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Abstract 
In this paper we present a mathematical formalism for the so 
called systems with roles. We sketch the main problems and 
challenges for the research to be solved and we develop the 
generic algebraic structure, called “lattice with inheritance” 
and use it to describe the system with roles and to deal with 
the so called message dispatch problem. 

Introduction and Motivation 

Talking about the systems with roles, we understand the 
extension of traditional object-oriented systems. The main 
intension of this extension is to weaken the relationship of 
the classes and their instances (objects) and grant the 
objects beside the identity also real individuality. This is 
achieved by the possibility for the objects to be instance of 
multiple unrelated classes and to join or leave the classes 
during the lifetime of the object. 

In traditional object-oriented systems (let’s call them 
systems with classes – in contrast to the systems with 
roles) the object is always an instance of the single class – 
and the object is related to that class at the time of creation. 
Although this seems to be good enough for the transient 
objects within the standard PC applications, with rather 
limited lifetime and scope, this paradigm shows significant 
limitations, when we are talking about object-oriented 
architecture of the long running servers, about distributed 
systems with no central control, about object-oriented 
databases. In these cases, the expectation, that it would be 
enough, if the object belongs to the single class for the 
whole time being, is naive and this limitation significantly 
decreases the power of the object-oriented modeling. 

Another problem related to the modeling within the 
systems with classes, can be called identity versus 
individuality. In object-oriented system, the object is 
identified by its identity, which is unique in the system and 
the same for the whole time being. However the fixed 
relationship with the single class makes the identity the 
only individual property of the object. The rest is 
completely driven by the class; the object has no control 
over structure of its internal status (the problem is 
extremely visible in the ODMG standard – see Cattel and 
Berry 2000, where the structure of the internal status is 
defined within the public ODL description). In the systems 
with roles, beside the identity, object holds also the strong 

individuality, as the structure of the internal status should 
be completely driven by the object and it should be only 
used by the different roles, the object plays. 

Although there is some theoretical research mainly 
interested in class hierarchy modeling, where the 
difference between the roles and multiple inheritance is not 
really crucial – like in (Godin and Mili 1993 or Snasel and 
Benes 2002), the main concern is now about 
implementations of the systems with roles (Albano et al. 
1993, Gottlob et al. 1996). These implementations however 
show lack of the theoretical backgrounds and the answers 
to some challenges, related to the systems with roles, are 
driven more by the pragmatic attitude to implement 
something, then by the desire to find the right answer. – 
That’s especially true for the message dispatch problem, 
which we would like to cover in this paper. 

The rest of the paper is organized as follows: section 2 
describes the basic language constructs, which are 
necessary to transform the system with classes to the 
system with roles, section 3 present simple mathematical 
construct, called lattice with inheritance, section 4 uses this 
construct to provide formal model of the system with roles, 
section 5 offers a formalism for the message dispatch 
problem within the systems with roles, section 6 
investigates the possible approaches toward the solution of 
this problem and finally section 7 closes the paper with 
some conclusions and further research plans. 

Language Constructs 

Looking for the programming language for the systems 
with roles, we would like to keep all the benefits we gain 
with the systems with classes. Among the key benefits 
belong following capabilities of the classes (for detailed 
reasoning about these benefits, see for instance Meyer 
1997): 

• To organize the related coding together 
• To act as the type in the system 
• To encapsulate, to hide the implementation details 
• To inherit the definition from the ancestors and to 

form the inheritance hierarchy 
• Capability of the instance of the particular class to act 

as instance of class’ ancestors – so called polymorphism. 
So, there are a lot of good reasons to keep the classes in 

the system. After all the roles are nothing else then classes 



again, the difference is only how these classes are related 
to the objects in the system.  

The well known operator new of the systems with 
classes does in fact two operations: it generates new object 
identity and it assigns this identity to the specified class. In 
the system with roles, these two operations are not tight 
together anymore and thus it is good to split them into two 
operators – create and bind; it is of course not forbidden to 
provide later on the operator new again as macro or 
sequence of the two operators in the row – especially 
because it is unlikely, that the objects could be treated “per 
se” – the only way, how to treat the object, is via the 
perspective of any of its roles. 

