
Formalism for the Systems with Roles

Tomáš Burger, Tomáš Hruška

Brno University of Technology, Faculty of Informatics
Božetěchova 2

Brno, Czech Republic
burger@fit.vutbr.cz, hruska@fit.vutbr.cz

Abstract
In this paper we present a mathematical formalism for the so
called systems with roles. We sketch the main problems and
challenges for the research to be solved and we develop the
generic algebraic structure, called “lattice with inheritance”
and use it to describe the system with roles and to deal with
the so called message dispatch problem.

Introduction and Motivation

Talking about the systems with roles, we understand the
extension of traditional object-oriented systems. The main
intension of this extension is to weaken the relationship of
the classes and their instances (objects) and grant the
objects beside the identity also real individuality. This is
achieved by the possibility for the objects to be instance of
multiple unrelated classes and to join or leave the classes
during the lifetime of the object.

In traditional object-oriented systems (let’s call them
systems with classes – in contrast to the systems with
roles) the object is always an instance of the single class –
and the object is related to that class at the time of creation.
Although this seems to be good enough for the transient
objects within the standard PC applications, with rather
limited lifetime and scope, this paradigm shows significant
limitations, when we are talking about object-oriented
architecture of the long running servers, about distributed
systems with no central control, about object-oriented
databases. In these cases, the expectation, that it would be
enough, if the object belongs to the single class for the
whole time being, is naive and this limitation significantly
decreases the power of the object-oriented modeling.

Another problem related to the modeling within the
systems with classes, can be called identity versus
individuality. In object-oriented system, the object is
identified by its identity, which is unique in the system and
the same for the whole time being. However the fixed
relationship with the single class makes the identity the
only individual property of the object. The rest is
completely driven by the class; the object has no control
over structure of its internal status (the problem is
extremely visible in the ODMG standard – see Cattel and
Berry 2000, where the structure of the internal status is
defined within the public ODL description). In the systems
with roles, beside the identity, object holds also the strong

individuality, as the structure of the internal status should
be completely driven by the object and it should be only
used by the different roles, the object plays.

Although there is some theoretical research mainly
interested in class hierarchy modeling, where the
difference between the roles and multiple inheritance is not
really crucial – like in (Godin and Mili 1993 or Snasel and
Benes 2002), the main concern is now about
implementations of the systems with roles (Albano et al.
1993, Gottlob et al. 1996). These implementations however
show lack of the theoretical backgrounds and the answers
to some challenges, related to the systems with roles, are
driven more by the pragmatic attitude to implement
something, then by the desire to find the right answer. –
That’s especially true for the message dispatch problem,
which we would like to cover in this paper.

The rest of the paper is organized as follows: section 2
describes the basic language constructs, which are
necessary to transform the system with classes to the
system with roles, section 3 present simple mathematical
construct, called lattice with inheritance, section 4 uses this
construct to provide formal model of the system with roles,
section 5 offers a formalism for the message dispatch
problem within the systems with roles, section 6
investigates the possible approaches toward the solution of
this problem and finally section 7 closes the paper with
some conclusions and further research plans.

Language Constructs

Looking for the programming language for the systems
with roles, we would like to keep all the benefits we gain
with the systems with classes. Among the key benefits
belong following capabilities of the classes (for detailed
reasoning about these benefits, see for instance Meyer
1997):

• To organize the related coding together
• To act as the type in the system
• To encapsulate, to hide the implementation details
• To inherit the definition from the ancestors and to

form the inheritance hierarchy
• Capability of the instance of the particular class to act

as instance of class’ ancestors – so called polymorphism.
So, there are a lot of good reasons to keep the classes in

the system. After all the roles are nothing else then classes

again, the difference is only how these classes are related
to the objects in the system.

The well known operator new of the systems with
classes does in fact two operations: it generates new object
identity and it assigns this identity to the specified class. In
the system with roles, these two operations are not tight
together anymore and thus it is good to split them into two
operators – create and bind; it is of course not forbidden to
provide later on the operator new again as macro or
sequence of the two operators in the row – especially
because it is unlikely, that the objects could be treated “per
se” – the only way, how to treat the object, is via the
perspective of any of its roles.

