
Comparison of Object-Oriented Approaches for Roles in Programming Languages

Daniel Chernuchin, Oliver S. Lazar and Gisbert Dittrich
University of Dortmund

Abstract
This paper presents, explores and compares object-oriented
approaches for roles in statically typed programming lan-
guages. We choose five solutions which support informa-
tion hiding. On the one hand, we investigate the estab-
lished object-oriented possibilities multiple and interface in-
heritance and the role object pattern, on the other hand, we
examine the language extensions Object Teams and the syn-
tactical extension of classes with roles. We discuss all ap-
proaches in turn, using a versatile example.
The investigation shows that standard approaches interface
inheritance and role object pattern are more appropriate for
enterprise projects. New approaches are not developed far
enough to be used widespread. But they are all promising
proceedings, particularly the approach of roles as components
of classes.

Motivation
Object-oriented development is standard today. One of the
most important reasons is the comprehensibility of models
and codes. This comprehensibility stems from transferring
aspects of the real world to programming languages. In this
way classes, objects, methods, inheritance and templates are
originated. An aspect of the real world is the possibility that
an object appears in different roles. In object-oriented de-
velopment roles are visible properties of an object (Riehle
2000). An object may play different roles simultaneously. It
can be viewed from different perspectives, so that different
properties appear.

Advantages of object-oriented languages are informa-
tion hiding and encapsulation. Functionality and proper-
ties are organized in classes on different abstraction levels
and clients can only access the information on the permit-
ted level. A role concept should improve information hiding
and encapsulation.

The research of roles in the object-oriented area is exten-
sive. But the definitions, modelling ways, examples and tar-
gets are often different (Steimann 2000). We pick out five
approaches which all support a high level of information
hiding. These approaches allow the programmer only to ac-
cess relevant role properties. In our opinion, it is one of the
most important features by dealing with roles. We explore

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the techniques in the area of the statically typed languages
like Java and C++. None of the approaches has until now
become standard.

This paper is a compendium of (Lazar 2005).
In the next section we discuss the related work in the

object-oriented area. Then we introduce criteria of com-
parison of approaches and present an example of an appli-
cation for role investigations. In the following sections we
consider the approaches multiple and interface inheritance,
role object pattern, Object Teams and roles as components of
classes. The last section presents results and the conclusion
of our comparison.

Related Work
The definitions of the term role are various. They vary from
the observable (Steimann 2001), perspective-dependent be-
havior of objects (Mezini 1998), to a certain part of sub-
jective behavior (Kristensen 2001). In this paper we con-
sider natural types which relate to the essence of the objects.
Roles, which appear in specific perspectives, are called role
types (Sowa 1984). A context is an expedient collaboration
of several roles and classes.

An extensive object in a computational system often com-
pletes its tasks while crosscutting a certain amount of vari-
ous contexts. Such an object can be reclassified in subunits
corresponding to contexts. Hence, in each context an object
provides a specific role.

In this article we can not explore all approaches for roles,
we have chosen only five representatives which support in-
formation hiding well. Now we shortly discuss some other
related work.

B. B. Kristensen and K. Østerbye describe a conceptual
model for roles (Kristensen & Østerbye 1996). They dis-
tinguish between intrinsic and extrinsic properties of ob-
jects. Another approach is Object-Oriented Role Analysis
and Modelling (Andersen 1997). In an OOram role model,
patterns of interacting objects are abstracted into a corre-
sponding pattern of interacting roles (Reenskaug, Wold, &
Lehne 1995). There are also class libraries developed for
Smalltalk and Java to handle with roles (Gottlob, Schrefl, &
Roeck 1996; Schrefl & Thalhammer 2002).

Aspect-oriented approaches for role modelling facilitate
further modularisation. Aspect-oriented programming has
been controversially discussed in this context. On the one



hand, it is described as a promising approach for role mod-
els (Kendall 1999), on the other hand, in (Hanenberg & Un-
land 2002) the conclusion is drawn that roles and aspects are
too different. (Hanenberg, Stein, & Unland 2005) even sug-
gest that role programming is a special case of the aspect-
oriented programming. Object Teams (Herrmann 2002b),
Chameleon (Graversen & Beyer 2002) and EpsilonJ (Tamai
2005) are aspect-oriented approaches which syntactically
define roles. In our comparison we take Object Teams as
a representative of the aspect-oriented approaches.