The object with the initial role Person can  be created 
the following way: 

Person persJohn = create bind Person(“John”) 

(It can look a bit different for every single programming 
language, but let’s use some pseudo-language, similar 
somehow to the most common programming languages) 

Following code adds another role – Student – to the 
person: 

Student studJohn = persJohn bind 

 Student(“Technical University Brno”) 

And this one adds yet another role – Driver: 
Driver drivJohn = persJohn bind  

 Driver(“Skoda Octavia”) 

The systems with classes with the stronger type-control 
offer the possibility to downcast the object reference – 
either driven by listed class name, like in Java (Arnold and 
Gosling 1996), or driven by the receiving variable, like in 
Eiffel (Meyer 1997). In the system with roles the casting 
requires greater flexibility and it can’t be related anymore 
to the single direction – down. Thus it would be better to 
introduce the special operator cast for it to make it more 
explicit: 

Driver drivJohn2 = studJohn cast Driver 

Nowadays the de-allocation of the instance of the class 
is done by the garbage collector in the most common 
systems with classes. That can be for sure true also for the 
systems with roles – when there is no reference anymore to 
any of the roles of the object, the object – and all its roles – 
can be garbage-collected. However we need also special 
construct to drop just one role from the object. – That can’t 
be done the same way, as there is the object, which always 
keeps the reference to all its roles (although it doesn’t have 
to be the reference of the same kind as the references, 
stored in the variables in the programming code). So we 
need one more operator, which just do the work: 

unbind drivJohn2 

This single line of the code shows one problem: if this 
command is performed, the variable drivJohn would 
contain the invalid reference, because variables drivJohn 
and drivJohn2 refer to the same role of the person John. – 
Perhaps for the sake of the security, this operation should 
not be allowed as long as there is another reference to the 
role Driver of the person John. But it can be ignored now 
as implementation detail. 

So far about programming, in the next sections we turn 
our minds to the theory and mathematics. 

Lattice with Inheritance  

In this section, we develop generic algebraic structure, we 
call lattice with inheritance. 

Within the section, [S, ≤] denotes the lattice. For every x 
∈ S we define the set x↑ = {y ∈ S | x ≤ y} – so called main 
upper set of the element x – and x↓ = {y ∈ S | y ≤ x} – 
main lower set of the element x. 

Definition. Let φ ⊆ S is a predicate defined on S. The 
predicate φ is closed for the upper sets, if (∀x ∈ S)(x ∈ φ 
→ x↑  ⊆ φ).  

Definition. Let φ ⊆ S and ψ ⊆ S are predicates defined 
on S. We call the pair [φ, ψ] the upper inheritance 
structure, if ψ ⊆ φ and φ is closed for the upper sets.  

Definition. Let [φ, ψ] is an upper inheritance structure. 
Then for every x ∈ S we define the set χ(x) = {y ∈ x↓ | y 
∈ ψ}. The set χ(x) is called lower override of the element 
x.  

Comment. Notice the reverse of the order. It would not 
be much interesting to investigate the elements above x, 
because the predicate φ is closed for the upper sets. There 
are probably only a few elements below x, which belongs 
also to ψ. – These elements are what we are looking for. 

Proposition. (∀x ∈ S)(x ∉ φ → χ(x) = ∅). 
Proof. Be y ∈ χ(x). Then y ∈ x↓ and thus y ≤ x and thus 

x ∈ y↑. Also y ∈ ψ and thus y ∈ φ. Because y ∈ φ → 
y↑ ⊆ φ and x ∈ y↑, then x ∈ φ. Contradiction. ■  

Definition. For every X ⊆ S we define the set χ(X) = 
∪x∈X χ(x); χ(∅) = ∅. 

Proposition. (∀X ⊆ S)(χ(X) = {y ∈ ψ | (∃x ∈ X)(y ≤ 
x)}. 

Proof. Let T = {y ∈ ψ | (∃x ∈ X)(y ≤ x)}. We prove both 
inclusions.  