The object with the initial role Person can be created
the following way:

Person persJohn = create bind Person(“John”)

(It can look a bit different for every single programming
language, but let’s use some pseudo-language, similar
somehow to the most common programming languages)

Following code adds another role – Student – to the
person:

Student studJohn = persJohn bind

 Student(“Technical University Brno”)

And this one adds yet another role – Driver:
Driver drivJohn = persJohn bind

 Driver(“Skoda Octavia”)

The systems with classes with the stronger type-control
offer the possibility to downcast the object reference –
either driven by listed class name, like in Java (Arnold and
Gosling 1996), or driven by the receiving variable, like in
Eiffel (Meyer 1997). In the system with roles the casting
requires greater flexibility and it can’t be related anymore
to the single direction – down. Thus it would be better to
introduce the special operator cast for it to make it more
explicit:

Driver drivJohn2 = studJohn cast Driver

Nowadays the de-allocation of the instance of the class
is done by the garbage collector in the most common
systems with classes. That can be for sure true also for the
systems with roles – when there is no reference anymore to
any of the roles of the object, the object – and all its roles –
can be garbage-collected. However we need also special
construct to drop just one role from the object. – That can’t
be done the same way, as there is the object, which always
keeps the reference to all its roles (although it doesn’t have
to be the reference of the same kind as the references,
stored in the variables in the programming code). So we
need one more operator, which just do the work:

unbind drivJohn2

This single line of the code shows one problem: if this
command is performed, the variable drivJohn would
contain the invalid reference, because variables drivJohn
and drivJohn2 refer to the same role of the person John. –
Perhaps for the sake of the security, this operation should
not be allowed as long as there is another reference to the
role Driver of the person John. But it can be ignored now
as implementation detail.

So far about programming, in the next sections we turn
our minds to the theory and mathematics.

Lattice with Inheritance

In this section, we develop generic algebraic structure, we
call lattice with inheritance.

Within the section, [S, ≤] denotes the lattice. For every x
∈ S we define the set x↑ = {y ∈ S | x ≤ y} – so called main
upper set of the element x – and x↓ = {y ∈ S | y ≤ x} –
main lower set of the element x.

Definition. Let φ ⊆ S is a predicate defined on S. The
predicate φ is closed for the upper sets, if (∀x ∈ S)(x ∈ φ
→ x↑ ⊆ φ).

Definition. Let φ ⊆ S and ψ ⊆ S are predicates defined
on S. We call the pair [φ, ψ] the upper inheritance
structure, if ψ ⊆ φ and φ is closed for the upper sets.

Definition. Let [φ, ψ] is an upper inheritance structure.
Then for every x ∈ S we define the set χ(x) = {y ∈ x↓ | y
∈ ψ}. The set χ(x) is called lower override of the element
x.

Comment. Notice the reverse of the order. It would not
be much interesting to investigate the elements above x,
because the predicate φ is closed for the upper sets. There
are probably only a few elements below x, which belongs
also to ψ. – These elements are what we are looking for.

Proposition. (∀x ∈ S)(x ∉ φ → χ(x) = ∅).
Proof. Be y ∈ χ(x). Then y ∈ x↓ and thus y ≤ x and thus

x ∈ y↑. Also y ∈ ψ and thus y ∈ φ. Because y ∈ φ →
y↑ ⊆ φ and x ∈ y↑, then x ∈ φ. Contradiction. ■

Definition. For every X ⊆ S we define the set χ(X) =
∪x∈X χ(x); χ(∅) = ∅.

Proposition. (∀X ⊆ S)(χ(X) = {y ∈ ψ | (∃x ∈ X)(y ≤
x)}.

Proof. Let T = {y ∈ ψ | (∃x ∈ X)(y ≤ x)}. We prove both
inclusions.

A. Firstly χ(X) ⊆ T: Let z ∈ χ(X) → (∃x ∈ X)(z ∈ χ(x))
→ (∃x ∈ X)(z ∈ x↓ & z ∈ ψ) → z ∈ ψ & (∃x ∈ X)(z ≤ x)
→ z ∈ T.

B. Secondly T ⊆ χ(X): Let z ∈ T → z ∈ ψ & (∃x ∈ X)(z
≤ x) → (∃x ∈ X)(z ∈ x↓ & z ∈ ψ) → (∃x ∈ x)(z ∈ χ(x))
→ z ∈ χ(X). ■

Definition. Upper inheritance structure [φ, ψ] is lower-
bounded if (∀x ∈ S)(∃y ∈ x↓)(x ∈ φ → y ∈ ψ).