One goal of using roles is to make possible that several
teams of developers work independently from each other on
a software project. This idea was suggested by (Ossher et
al. 1995; 1996) as subject-oriented programming. With
subject-oriented programming the denotation of a method
invocation for a given object is said to be subjective if dif-
ferent method interpretations can result (Kristensen 2001).
Those interpretations depend on the current role of an ob-
ject. That is whenever we speak about programming of
roles we speak about subject-oriented programming. The
five presented approaches deal with subjective views. The
main projects of the subject-oriented community deal with
aspect oriented programming. There are Hyper/J (Thang
& Katayama 2002) and Concern Manipulation Environment
(Harrison, Ossher, & Tarr 2004).

Further role approaches are variational-oriented program-
ming (Mezini 1998) and Templates (VanHilst & Notkin
1996). The information hiding is not their main focus. M.
Mezini handles with incremental behavior variations in dy-
namic typed languages. M. VanHilst and D. Notkin work
on the composition of roles to classes by means of inheri-
tance and templates. The solution of the diamond problem
is given by the inheritance order. The information hiding is
not given, because a role can access properties of other roles.

An overview of several role approaches can be find in
(Baumgart 2003; Steimann 2000).

Criteria of comparison
We need criteria for the comparison of the approaches. We
distinguish between features and general properties of the
approaches. The properties of roles in (Kristensen 1996;
Steimann 2000) form the basis for our research.

We consider the following feature criteria:
1. Encapsulation: This is a distribution of information so

that relevant information to one subject stands together
in pieces of code of appropriate size separated from non-
relevant information.

2. Dependency: A role can influence another one. Hence,
a role-based approach has to provide a possibility to ex-
press dependencies of attributes of different roles. At-
tributes can have the same values or their values depend
from each other. This is important that different roles of
the same entity can have different dependent parts. When
all roles have the same equal part, this is a restricted form
of dependency.

3. Dynamicity: An entity may acquire and abandon roles
dynamically. Restricted forms of dynamicity are activa-
tion and deactivation of roles in a predefined set of poten-

tial roles and the substitution of method contents depend-
ing on the current context.

4. Identity sharing: The object and its roles are seen and
can be manipulated as one entity.

5. Several same roles: An object may play the same role
several times.
A not explicitly named criterion is information hiding.

When being addressed in a certain role, features of other
roles of the object remain invisible. All investigated ap-
proaches support information hiding.

Another not explicitly named criterion is hierarchy of role
and natural types. As information hiding it is fulfilled in
every investigated approach.

The following list shows general properties:
1. Closeness to the object model: This criterion evaluates

how far an approach is geared to the object-oriented par-
adigm.

2. Maintainability and extensibility: This criterion exam-
ines how far the modelling and implementation of an ap-
plication or a module is maintainable and extensible.

3. Comprehensibility: This criterion judges the compre-
hensibility of models and codes. Furthermore, the close-
ness of modelling roles and the corresponding code will
be evaluated. From our point of view this criterion is the
most important.

4. Documentation: This criterion evaluates the documenta-
tion of an approach concerning roles.

5. Progress of development: This criterion evaluates the
quality and the amount of supporting tools and how far the
progress of development is sophisticated. Moreover, the
support for graphical modelling is considered e.g. UML.

There are correlations between the criteria. For example
comprehensibility strongly depends on the closeness to the
object model.

Example
We illustrate all approaches using a versatile example de-
veloped for this purpose. The following example is a part
of a hospital information system (HIS). As there is no stan-
dard method for graphically modelling roles in a computa-
tional system (Steimann 2001), we suggest using a modi-
fied UML-classdiagram as shown in figure 1. For a better
general survey all get- and set-methods have been masked
out. Mapping roles into discrete classes is not a compulsory
presetting for the approaches. This is just one possible al-
ternative which we have chosen to visually illustrate the ex-
ample. The roles of Patient are marked with gray back-
ground colors. These roles appear in contexts which are di-
agrammed as rectangles with round corners. Depending on
a role inheritance path a context can be nested into another
one, e.g. contexts ward and medicine. Besides the requested
relations between classes and roles shown in figure 1 the at-
tributes name of the role SickPatient and id of the role
StudyPatient always contain the same value. These at-
tributes are called equality-dependent. Furthermore the at-
tributes heightInch of the subrole AmbulantPatient



Figure 1: Modified UML-classdiagram with contexts and
roles

and heightCm of the role StudyPatient are function-
dependent. The conversion factor for these attributes is 2.54
(1 inch = 2.54 cm).