A. Firstly χ(X) ⊆ T: Let z ∈ χ(X) → (∃x ∈ X)(z ∈ χ(x)) 
→ (∃x ∈ X)(z ∈ x↓ & z ∈ ψ) → z ∈ ψ & (∃x ∈ X)(z ≤ x) 
→ z ∈ T.  

B. Secondly T ⊆ χ(X): Let z ∈ T → z ∈ ψ & (∃x ∈ X)(z 
≤ x) → (∃x ∈ X)(z ∈ x↓ & z ∈ ψ) → (∃x ∈ x)(z ∈ χ(x)) 
→ z ∈ χ(X). ■  

Definition. Upper inheritance structure [φ, ψ] is lower-
bounded if (∀x ∈ S)(∃y ∈ x↓)(x ∈ φ → y ∈ ψ). 

Proposition. Be [φ, ψ] lower-bounded upper inheritance 
structure. Then (∀x ∈ S)(x ∈ φ ↔ χ(x) ≠ ∅). 

Proof. A. Be x ∈ φ. Consider χ(x) = ∅, it means {y ∈ 
x↓ | y ∈ ψ} = ∅. So it means for every y ∈ x↓ → y ∉ ψ, 
which can’t be, because [φ, ψ] is lower-bounded.  

B. χ(x) ≠ ∅ → x ∈ φ. It is equivalent to x ∉ φ → χ(x) = 
∅, which was already proven above. ■  

Comment. Everything developed so far for the upper 
inheritance structures and their lower overrides can be 
done similarly for the lower inheritance structures and their 
upper overrides. 



Formalism of the System with Roles 

We now use the structure developed in the previous section 
to describe the systems with roles. Instead of giving the 
definition at the beginning of the section, we develop the 
definition step-by-step. Every introduced notations and 
designations are valid through the whole section. 

Let C, M and O be three disjoint finite sets. C is set of 
classes, M is set of messages and O is set of objects. Let 
[C, <:] be a lattice on C. 

The partial order <: forming the lattice presents the 
relation of the subtyping and/or subclassing (assume these 
two relations as identical for now, as it is usual in the most 
of the common object-oriented systems). Perhaps the idea 
of the lattice doesn’t fit to the imagination of the usual 
developer, bearing in mind the tree-structure, presenting 
the single inheritance. However, when we introduce the 
multiple inheritance and we would accept it as frequently 
used technique, the subclassing/subtyping relation would 
form the generic lattice. For relationships between the class 
hierarchies and lattices, see (Godin and Mili 1993). 

We define two relations ∼ and ≈ on the set C × M ∪ C × 
O. 

The pair [c, m] ∈ ∼ if the class c accepts the message m 
– it means, when the message m is part of the public 
interface of the class c. The pair [c, m] ∈ ≈ if the class 
implements the message m, so its definition contains the 
method for the message m. 

The pair [c, o] ∈ ∼ if the object belongs to the class c. 
The pair [c, o] ∈ ≈ if the object has got the class/role c 
using the operator bind. 

Then we define for every message m ∈ M the lower 
inheritance structure [φ(m), ψ(m)], where φ(m) = {c ∈ C | 
[c, m] ∈ ∼} and ψ(m) = {c ∈ C | [c, m] ∈ ≈}, and for every 
object o ∈ O the upper inheritance structure [φ(o), ψ(o)], 
where φ(o) = {c ∈ C | [c, o] ∈ ∼} and ψ(o) = {c ∈ C | [c, o] 
∈ ≈}, both with the respect to the lattice [C, <:]. 

To keep the number of the braces in the notation lower, 
we use notation m-φ, m-ψ, o-φ, o-ψ and also m-χ 
(denoting upper override χ(m) of the lower inheritance 
structure [m-φ, m-ψ]) and o-χ (denoting lower override 
χ(o) of the upper inheritance structure [o-φ, o-ψ]). 

We should verify that the required properties of the 
inheritance structure are satisfied within the systems with 
roles. 

