some errors are
much more harmful than some others. For instance, the
word ‘that’ is very ambiguous, and a mistake on its Part-
of-Speech tagging can destroy the structure of the
sentence. Similarly, confusions between nouns and verbs
entail a large misunderstanding of the sentence. The ‘Part-
of-Speech tagging community’ should develop a register of
such harmful errors, and the error rates on these errors
should be specified in papers claiming high accuracy.
 Some errors occur in doublets or triples that make their
correction especially difficult and their destructive role all
the more important. In this case, we ‘tricked’ recursion by
using time and side-effects of the transformations. For
instance, if we meet the couple alternate/VBP
projects/VBZ (meaning that alternate is tagged as a verb
and projects as a 3

rd
 person singular present verb – and

supposing we want to correct it as alternate/JJ
projects/NNS, meaning that an adjective is followed by a
plural noun) we introduce a special tag signaling the origin
of the corrected tag, say NNS_exVBZ. We then write two
rules. The first one says that, in some contexts, if projects
follows alternate/VBP then it has to be re-tagged
NNS_exVBZ. The second one says that, in the same
context, if alternate/VBP is followed by either
projects/VBZ or projects/NNS_exVBZ then it has to be
tagged as an adjective. Finally, all tags NNS_exVBZ are
transformed back into NNS tags. The actual
implementation is a bit more complex to avoid so many
particular cases, but it uses this very simple idea.

Part-of-Speech Tagging Methodology: Progressive

Induction

The correction of difficult Part-of-Speech ambiguities is a
significant stage to obtain a ‘perfectly’ tagged specialized
corpus. To correct these ambiguities and to decrease the

number of tagging mistakes, we use an approach we call:
Progressive Induction.
 Progressive Induction starts with a general tagger, and
corrects gradually the tagging to adapt it to a specialized
corpus. The process of correction is iterative. This
approach is a combination of machine learning, of rules
written by the expert (using a devoted language we
developed and called CorTag, described in the next
section), and of manual corrections that are iteratively
combined in order to obtain an improvement of the tagging
while restricting the actions of the expert to the resolution
of increasingly delicate problems. The general process is as
follows. The expert writes some rules with CorTag so as to
decrease the amount of errors relative to a fixed ambiguity.
These rules are applied to an initial corpus C0 and generate
an improved corpus C0Expert. A rule learning algorithm is
used to generate a model of the change from corpus C0 to
C0Expert. These rules are applied to C0 and generate a third
corpus, C0Ind. The differences between C0Expert and C0Ind are
then analyzed by the expert, with the help of ETIQ. These
differences help to

• point at mistakes made by the expert.

• improve the rules of the expert. The rules that ‘won over’
the expert are shown and help in this improvement
process.

• when corrected on the fly by the expert, critical tags are
made correct and the corpus itself is improved for a
better future use.

Below we will describe in detail the CorTag language and
our approach to progressive induction.

A Tagging Language: CorTag. All this explain why we
developed a language to correct the tags in the texts. Since
we suppose that we have already a lexicon and tagged texts
(both certainly with mistakes) this language deals
essentially with the relational tagging problems. It is in the
form of rules handling triplets describing, in this order, the
place of the words in the sentence relative to a fixed word
of interest placed at ‘0’, the word itself, and its tag. For
instance, in order to avoid writing overly specific rules, we
would build up list1 containing ‘alternate’ and list2
containing ‘projects’, and the rules described earlier would
be written:
 if [context] (0,@list1,VBP) (+1,@list2,VBZ) then (+1,
,NNS_exVBZ)
 if [context] (0, @list1,VBP) (+1,
@list2,or(VBZ,NNS_exVBZ)) then (0, ,JJ) (+1,,NNS)
 This language will be put in free access on the Internet
as soon as its user’s guide is ready. We thus shall not give
too many details about it here. The rules we gave above
describe the simplest cases. In general, it is designed to
write, using relatively simple formula, quite complex
relationships among words of one sentence. For instance,
for tagging properly a ‘that’ as an ‘IN’ (Preposition or
subordinating conjunction) , we wrote a rule stating:
“tag as ‘IN’ a ‘that’ when the first verb before this ‘that’
belongs to a given list, except when there is a singular or
plural noun (not a name) between ‘that’ and this verb.”

A very important feature of the language is that it easily
describes the cases where optional words exist inside a
relation. For instance, the premise of a rule describing a
determiner followed by a noun is written as

(-1,,DT) (0,,NN)
If between the noun and the determiner, one adverb (called
‘RB’) and two adjectives with coordination between them
are possible but not necessary, we simply write this
premise as:
 (?,,DT) (*1,,or(JJ,RB)) (*1,,JJ) (*1,,CC) (*1,,JJ) (0,,NN).