Those classes of the example with white background
color are to be considered as classes with exactly one role.

Multiple Inheritance
Multiple inheritance means that a class has multiple su-
perclasses. Every role gets its own class. Figure 2 de-
picts an example as an UML-classdiagram denoted in short-
form for multiple inheritance as a fraction of the HIS-
example. The class Patient inherits from the roles
InPatient and AmbulantPatient at one time. Fur-
thermore, DischargeLetter is associated with the role
InPatient. The following C++ codefragment according
to figure 2 shows how variables with types of the super-
classes get a reference on their subclass. These superclasses
come up to the role types, the subclass comes up to the nat-
ural type. Such an upcast is always possible and typesafe.
Patient* patient = new Patient;
DischargeLetter* dischargeLetter = new

DischargeLetter;
InPatient* inPatient = patient;
dischargeLetter->setPatient(inPatient);
dischargeLetter->print();

Every role type variable of the patient, e.g. inPatient
holds a reference to the same object with the same identity.
While using variables of the type of the superclass, clients
have a constricted view on the object. All the properties
of the natural type that do not belong to the specific role

Figure 2: Multiple inheritance HIS-example

type are masked out. Hence, those restricted views are in
accordance with the roles.

It is easy to handle roles using upcasts. An important dis-
advantage is the lack of possibility to realize dynamicity. In-
heritance is a compile time feature. Thus, one cannot change
the roles of an entity during the run time. A further drawback
is that it is not possible to directly implement dependencies
between attributes offhand. One could explicitly use refer-
ences and modified set-methods to solve that problem (Lazar
2005).

The pros and cons of multiple inheritance have been dis-
cussed for a long time (Mezini 1998). In the meantime most
programmers have accepted that the disadvantages are pre-
ponderant. Hence, many modern programming languages
only provide single and interface inheritance (see section
Interface Inheritance). The most prominent disadvantages
of multiple inheritance are name conflicts and diamond in-
heritance. Name conflicts occur when different superclasses
of one subclass provide attributes with the same name or
methods with the same signature. As soon as the inherit-
ing subclass uses such an attribute or method, the compiler
will put out an error because there is no definite allocation.
When using appropriate upcasts, the upcast leads to an ex-
plicit allocation. Alternative approaches to avoid name con-
flicts can be found in (Mezini 1998). Diamond inheritance
occurs when a subclass inherits from the same superclass
on different inheritance paths multiple times. In figure 2
diamond inheritance is shown with the classes Patient,
InPatient, AmbulantPatient and SickPatient.
Multiple inheritance provides most of the postulated crite-
ria, except dynamicity, implicitly defining dependencies be-
tween attributes and playing the same role coevally multiple
times. It supports information hiding, encapsulation and hi-
erarchy of role and natural types and identity sharing.

Multiple inheritance is not supported by every object
oriented programming language. Especially modern lan-
guages, like Java and C#, only support interface inheritance.
Multiple inheritance is a comprehensible approach although
there is no syntactical difference between role and natural
types. Moreover, it is conform to the object oriented par-
adigm. Multiple inheritance has already been existing for
a long time, development is sophisticated and lots of docu-



mentation are available. However, there is less documenta-
tion concerning roles. Furthermore, standard UML can be
used for graphical modelling.

Interface Inheritance
Interface inheritance is similar to multiple inheritance (see
section Multiple Inheritance). In contrast to multiple in-
heritance, a class can inherit from only one class but it
can implement several interfaces. Interfaces declare only
method signatures and constants. These methods have to
be implemented in subclasses. Nevertheless, interfaces are
legal types, in this case role types. Some classes of fig-
ure 2 become interfaces. Only one of the superclasses of
Patient can stay a class, the others turn into interfaces.
Class Patient in this approach is more complex than in
Multiple Inheritance because it has additional functional-
ity of e.g. AmbulantPatient, StudyPatient and
PayingPatient. SickPatient is an interface, too be-
cause interfaces only inherit interfaces.

A client which accesses an object does not take notice of
the difference between interface and multiple inheritance. It
views only the role type. Steimann defines interfaces as role
types (Steimann 2001).