Proposition. Be [φ, ψ] lower-bounded upper inheritance
structure. Then (∀x ∈ S)(x ∈ φ ↔ χ(x) ≠ ∅).

Proof. A. Be x ∈ φ. Consider χ(x) = ∅, it means {y ∈
x↓ | y ∈ ψ} = ∅. So it means for every y ∈ x↓ → y ∉ ψ,
which can’t be, because [φ, ψ] is lower-bounded.

B. χ(x) ≠ ∅ → x ∈ φ. It is equivalent to x ∉ φ → χ(x) =
∅, which was already proven above. ■

Comment. Everything developed so far for the upper
inheritance structures and their lower overrides can be
done similarly for the lower inheritance structures and their
upper overrides.

Formalism of the System with Roles

We now use the structure developed in the previous section
to describe the systems with roles. Instead of giving the
definition at the beginning of the section, we develop the
definition step-by-step. Every introduced notations and
designations are valid through the whole section.

Let C, M and O be three disjoint finite sets. C is set of
classes, M is set of messages and O is set of objects. Let
[C, <:] be a lattice on C.

The partial order <: forming the lattice presents the
relation of the subtyping and/or subclassing (assume these
two relations as identical for now, as it is usual in the most
of the common object-oriented systems). Perhaps the idea
of the lattice doesn’t fit to the imagination of the usual
developer, bearing in mind the tree-structure, presenting
the single inheritance. However, when we introduce the
multiple inheritance and we would accept it as frequently
used technique, the subclassing/subtyping relation would
form the generic lattice. For relationships between the class
hierarchies and lattices, see (Godin and Mili 1993).

We define two relations ∼ and ≈ on the set C × M ∪ C ×
O.

The pair [c, m] ∈ ∼ if the class c accepts the message m
– it means, when the message m is part of the public
interface of the class c. The pair [c, m] ∈ ≈ if the class
implements the message m, so its definition contains the
method for the message m.

The pair [c, o] ∈ ∼ if the object belongs to the class c.
The pair [c, o] ∈ ≈ if the object has got the class/role c
using the operator bind.

Then we define for every message m ∈ M the lower
inheritance structure [φ(m), ψ(m)], where φ(m) = {c ∈ C |
[c, m] ∈ ∼} and ψ(m) = {c ∈ C | [c, m] ∈ ≈}, and for every
object o ∈ O the upper inheritance structure [φ(o), ψ(o)],
where φ(o) = {c ∈ C | [c, o] ∈ ∼} and ψ(o) = {c ∈ C | [c, o]
∈ ≈}, both with the respect to the lattice [C, <:].

To keep the number of the braces in the notation lower,
we use notation m-φ, m-ψ, o-φ, o-ψ and also m-χ
(denoting upper override χ(m) of the lower inheritance
structure [m-φ, m-ψ]) and o-χ (denoting lower override
χ(o) of the upper inheritance structure [o-φ, o-ψ]).

We should verify that the required properties of the
inheritance structure are satisfied within the systems with
roles.

The predicate m-φ ⊆ C denotes the fact, that the class c
∈ m-φ accepts the message m. If the class c ∈ C accepts
the message, so do all the subclasses d ∈ c↓, so it means
that the predicate m-φ is closed for the lower sets. The
predicate m-ψ ⊆ C denotes the fact, that the class c has
implemented method for the message m. Obviously such a
class also accepts the message and thus m-ψ ⊆ m-φ, so the
[m-φ, m-ψ] is lower inheritance structure, as required.

Note, that the lower inheritance structure about
messages and methods shows no difference for both
systems with classes and systems with roles.

The predicate o-φ ⊆ C denotes the fact that the object o
belongs to the class c ∈ o-φ. If the object o belongs to the
class c ∈ C, then the object belongs also to all its

superclasses d ∈ c↑, so the predicate o-φ is closed for the
upper sets. The predicate o-ψ ⊆ C describes the
relationship established by the operator bind, which binds
the objects and classes together. We call these classes the
proper classes of the object. Obviously, if the object o has
the proper class c (so it means c ∈ o-ψ), the object belongs
to the class c (so it means c ∈ o-φ) and then o-ψ ⊆ o-φ and
[o-φ, o-ψ] is the upper inheritance structure, as required.