Tagging by Progressive Induction. The initial stage of
progressive induction (Stage 0, corpus C0) consists in the
obtainment of a corpus of specialty tagged by a Part-of-
Speech tagger trained on a general corpus (which is of
different nature of our corpus).
 The expert then identifies the confusions that seem to be
the most significant ones, and writes correction rules for
each confusion. These rules can be written within ETIQ
(Amrani, Kodratoff, and Matte-Tailliez 2004) or, if they
are strongly contextual rules, by using the language
CorTag, which is dedicated to the drafting of these rules. A
fast description of this language is given above. Each rule
applies to a precise context and is used to fix a specific
confusion. The expert thus produces a certain number of
rules, which are applied to the corpus (stage 1, producing
C0Expert) and he thus checks the validity of his rules. A
quasi insolvable problem arises when the expert works on
a large corpus: the number of application of the rules can
be of several thousands, thus the expert can check the
validity of his rules only on a subcorpus of the initial one.
 A learning base is generated from C0Expert and C0. This
base contains the examples modified by the rules of the
expert (positive examples) and the non-modified examples
(negative examples). Applying the induced rules on the
corpus at its 0 stage, we can generate a third version,
corpus C0Ind, the one of stage 2.
 Lastly, the corpora of stages 1 and 2 are presented at the
expert when the corrections made by the rules of the expert
differ from those brought by the induced rules. The expert
examines these cases. A significant point is to notice that
the expert must either confirm ‘his’ tagging, or that the
induced rules are right to contradict his rules. When this
case happens enough frequently (i.e. the inductive process
is of good quality), this produces a kind of competition
between the expert and the induction, so that his attention
stays constantly excited.
 Thus we have three successive versions of the same
corpus: ExpRulCorp0, IndRulCorp0 and SureCorp0.

• ExpRulCorp0 is the result of applying the expert rules to
the starting corpus.

• IndRulCorp0 is the result of applying the induced rules to
the starting corpus.

• SureCorp0 is the corpus in which we keep the labels
manually fixed (if the induction ‘won’) or confirmed by
the expert (if he ‘won’) during the process.

Once again, if the corpus is sufficiently small, the expert
can fix all the errors and it is not really necessary to

reiterate this process. As we work on the assumption that
the corpus is bulky, the expert cannot examine the
thousands of cases where there is a difference between his
rules and the induced ones. On the other hand, he can
notice some of the cases where he ‘lost’ against induction
and he can then use ETIQ to display the ‘winning’ induced
rule. This rule can be analyzed to provide some indication
on the way of improving the existing rules.
 It then applies these new rules to SureCorp0 which
becomes the starting corpus of the next iteration, so as to
generate ExpRulCorp1 by applying to it the rules deduced
during the preceding iteration.
 It is of course theoretically possible that the expert is
completely mistaken and that iteration ‘n+1’ contains more
errors than iteration ‘n’, and that would be a case of failure
of our method, pushing the expert to quit. In fact, being
shown his errors, the expert tends rather to correct them
and to obtain more effective rules. The danger would be
that the system induces rules making the same errors as
with the preceding iteration, and than the expert re-
examines these same errors at each iteration (and that
would make him quit by being bored). We never noted this
behavior because our inductive system learns very
different rules when the training sets are different. Note in
the passing the importance of the manual corrections of the
expert, even if they are relatively few, in order to start with
a really different tagging.
 Consequently, and in practice, the expert will notice a
decrease, at each iteration, of the number of times when the
inductive system wins. As a consequence, after some
iterations he can examine all the differences and, if
required, he can fix all his errors manually, without
resorting to rules. The final corpus, SureCorp0p is then
perfectly tagged from the point of view of the tagging error
considered at the beginning.
 It is obviously necessary to repeat the whole process for
each tagging error that needs to be fixed.
 The most significant mistakes are those which prevent
the comprehension of the sentence by destroying its
syntactic structure. The ones we corrected on the two
corpora on which we worked (the one of TREC Novelty of
approximately 9 megabytes and the training one of TREC
Genomics of approximately 32 megabytes) are as follows:

• tagging mistakes of ‘that’ which can be conjunction,
relative, determinant or pronoun

• confusion of the -ed and –ing forms in their verbal use
and their use as premodifiers (and which we then label
as adjectives)

• confusion of the nouns and the verbs, including the
special case of the 3rd person of the present singular

• with less importance, confusion between past participles
and verb in the past tense.