Thanks to the interfaces, the diamond problem and the
name conflicts of multiple inheritance are solved because
the methods in interfaces do not have contents. The draw-
back of multiple inheritance is that the functionality cannot
be branched out into superclasses. Hence, the classes tend
to become complex.

The progress of development of interface inheritance is
very advanced. All advantages of multiple inheritance for
the client are available with the disadvantage that classes
become more complex. Thus, encapsulation is poorly sup-
ported. Dependencies can be solved because the whole func-
tionality is in one class. Methods can basically use the same
attributes and call each other.

Interface inheritance is supported by many modern pro-
gramming languages e.g. Java and C#. Documentation
about roles is good (Steimann 2001). Like multiple inher-
itance, interface inheritance is a component of the object
model. Comprehensibility loses a little versus multiple in-
heritance because of complex classes. All unmentioned cri-
teria of comparison remain equal to the criteria of multiple
inheritance.

Role Object Pattern
The role object pattern is a specific design pattern. Design
patterns provide successful and practically approved solu-
tions for recurring design problems (Gamma et al. 1997).

The role object pattern models context-specific views on
a so called core object while using role objects. Role ob-
jects can dynamically be appended to or removed from their
core object (Bäumer et al. 2000; Fowler 1997). As de-
scribed in (Fowler 1997) the role object pattern is simi-
lar to the state design pattern. Figure 3 depicts the basic
structure of the role object pattern showing a part of the
HIS-example. In this example the core class is the class
Patient. Clients, in this case DischargeLetter, have
to contact the core object of the type Patient and to ask

for the required role object. Thereby, all role classes are
subclasses of the class PatientRole so that the returned
reference always is of the type PatientRole. This role

Figure 3: The role object pattern

object then needs to be downcasted to the required role ob-
ject type. Furthermore, the client only works on the role
object, not long on the core object. That is why in figure
3 the client DischargeLetter provides associations to
the core class Patient and to the role class InPatient
as well.
InPatient roleObject = new InPatient();
patient.addRole(roleObject);
// ...
InPatient inPatient = patient.roleOf(

InPatient.class);
dischargeLetter.setPatient(inPatient);

For the implementation of the role object pattern the core
object of the type Patient has a container as an attribute
which stores the corresponding role objects. Further it con-
tains methods to return a reference on the required role ob-
ject, to dynamically append and remove role objects at run-
time.

The role object pattern allows an object to play the same
role multiple times with different characteristics, respec-
tively (Lazar 2005). This implies that all role objects and
the core object have different object identities. Furthermore,
this approach is dynamic. It is easy to append and remove
roles which is an important property by modelling the real
world. Information hiding, encapsulation, hierarchy of role
and natural types are supported. Implicitly defining depen-
dencies between attributes is not possible. However, we can
place shared parts of all roles in the core object. M. Fowler
recommends not to use this pattern, if the potential roles
have strong interdependencies (Fowler 1997).

This pattern is fully developed and many frameworks
based on it (Riehle 2000) are developed. Despite the fact
that it is conform with the object-oriented paradigm, it is dif-
ficult to apply and to comprehend because of its complexity.
Maintainability and extensibility is well supported. An ade-
quate documentation and examples can be found in (Fowler
1997) and (Bäumer et al. 2000). Moreover, standard UML
can be used for graphical modelling.

Object Teams
Aspect-oriented programming is an enhancement of object-
oriented, procedural and functional software development
(Kiczales et al. 1997). We only consider the object-oriented
variant. Aspect-oriented programming facilitates a further



dimension of modularisation. A concern is a specific func-
tionality within the whole system. Such a functionality is
usually spread over different classes, which is called cross-
cutting concerns or aspects. Aspect-oriented programming
encapsulates code fragments, representing crosscutting con-
cerns.