The predicate m-φ ⊆ C denotes the fact, that the class c 
∈ m-φ accepts the message m. If the class c ∈ C accepts 
the message, so do all the subclasses d ∈ c↓, so it means 
that the predicate m-φ is closed for the lower sets. The 
predicate m-ψ ⊆ C denotes the fact, that the class c has 
implemented method for the message m. Obviously such a 
class also accepts the message and thus m-ψ ⊆ m-φ, so the 
[m-φ, m-ψ] is lower inheritance structure, as required. 

Note, that the lower inheritance structure about 
messages and methods shows no difference for both 
systems with classes and systems with roles. 

The predicate o-φ ⊆ C denotes the fact that the object o 
belongs to the class c ∈ o-φ. If the object o belongs to the 
class c ∈ C, then the object belongs also to all its 

superclasses d ∈ c↑, so the predicate o-φ is closed for the 
upper sets. The predicate o-ψ ⊆ C describes the 
relationship established by the operator bind, which binds 
the objects and classes together. We call these classes the 
proper classes of the object. Obviously, if the object o has 
the proper class c (so it means c ∈ o-ψ), the object belongs 
to the class c (so it means c ∈ o-φ) and then o-ψ ⊆ o-φ and 
[o-φ, o-ψ] is the upper inheritance structure, as required. 

Here the modeling already shows the difference between 
the systems with classes and systems with roles: o-ψ in the 
system with the classes contains always the single element, 
in the system with roles it is can be an arbitrary subclass of 
the class c, which fits to some particular conditions. 

Especially the upper inheritance structure [o-φ, o-ψ] 
must be lower-bounded, because if the object belongs to 
the class c, then there must be the subclass d of the class c 
(so it means d <: c, or d ∈ c↓), which is the proper class of 
the object.  

On the other hand, the lower inheritance structure [m-φ, 
m-ψ] does not need to be upper-bounded. If it would be 
upper-bounded, than for every c ∈ C would hold that c ∈ 
m-φ → m-χ(c) ≠ ∅. But usually there are classes, for 
which c ∈ m-φ & m-χ(c) = ∅ for some m ∈ M – so there 
are some messages, for which neither the class nor any of 
its superclasses can provide the implementation of the 
message. These classes are called abstract classes. The 
complete classes (the opposite term to the abstract classes) 
on the other hand fulfills the condition (∀m ∈ M)(c ∈ m-φ 
→ m-χ(c) ≠  ∅). This can be used to connect together the 
m-ψ and o-ψ, because the only complete classes can be 
used by the operator bind. So, it means: (∀c ∈ C)(∀m ∈ 
M)(∀o ∈ O)(c ≈ o & c ∼ m → m-χ(c) ≠ ∅), or in words: if 
the class c is the proper class of the object o and the class c 
accepts the message m, then there are some methods within 
the superclasses of the class c available implementing the 
message m. This is rather good property of the typed 
object-oriented languages.  

Definition. The system with roles is the 6-tuple (C, M, 
O, <:, ∼, ≈), where the following conditions hold: 

1. The C, M, O are disjoint finite sets; 
2. [C, <:] is lattice; 
3. For every m ∈ M the pair [m-φ, m-ψ] defined above 

is lower inheritance structure in [C, <:]; 
4. For every o ∈ O the pair [o-φ, o-ψ] defined above is 

upper inheritance structure, moreover lower-bounded; 
5. For every c ∈ C, m ∈ M, o ∈ O the following 

condition holds: c ≈ o & c ∼ m → m-χ(c) ≠ ∅. 

Message Dispatch Problem 

Having our world in shape, we define the message dispatch 
problem now. There is a piece of the programming code 
(called client code). This client code holds the reference to 
the object o ∈ O within the typed variable x of type of the 
class c ∈ C. Obviously then c ∼ o. The client code sends 
the message m ∈ M to the reference to the object o ∈ O, 
stored in the variable x. Consider the client code is 



properly type-checked, so the condition c ∼ m must hold 
too. 

Schematically: 
Type(c) x = o cast Type(c); 

x.m(); 

We are then interested in the partial function md: O × M 
× C → C, where md is defined for every triple [o, m, c] 
such, that c ∼ o and c ∼ m, and where md(o, m, c) selects 
the class with the best possible implementation of the 
message m. But what does that mean exactly? 