Thus, the process must be entirely repeated 3 or 4 times,
which is not too much in view of the advantage to have a
correctly tagged corpus.
 Example: Let us consider the confusion between the tags
NNS (Noun, plural) and VBZ (Verb, 3

rd
 person singular

present). By examining, C0, the expert imagines some rules
that improve the tagging situation over the automatic
tagger. Using these rules, the rule improved corpus,
ExpRulCorp0, is obtained. Using ETIQ, we display the tags
VBZ and NNS that are different in these two corpora and,
as explained above, we learn rules based on this difference.
In the experiment we did to generate the present example,
it happened that 50 rules were generated. Among them, let
us examine the rule:
“IF the word under study is already tagged by NNS or by
VBZ AND it is followed by a determinant (DT) THEN tag
it VBZ” (that is, a VBZ is often followed by a DT).
Relative to ExpRulCorp0, this rule applies correctly 630
times (in the corpus we used) and incorrectly 20 times. We
display the 630 sentences where a VBZ is followed by a
DT and realize that these 630 tags are correct. This rule
must thus contain some linguistic truth. We then display
the 20 sentences where a NNS is followed by a DT. We
observe five cases.
Case 1: the DT is ‘both’ or ‘each’. Therefore, the rule was
a bit over general and should read “… followed by a DT,
except ‘each’ or ‘both’”. This hints at the fact that all DT
are not equivalent, and we create classes of DT that solve
this problem. These classes may be (and actually were)
useful in order to solve other kinds of overgeneralizations.
Case 2: a coma that should appear after the NNS, but it has
been omitted. We make a list of the nouns plural after
which the authors tend to forget the coma, and add this list
in the exceptions to the above rule.
Case 3: the ‘DT’ is in fact an ‘A’ (as in “proteins A and
B”) and the ‘A’ was incorrectly tagged as a DT. We have
to correct this mistake anyhow by applying a rule that
corrects this wrong tagging.
Case 4: the word of interest was incorrectly tagged as an
NNS, this mistake should also be corrected.
Case 5: the word of interest was incorrectly tagged as an
NNS by the expert rules, and should be a VBZ. as
expected.
 This very simple example illustrates the power of
combining human and machine inductive abilities,
especially in cases were the mistakes cannot be corrected
all at once but ask for corrections that are embedded. A
complex recursive program would be needed to solve
automatically these cases, while the human reactions cut
down the complexity.
 Once an ‘almost perfectly’ tagged subcorpus has been
obtained on a significant part of the corpus (we evaluate it
at some 1/10 of the corpus), powerful statistical learning
techniques, such as the Hidden Markov Chains can be
applied with success. We noticed, however, that the above
described 4 difficult cases are badly handled by these
techniques (most humans have problems handling them
properly!) and we need to clean the statistically tagged
corpus by using rules specific to these hard cases. In other
words, the collaboration between expert and machines
never stops being useful.

Similar Approaches

Let us now discuss two similar approaches. ANNOTATE
is an interactive tool for semi-automatic tagging (Plaehn
and Brants 2000) similar to ours. This system interacts
with a statistical tagger (Brants 2000) and a "parser" to
accelerate the tagging. Grammatical tagging works as
follows: the tagger determines the tag of each word on the
basis of the tag frequency probability, the system then
displays the sentences and calls for confirmation or
correction of the non reliable labels. In this system, the
annotator does not write rules. The internal model is
updated gradually with the confirmations and the
corrections carried out. These changes are thus exploited
immediately.
 KCAT (Won-Ho et al. 2000) is a semi-automatic
annotation tool to build a precise and consistent tagged
corpus. It combines the use of a statistical tagger, and
lexical rules of clarification acquired by an expert. The
rules used are limited to word similarity. The method
enables correcting the words with non-reliable labels. The
expert does not have to repeat the same action on two
words in the same context because lexical rules are
generated automatically. The expert tags words by lexical
rules, the remaining words are tagged by the statistical
tagger, then the expert has to correct directly the unreliable
tags. These rules are very specific. In order to obtain a
well-tagged corpus, the expert must insert a large quantity
of tags. This increases human costs and slows down the
speed of execution.

Terminology

In order to find all the ‘interesting’ collocations in a
technical text, we developed a method which is finally
quite complex but relies on a large amount of information
exchange between the expert and a system that learns
interactively to detect significant collocations.