Role modelling and implementation with aspect-oriented
programming have been controversially discussed (see sec-
tion Related Work). In this paper we investigate the pro-
gramming model Object Teams. Object Teams introduces
new programming language constructs which support the
modularisation of crosscutting concerns by defining teams
and roles. A team is a collaboration of classes which in-
teract for a common purpose. Classes inside of a team are
called roles which are played by their base classes. Such a
base class comes up to the natural type. The role and the
base class are syntactically connected with the playedBy
keyword. The roles ensure information hiding because they
can restrict the access to the base classes. Thereby we have
to distinguish between callout and callin method bindings.
Callout means that a base class forwards the methods to its
roles. Vice versa a callin weaves role method code into a
base method which causes a change of the behavior of the
base class. For a role method which is called by callin bind-
ing there are three alternatives. A role method can be exe-
cuted before or after the base class method or the base
class method can be replaced.
team class ContextWard {

class InPatient playedBy Patient {
private int room;
int getRoom() {

return room;
}
String getDiagnosis() -> String

getDiagnosis();
}
class DischargeLetter {

private InPatient inPatient;
void setPatient(InPatient p) {

inPatient = p;
}
void print() { ... }

}
}

This code fragment demonstrates a simplified version of
the team ContextWard in the HIS-example. This team
contains two roles InPatient and DischargeLetter.
The class Patient, which is played by its role, is de-
clared outside the team. -> means a callin: The method
getDiagnosis is imported to the role InPatient from
the base class Patient.

Changing and extending an existing application is an ex-
cellent property of Object Teams. The approach supports
information hiding because roles are used as types above all
inside a team. Some dynamicity is given because the con-
tent of methods can be replaced depending on the current
active context. In (Kristensen & Østerbye 1996) this prop-
erty is described as a method role. Ever, the possibility to
activate and deactivate contexts is an advantage of Object
Teams. This allows to define an additional level for role in-

teraction. But the realization of dynamicity and information
hiding simultaneously requires very advanced skills. Inher-
itance of contexts and base classes is allowed. Roles can
inherit from other roles in the parent context or from regular
classes. Single and interface inheritance are possible.

By virtue of the lifting and lowering mechanisms, a role
and its base appear as almost the same object. Callins and
callouts are self-calls within this compound object. There is
planned to add a method roleEQ which would yield true
for each pair of objects based on the same natural object.

Dependency interactions are possible between the base
class and the roles by means of callout to field. But roles
themselves cannot be dependent on each other.

The largest drawback of the approach is the need to re-
think and to learn new programming constructs. Several
features as role creation require complex implementation.
Furthermore, the criterion dependency is not fulfilled.

This approach supports encapsulation, maintainability
and extensibility by outsourcing functionality into teams and
roles. Playing of several same roles is also possible because
several teams instances of the same type can coexist. Dy-
namicity of role types is restricted to replacing methods by
activating and deactivating teams.

The progress of development of Object Teams is quite ad-
vanced. A well-engineered tool in form of an Eclipse plugin
is developed. The current release is 0.8.8.

Object teams has lost some closeness to the object-
oriented paradigm. It provides new models and code con-
structs making it difficult to learn and to apply. The devel-
opers of Object Teams have written a language definition in-
cluding helpful examples. But because of the not extensive
distribution of the tool, the documentation amount is not so
huge as by some other approaches. With UML for aspects
(Herrmann 2002a) there is a concept for graphical modelling
but the tool support for that is poor.

Roles as Components of Classes
The approach described in (Chernuchin & Dittrich 2005a;
2005b) is especially developed for roles. It syntactically dis-
tinguishes between role and natural types. Thereby a class
contains roles and their dependencies. The visibility and the
access to an object depend on its current role.

Classes in the standard OOP are interpreted as classes
with only one role, e.g. DischargeLetter. Hence, this
role concept is a canonical extension of the object model.
That is existing software can be integrated without changes.

An object has the whole complexity of its class. The
approach supports information hiding because a client ac-
cesses only one role, e.g. variable of type InPatient
only occurs in context ambulance and variable of type
AmbulantPatient occurs only in context ward. Both
roles are accessed via references. Two variables refer the
same object but they have different static types:
InPatient inPatient = new Patient();
AmbulantPatient ambulantPatient =

(AmbulantPatient) inPatient;

Thereby only roles can occur as static types and only classes
as dynamic types. This approach is similar to multiple in-
heritance (see section Multiple Inheritance)



Figure 4: Roles as components of classes in HIS-example

The syntax of roles correlates to the syntax of classes in
the standard object model. Classes of this approach compose
roles to natural types with help of dependencies.

The HIS-example is graphically presented as an UML-
like diagram in figure 4. If a class has several roles e.g.
Patient it is shown as a big rectangle with the class
name above. Underneath there are role rectangles with their
names, attributes and methods. Classes with a single role
e.g. DischargeLetter match the standard UML nota-
tion.