Here the modeling already shows the difference between
the systems with classes and systems with roles: o-ψ in the
system with the classes contains always the single element,
in the system with roles it is can be an arbitrary subclass of
the class c, which fits to some particular conditions.

Especially the upper inheritance structure [o-φ, o-ψ]
must be lower-bounded, because if the object belongs to
the class c, then there must be the subclass d of the class c
(so it means d <: c, or d ∈ c↓), which is the proper class of
the object.

On the other hand, the lower inheritance structure [m-φ,
m-ψ] does not need to be upper-bounded. If it would be
upper-bounded, than for every c ∈ C would hold that c ∈
m-φ → m-χ(c) ≠ ∅. But usually there are classes, for
which c ∈ m-φ & m-χ(c) = ∅ for some m ∈ M – so there
are some messages, for which neither the class nor any of
its superclasses can provide the implementation of the
message. These classes are called abstract classes. The
complete classes (the opposite term to the abstract classes)
on the other hand fulfills the condition (∀m ∈ M)(c ∈ m-φ
→ m-χ(c) ≠ ∅). This can be used to connect together the
m-ψ and o-ψ, because the only complete classes can be
used by the operator bind. So, it means: (∀c ∈ C)(∀m ∈
M)(∀o ∈ O)(c ≈ o & c ∼ m → m-χ(c) ≠ ∅), or in words: if
the class c is the proper class of the object o and the class c
accepts the message m, then there are some methods within
the superclasses of the class c available implementing the
message m. This is rather good property of the typed
object-oriented languages.

Definition. The system with roles is the 6-tuple (C, M,
O, <:, ∼, ≈), where the following conditions hold:

1. The C, M, O are disjoint finite sets;
2. [C, <:] is lattice;
3. For every m ∈ M the pair [m-φ, m-ψ] defined above

is lower inheritance structure in [C, <:];
4. For every o ∈ O the pair [o-φ, o-ψ] defined above is

upper inheritance structure, moreover lower-bounded;
5. For every c ∈ C, m ∈ M, o ∈ O the following

condition holds: c ≈ o & c ∼ m → m-χ(c) ≠ ∅.

Message Dispatch Problem

Having our world in shape, we define the message dispatch
problem now. There is a piece of the programming code
(called client code). This client code holds the reference to
the object o ∈ O within the typed variable x of type of the
class c ∈ C. Obviously then c ∼ o. The client code sends
the message m ∈ M to the reference to the object o ∈ O,
stored in the variable x. Consider the client code is

properly type-checked, so the condition c ∼ m must hold
too.

Schematically:
Type(c) x = o cast Type(c);

x.m();

We are then interested in the partial function md: O × M
× C → C, where md is defined for every triple [o, m, c]
such, that c ∼ o and c ∼ m, and where md(o, m, c) selects
the class with the best possible implementation of the
message m. But what does that mean exactly?

Let d = md(o, m, c) for the rest of the section. We can
express several conditions we want to be true for d:

• (Implementation) d ≈ m
• (Semantics) (∃e ∈ C)(e ≈ o & e <: c & e <: d)
• (Best choice) (∀e ∈ C)(e ≈ m & e ∼ o → ¬(e <: d))
Implementation condition is obvious: this is what we are

looking for, the class knowing the implementation for the
message.

For better understanding of the Semantics condition,
let’s think a while about the systems with classes and with
single inheritance (like Java for instance). In such a case,
there is exactly one class e ≈ o and the set of all its super
classes {x ∈ C | e <: x} contains c as well as d and is
linearly ordered. So, it means either e <: d <: c holds or e
<: c <: d holds. In the system with roles, there can be
multiple classes e ≈ o and the sets of all their super classes
form generic lattices. Then the condition about the
“consistent semantic relationship” between c and d can be
naturally generalized into the condition above: the object o
must belong to the class d (e ≈ o & e <: d → d ∼ o) and the
proper class e of the object o must be the subclass of both
classes c and d. Then semantically the relationship between
the given class c and resolved class d is somehow
guaranteed.