Determining the Syntactic Properties of an

‘Interesting’ Collocation

The expert is requested to find ways, typical of his field, to
underline important sequences of words. For instance, in
biology, a sentence of the form :
‘the function of’ + ‘adjectives and nouns’ + ‘verb’
underlines the idea that the sequence of ‘adjectives and
nouns’ constitutes a significant collocation of them. They
are obviously many such typical forms, and the expert
must provide some of them. These syntactic properties are
then expressed in our language CorTag in order to gather
all the collocations in this position. In the case, of TREC
Genomics, for example, since the corpus amounts to some
450 megabytes of usable text, the total number of such
collocations is very large.
 The inverse approach is then followed : knowing a first
set of such significant collocations, find in which syntactic
environment they occur.

 These two methods alternate under the field expert’s
control until no new collocations are detected.
 This enables us to set up a list of words that tend to
generate interesting collocations, such as ‘gene’, ‘site’ etc.
The expert could not directly provide such a list. For
instance, we presently use a list of some 15 000 such
words.

Using an Automatic Term Generator

As we underline in (Roche et al. 2003), many statistical
methods have been used in order to take into account the
degree of surprise or coincidence of collocations. The user
of our system can chose one of the available methods, but
it is always weighted by the presence of the words in the
list of words found in the already built list of interesting
collocations.
 Besides, we developed an interactive implementation in
which the user can directly accept or reject a collocation.
 In this case, there is no inductive system, but a statistical
system, the parameters of which are interactively modified
by a user who inputs what field knowledge shows to be
important. As in the case of Part-of-Speech tagging, a
completely manual approach is totally impossible. For
instance, on the training set of TREC Genomics, we
already spotted some 300 000 important terms, many of
them occurring only once within the 32 megabytes of this
training set.

Coreference resolution

Instead of the more classical pronominal anaphora, texts in
Genomics tend to use sortal anaphora, as for example,
“these genes”, “both proteins”, “the promoter”, that make
reference to their antecedents using their semantic type.
They are obviously loaded with semantics, and we decided
to use an interactive approach in order to build the
ontologies necessary to the solution of this type of
coreferences.

Interactive building of the leaves of the ontology

With expert help, we decide of a few ‘canonical’ ways of
expressing biological properties. The preceding tagging
phase enables us to define contextual expression depending
on words, and/or on the tag of a word, giving much more
generality to the patterns to be recognized. For instance,
the name of a protein is often given in between a
determinant and the words ‘protein’ or ‘proteins’ as in “the
p37 and p40 proteins”. A systematic survey of similar
syntaxic forms over several hundreds of mega-bytes
provides an impressive list of protein names. Importantly,
these names are not as they are given in the classical
biological repositories, but as they actually occur in the
literature. Interactions are performed in order to increase
the amount of our so-called canonical ways of writing, this
yielding more instances of the concepts. By using our
language CorTag, the field expert can develop and check
the value of the proposed canonical ways of writing.

Interactive building of the structure of the

ontology

In a well-known field, such as the organization of a
company, an expert can provide the complete ontology
structure, that is the ontology minus the instances of its
concepts. In Biology, GeneOntology is a good example of
a consistent attempt in this direction. However, building a
complete ontology seems to be “a biologist’s dream”, as
one of our expert stated, since it is so complex, since it
evolves constantly, and since it has to be partly topic
specific. The same approach as the one described just
above proved to be very successful in providing the expert
with a incomplete structure that can be modified. For
instance, lexical constructs like:“the stress inducible
proteins hsp60 and GRP94” or “CML is a clonal
disorder” provide the following structuring information:
“stress inducible protein” is a subclass of “protein” and
“clonal disorder” is a subclass of “disorder”. Actually,
the typical form of an explicit generalization construct is
“A is a B that C”, and besides the generalization relation
we can also infer the property C of the concept A. An
example of such a case is: “necdin is a unique growth
suppressor that blocks cell_cycle reentry and promotes
survival of postmitotic neurons”.
 The biology expert reacts to these proposals by asking
specific information of interest and by proposing lexical
patterns for its detection. In fact, we also use lists of verbs
of biological importance that can mark the links in the
ontology. For instance, the above sentence provides links
of the nature “block” and “promote.”