Let d = md(o, m, c) for the rest of the section. We can 
express several conditions we want to be true for d: 

• (Implementation) d ≈ m 
• (Semantics) (∃e ∈ C)(e ≈ o & e <: c & e <: d) 
• (Best choice) (∀e ∈ C)(e ≈ m & e ∼ o → ¬(e <: d)) 
Implementation condition is obvious: this is what we are 

looking for, the class knowing the implementation for the 
message.  

For better understanding of the Semantics condition, 
let’s think a while about the systems with classes and with 
single inheritance (like Java for instance). In such a case, 
there is exactly one class e ≈ o and the set of all its super 
classes {x ∈ C | e <: x} contains c as well as d and is 
linearly ordered. So, it means either e <: d <: c holds or e 
<: c <: d holds. In the system with roles, there can be 
multiple classes e ≈ o and the sets of all their super classes 
form generic lattices. Then the condition about the 
“consistent semantic relationship” between c and d can be 
naturally generalized into the condition above: the object o 
must belong to the class d (e ≈ o & e <: d → d ∼ o) and the 
proper class e of the object o must be the subclass of both 
classes c and d. Then semantically the relationship between 
the given class c and resolved class d is somehow 
guaranteed.  

Best choice condition is related to the polymorphism: it 
says that the message dispatch function should provide the 
implementation, which is the best possible within the all 
possible implementations, which are in the scope of the 
object. In the system with classes and with single 
inheritance, the set o-φ = {e ∈ C | e ∼ o} is linearly ordered 
and thus also o-φ ∩ m-ψ is linearly ordered and d is the 
minimal element of this final linearly ordered set (which 
must exists). If we loose the linear ordering in the generic 
case, we have to weaken the condition, so d is not the 
minimal element anymore, but at least, there is no smaller 
element with respect to the partial order <: on the class C. 

Theorem. (Pessimistic Theorem on Message Dispatch) 
Let d ∈ C. Then d fulfills the three conditions above 
(Implementation, Semantics and Best Choice) if and only if 
d ∈ min(m-χ(o-χ(c))). 

Proof. We prove both inclusions. A. Let X = {d ∈ C | d 
≈ m } and Y = {d ∈ C | (∃c ∈ C)(e ≈ o & e <: c & e <: d)}. 
Because o-χ(c) = {e ∈ C | e ≈ o & e <: c}, we can write Y 
= ∪e∈o-χ(c){d ∈ C | e <: d}. Then X ∩ Y = ∪e∈o-χ(c){d ∈ C | 
d ≈ m & e <: d} = ∪e∈o-χ(c)m-χ(e) = m-χ(o-χ(c)). So, if d 
fulfills Implementation and Semantics conditions, it 
belongs to the set m-χ(o-χ(c)). Assume now, that d fulfills 
also Best Choice condition, but not d ∈ min(m-χ(o-χ(c)). 

So, it means there must be e ∈ C, such that e ∈ m-χ(o-
χ(c)) and e <: d. But it means there is x ∈ C such that e ∈ 
m-χ(x), which means e ≈ m and x <: e, and x ∈ o-χ(c), 
which means x ≈ o and thus e ∼ o. But then e ≈ m & e ∼ o 
& e <: d, which is contradiction with Best Choice 
condition. 

B. Now assume d ∈ min(m-χ(o-χ(c)). Be x ∈ C any 
arbitrary class such that d ∈ m-χ(x) and x ∈ o-χ(c). If d ∈ 
m-χ(x), then d ≈ m (Implementation) and x <: d. If x ∈ o-
χ(c), then x ≈ o and x <: c, which all together gets 
Semantics. Now assume there is e ∈ C such that e ≈ m & e 
∼ o & e <: d. If e <: d and d ∈ min(m-χ(x)), then e ∉ m-
χ(x) and then either ¬(e ≈ m) or ¬(x <: e). Because e ≈ m 
belongs among the premises, ¬(x <: e) must hold. But 
because x ∈ o-χ(c) is any arbitrary such class, and because 
x ≈ o and e ∼ o, and because [o-φ, o-ψ] is lower-bounded, 
at least for one x ∈ o-χ(c) must hold, that x <: e. 
Contradiction. ■ 