Best choice condition is related to the polymorphism: it
says that the message dispatch function should provide the
implementation, which is the best possible within the all
possible implementations, which are in the scope of the
object. In the system with classes and with single
inheritance, the set o-φ = {e ∈ C | e ∼ o} is linearly ordered
and thus also o-φ ∩ m-ψ is linearly ordered and d is the
minimal element of this final linearly ordered set (which
must exists). If we loose the linear ordering in the generic
case, we have to weaken the condition, so d is not the
minimal element anymore, but at least, there is no smaller
element with respect to the partial order <: on the class C.

Theorem. (Pessimistic Theorem on Message Dispatch)
Let d ∈ C. Then d fulfills the three conditions above
(Implementation, Semantics and Best Choice) if and only if
d ∈ min(m-χ(o-χ(c))).

Proof. We prove both inclusions. A. Let X = {d ∈ C | d
≈ m } and Y = {d ∈ C | (∃c ∈ C)(e ≈ o & e <: c & e <: d)}.
Because o-χ(c) = {e ∈ C | e ≈ o & e <: c}, we can write Y
= ∪e∈o-χ(c){d ∈ C | e <: d}. Then X ∩ Y = ∪e∈o-χ(c){d ∈ C |
d ≈ m & e <: d} = ∪e∈o-χ(c)m-χ(e) = m-χ(o-χ(c)). So, if d
fulfills Implementation and Semantics conditions, it
belongs to the set m-χ(o-χ(c)). Assume now, that d fulfills
also Best Choice condition, but not d ∈ min(m-χ(o-χ(c)).

So, it means there must be e ∈ C, such that e ∈ m-χ(o-
χ(c)) and e <: d. But it means there is x ∈ C such that e ∈
m-χ(x), which means e ≈ m and x <: e, and x ∈ o-χ(c),
which means x ≈ o and thus e ∼ o. But then e ≈ m & e ∼ o
& e <: d, which is contradiction with Best Choice
condition.

B. Now assume d ∈ min(m-χ(o-χ(c)). Be x ∈ C any
arbitrary class such that d ∈ m-χ(x) and x ∈ o-χ(c). If d ∈
m-χ(x), then d ≈ m (Implementation) and x <: d. If x ∈ o-
χ(c), then x ≈ o and x <: c, which all together gets
Semantics. Now assume there is e ∈ C such that e ≈ m & e
∼ o & e <: d. If e <: d and d ∈ min(m-χ(x)), then e ∉ m-
χ(x) and then either ¬(e ≈ m) or ¬(x <: e). Because e ≈ m
belongs among the premises, ¬(x <: e) must hold. But
because x ∈ o-χ(c) is any arbitrary such class, and because
x ≈ o and e ∼ o, and because [o-φ, o-ψ] is lower-bounded,
at least for one x ∈ o-χ(c) must hold, that x <: e.
Contradiction. ■

Why the theorem is called pessimistic? Because it says,
that if we take into account for the definition of the
function md only the object o, the message m, it receives,
and the class c, i.e. the role it plays, and we require the
conditions above to hold, then the set min(m-χ(o-χ(c))) is
the best possible result, we can get. – And we learned that
for the systems with classes with single inheritance, this is
enough to solve the message dispatch problem (because the
set min(m-χ(o-χ(c))) contains only the single element) and
it models well the known behavior of these systems.

If the system supports multiple inheritance the problem
is usually identified already within the process of
compilation, and the programmer, still present, is forced to
declare the solution within the source code.

This is however not possible for the systems with roles,
when this problem can occur when existing object gets
another proper class – and at this time, the programmer is
not available anymore. So, we desperately need the system
to solve this problem on its own.

Note that the problem, which can be caused in the
systems with multiple inheritance, is sub-problem of that
one in the systems with roles and the solution to the later
one would solve the former one automatically.

Toward the Solution of the Problem

So, what we need is to bring additional pieces of
information into the message dispatch process. We are not
ready to present the final solution now, but we can at least
demonstrate some approaches, we would like to
investigate. There are at least two candidates for additional
data: context of the call and context of the bind.