Learning to resolve sortal anaphora

We built a scoring measure in order to sort the words or
collocations being possible antecedents to a coreference,
and we used version 2.0 of WordNet in order to check
WordNet permitted structures in the ontology. After this is
applied, the expert is asked to review the failures and to
modify the structure of the ontology in order to resolve
these failure cases. For instance, when applying our
method to the sentences : ”...chronic myelogenous
leukemia is a myeloproliferative disorder that, over time,
progresses to acute leukemia. Both processes...” we tried
to resolve both processes by inferring that leukemia is a
disorder and disorder is a process. By exploring the
ontology support we find knowledge that leukemia is a
disorder but, as of version 2.0 of WordNet, a disorder does
not appear as being a process. The field expert then is
urged not only to specify that a disorder is a process, but
also to make precise which disorders a looked upon as
processes in Molecular Biology and which are not. The
ontology thus obtained is specific to Molecular Biology
and should not be applied, for instance, to airplane
maintenance. Another ontology would have to be built,
starting from texts relative to, say, airplane maintenance.

Conclusion

The simulation of the understanding of technical texts is
certainly a vastly complex problem that requires to be dealt
with by a system of high complexity. Depending on the
problem at hand, various inductive or deductive techniques
can solve this problem for a very small corpus. In order to
deal with the extra complexity due to the large amount of
texts to be processed, the field expert must be included
inside each reasoning step. This cooperation can take
various forms, again depending on the problem to be
solved.

References

Amrani, A., Azé, J., Heitz, T., Kodratoff, Y., and Roche,
M. 2004. From the texts to the concepts they contain: a
chain of linguistic treatments. In Proceedings of TREC'04
(Text REtrieval Conference), Gaithersburg Maryland.
Amrani, A., Kodratoff Y., and Matte-Tailliez O. 2004. A
Semi-automatic System for Tagging Specialized Corpora.
In Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD 2004),
670-681.
Brants, T. 2000. TnT - A Statistical Part-of-Speech Tagger,
In Proceedings of the 6

th
 Conference on Applied Natural

Language Processing, Seattle.
Brill, E. 1994. Some Advances in Transformation-Based
Part of Speech Tagging, AAAI, Vol. 1, 722–727.
Brill, E., and Wu, J. 1998. Classifier Combination for
Improved Lexical Disambiguation. In Proceedings of the
36th Annual Meeting of the Association for Computational
Linguistics and 17

th
 International Conference on

Computational Linguistics.
Cussens, J. 1997. Part-of-speech tagging using Progol. S.
Dzeroski et N. Lavrac, Eds. In Proceedings of the 7th
International Workshop on ILP, Vol.1297(1997),93–108.
Cutting, D., Kupiec, J., Pedersen, J., and Sibun, P. 1992. A
practicial part-of-speech tagger, In Proceedings of the 3

rd

Conference on Applied Natural Language Processing.
Giménez, J., and Marquez, L. 2004. Fast and accurate part-
of-speech tagging: The SVM approach revisited. Recent
Advances in Natural Language Processing, 153-163.
Greene, K., and Rubin, D. 1971. Automated Grammatical
Tagging of English. Department of Linguistics, Brown
University, Providence, Rhode Island.
Halteren, V., Zavrel, J., and Daelemans, W. 2001.
Improving Accuracy in Word Class Tagging through the
Combination of Machine Learning Systems,
Computational linguistics Vol. 27 (2001), 199–229
Karlsson, F., Voutilainen, A., Heikkila, J., and Anttila, A.
(editors). Constraint Grammar: A Language–Independent
System for Parsing Unrestricted Text. Mouton de Gruyter,
Berlin and New York, 1995.
Marquez, L., and Rodriguez, H. 1998. Part-of-Speech
Tagging Using Decision Trees, In Proceedings of ECML
1998, 25–36.

Plaehn, O., and Brants, T. 2000. Annotate - An Efficient
Interactive Annotation Tool. In Proceedings of the Sixth
Conference on Applied Natural Language Processing.
Seattle (2000).
Roche, M., Matte-Tailliez, O. , Azé, J., and Kodratoff, Y.
2003. Extraction de la Terminologie du Domaine : Etude
de Mesures sur un Corpus Spécialisé Issu du Web. Actes
de la conférence les Journées Francophones de la Toile
2003, 279-288, Tours, France.
Toutanova, K., Klein, D., Manning, C. D., and Singer, Y.
2003. Feature-Rich Part-of-Speech Tagging with a Cyclic
Dependency Network. In Proceedings of HLT-NAACL
2003, 252-259.
Voutilainen, A. 1995. A syntax-based part-of-speech
analyser. In Proceedings of the Seventh Conference of the
European Chapter of the Association for Computational
Linguistics, Dublin, 1995.
Won-Ho, R., Heui-Seok, L., Jin-Dong, K., and Hae-Chang
R. 2000. KCAT: A Korean Corpus Annotating Tool
Minimizing Human Intervention. In Proceedings of the
Eighteenth International Conference on Computational
Linguistics, 1096-1100.