Why the theorem is called pessimistic? Because it says, 
that if we take into account for the definition of the 
function md only the object o, the message m, it receives, 
and the class c, i.e. the role it plays, and we require the 
conditions above to hold, then the set min(m-χ(o-χ(c))) is 
the best possible result, we can get. – And we learned that 
for the systems with classes with single inheritance, this is 
enough to solve the message dispatch problem (because the 
set min(m-χ(o-χ(c))) contains only the single element) and 
it models well the known behavior of these systems.  

If the system supports multiple inheritance the problem 
is usually identified already within the process of 
compilation, and the programmer, still present, is forced to 
declare the solution within the source code. 

This is however not possible for the systems with roles, 
when this problem can occur when existing object gets 
another proper class – and at this time, the programmer is 
not available anymore. So, we desperately need the system 
to solve this problem on its own. 

Note that the problem, which can be caused in the 
systems with multiple inheritance, is sub-problem of that 
one in the systems with roles and the solution to the later 
one would solve the former one automatically. 

Toward the Solution of the Problem 

So, what we need is to bring additional pieces of 
information into the message dispatch process. We are not 
ready to present the final solution now, but we can at least 
demonstrate some approaches, we would like to 
investigate. There are at least two candidates for additional 
data: context of the call and context of the bind.  

Context of the Call  
The client code, who sends the message to the object o, has 
one competence these days: it selects using the operator 
cast the class c, which is used as the starting point for the 
message dispatch algorithm. Attempt to take some 
attributes of the client and influence with them the message 



dispatch algorithm itself, it is addressed in research only 
rarely. In (Sato and Aritsugi 2003) for instance the receiver 
of the message decided the message dispatch problem 
using the table with classification of the senders of the 
message. However such a solution means the great price of 
inflexibility. It is not acceptable to list within the every 
receiver of the message the taxonomy of the possible 
senders and build the message dispatch algorithm around 
it.  

What we know and we can use is the following: the 
client code appears in certain method of certain class and 
the caller object belongs to this class (we don’t consider 
the static methods for the sake of the simplicity). That can 
give us again the triplet [o, m, c]. Having these sender 
triplet and receiver triplet and knowing enough details 
about the class lattice, where both sender and receiver 
belong to, we can help ourselves to sort the elements of the 
set min(m-χ(o-χ(c))) (which depends only on the receiver) 
by the relevance with the sender. 

Context of the Bind 
Another candidate requires the extension of both the 
programming language, and the formalism. The idea is that 
the object doesn’t get usually the new role without any 
surrounding context (in our example above the person 
becomes always the student of certain school), so the 
syntax of the operator bind should be extended with the 
context: 

Student studJohn2 = persJohn  

 bind[“Technical University Brno”] 

 Student() 

That would allow the objects to have the same role 
multiple times for the different contexts (which would be 
the great extension of the modeling power of the system). 

On the other hand, especially if the context would not be 
string (as in simplified example above), but the object or a 
role of the object, the relationship between the objects and 
their contexts can help to identify the correct method for 
the message. It can be either relationship between context 
of the receiver and context of the sender or even between 
the context of the receiver and the sender itself (like the 
object School – being context of the role Student for 
particular persons –sending messages to all its students). 

Conclusions, Further Work 

In the present paper we have introduced the systems with 
roles as the next generation of the object-oriented systems 
and their formalism. We presented the message dispatch 
problem within the systems with roles and offered some 
directions, where we are looking for the solutions. 

Further work will concentrate on the following issues: 
• Enhance the formalism to cover the roles with the 

context; 
• Verify the formalism with alternative approaches and 

find the translation from other formalisms; 

• Develop an additional structures on the lattice based 
on the relationship between the sender and receiver; 

• Implement the experimental enhancement of the 
known programming language and implement the message 
dispatch algorithm there, illustrating our research. 
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