Context of the Call
The client code, who sends the message to the object o, has
one competence these days: it selects using the operator
cast the class c, which is used as the starting point for the
message dispatch algorithm. Attempt to take some
attributes of the client and influence with them the message

dispatch algorithm itself, it is addressed in research only
rarely. In (Sato and Aritsugi 2003) for instance the receiver
of the message decided the message dispatch problem
using the table with classification of the senders of the
message. However such a solution means the great price of
inflexibility. It is not acceptable to list within the every
receiver of the message the taxonomy of the possible
senders and build the message dispatch algorithm around
it.

What we know and we can use is the following: the
client code appears in certain method of certain class and
the caller object belongs to this class (we don’t consider
the static methods for the sake of the simplicity). That can
give us again the triplet [o, m, c]. Having these sender
triplet and receiver triplet and knowing enough details
about the class lattice, where both sender and receiver
belong to, we can help ourselves to sort the elements of the
set min(m-χ(o-χ(c))) (which depends only on the receiver)
by the relevance with the sender.

Context of the Bind
Another candidate requires the extension of both the
programming language, and the formalism. The idea is that
the object doesn’t get usually the new role without any
surrounding context (in our example above the person
becomes always the student of certain school), so the
syntax of the operator bind should be extended with the
context:

Student studJohn2 = persJohn

 bind[“Technical University Brno”]

 Student()

That would allow the objects to have the same role
multiple times for the different contexts (which would be
the great extension of the modeling power of the system).

On the other hand, especially if the context would not be
string (as in simplified example above), but the object or a
role of the object, the relationship between the objects and
their contexts can help to identify the correct method for
the message. It can be either relationship between context
of the receiver and context of the sender or even between
the context of the receiver and the sender itself (like the
object School – being context of the role Student for
particular persons –sending messages to all its students).

Conclusions, Further Work

In the present paper we have introduced the systems with
roles as the next generation of the object-oriented systems
and their formalism. We presented the message dispatch
problem within the systems with roles and offered some
directions, where we are looking for the solutions.

Further work will concentrate on the following issues:
• Enhance the formalism to cover the roles with the

context;
• Verify the formalism with alternative approaches and

find the translation from other formalisms;

• Develop an additional structures on the lattice based
on the relationship between the sender and receiver;

• Implement the experimental enhancement of the
known programming language and implement the message
dispatch algorithm there, illustrating our research.

Acknowledgments. The research has been supported by
the Czech Ministry of Education in frame of the MSM
0021630503 Research Intention MIKROSYN: New Trends
in Microelectronic Systems and Nanotechnologies, and by
the Grant Agency of the Czech Republic through the grant
GACR 102/05/0723: A Framework for Formal
Specifications and Prototyping of Information System's
Network Applications.

References

Albano, A., Bergamini, R., Ghelli, G., and Orsini, R. 1993. An
Object Data Model with Roles. In Proceedings of the 19th
International Conference on Very Large Data Bases, 39 – 51. San
Francisco, CA: Morgan Kaufmann Publishers.
Snášel, V., Beneš, M. 2002. Deducing Design Class Hierarchy
From Object Properties.. In Proceedings of the 5th International
Conference on Information Systems Modelling, 203-212. Ostrava,
CZ: MARQ.
Godin, R., and Mili, H. 1993. Building and Maintaining Analysis-
level Class Hierarchies Using Galois Lattices. In Proceedings of
the 8th Annual Conference on Object-oriented Programming
Systems, Languages, and Applications, 394-410. New York, NY:
ACM Press.
Arnold, K., and Gosling, J. 1996. The Java programming
language. Reading, Mass.: Addison-Wesley.
Gottlob, G., Schrefl, M., and Röck, B. 1996. Extending Object-
oriented Systems With Roles. In ACM Transactions on
Information Systems, volume 14 , issue 3, 268-296. New York,
NY: ACM Press.
Meyer, B. 1997. Object-Oriented Software Construction, 2nd
edition. Prentice Hall.
Cattel, R.D.D., Berry, D.K. eds. 2000. The Object Data Standard:
ODMG 3.0. San Francisco, CA: Morgan Kaufmann Publishers.
Sato, H., and Aritsugi, M. 2003. Accessee Controlled Type
Selection for a Multiple-type Object. In Proceedings of the 2003
ACM Symposium on Applied Computing, 515-521. New York,
NY: ACM Press.