Particularly, this approach realizes explicit notion of de-
pendencies between roles. Roles can have shared, de-
pendent and independent parts. Equality dependencies on
attributes and on methods of different roles can be de-
clared. Bækdal and Kirstensen call equality-dependent at-
tributes shared properties (Bækdal & Kristensen 2000). In
our example, name of AmbulantPatient and id of
StudyPatient are equality-dependent which is denoted
in figure 4 with a line between these attributes. In this ap-
proach function dependencies are possible, too.

Role types as well as natural types can inherit from
each other. In the HIS-example the roles InPatient and
AmbulantPatient inherit from the role SickPatient

Chernuchin and Dittrich developed further dependen-
cies. Roles InPatient and AmbulantPatient are
inheritance-dependent via SickPatient. This means
that all attributes and methods which are inherited from
SickPatient are equality-dependent in InPatient
and AmbulantPatient. That is SickPatient is the
shared part of InPatient and AmbulantPatient. In
figure 4 this dependency is denoted by a line which connects
the inheritance arrows. The following Java-like code exam-
ple demonstrates inheritance-dependency.
role InPatient extends SickPatient {

int room;
}
role AmbulantPatient extends SickPatient {

int heightInch;
}
class Patient {

include InPatient;
include AmbulantPatient;

inheritanceDependent(InPatient,
AmbulantPatient, SickPatient)

}

Class dependency allows to take over dependencies of
roles from one class to another. This is helpful when two
classes have at least two roles and the roles of one class
inherit from the roles of the other class. In this way class
dependency help to avoid redundancy of dependency decla-
rations.

If natural types inherit from each other the subclass inher-
its all roles and their dependencies from the superclass.

The approach supports encapsulation thanks to develop-
ment environment which presents roles in an adequate way.
This approach fulfills the criteria of dependency better than
all the others which are presented in this paper. With the
exception of dynamicity all feature criteria are fulfilled.

Roles as components of classes are comprehensible. It
does not conform to the object model, but it is its canoni-
cal extension. The biggest disadvantage is that the approach
roles as components of classes is only a theoretical construct
so far. There are neither supporting tools nor satisfactory
documentation. But the researchers are working on it.

Conclusion
We compare five approaches for roles in the object-oriented
area which all support information hiding. Tables 1 and 2
sum up our results of the comparison of object-oriented ap-
proaches for roles in programming languages. Thereby, cri-
teria, which are fulfilled in all approaches, are faded out.

We first investigate the established approaches multiple
inheritance, interface inheritance and role object pattern be-
cause of their high progress of development. These ap-
proaches have in common that they are close to the object-
oriented paradigm. The most important criteria is compre-
hensibility. Multiple inheritance and interface inheritance
are very comprehensible. The most prominent disadvantage
of interface inheritance is the lack of support for maintain-
ability and extensibility because complex subclasses have to
be changed. The role object pattern is more complicated be-
cause of the big amount of classes. It is very dynamic, it can
coevally play several same roles and complex role scenarios



Encapsulation Dependencies of roles Dynamicity Identity sharing several same roles

Multiple inheritance + − − + −

Interface inheritance − + − + −

Role object pattern + − + − +

Object Teams + ◦ ◦ ◦ +

Roles as components
of classes

+ + − + +

Table 1: Comparison of features

Closeness to Maintainability and Documentation Progress of
the object model extensibility

Comprehensibility
concerning roles development

Multiple
inheritance

+ ◦ + ◦ +

Interface
inheritance

+ − + + +

Role object
pattern

+ + − + +

Object Teams ◦ + − ◦ ◦

Roles as compo-
nents of classes

◦ ◦ ◦ − −

Table 2: Comparison of higher level criteria

can be modelled and implemented. On the one hand, the
role object pattern complicates an application, on the other
hand, it ensures flexibility for an extensive role composition.
All in all, in this category, multiple inheritance would come
off best, if there were no disadvantages like diamond inheri-
tance, name conflicts and a constricted support of program-
ming languages. We recommend using interface inheritance
if there are only a few roles or roles have many dependen-
cies. Otherwise we recommend role object pattern.

Aspect-oriented programming becomes popular also in
role modelling. We chose as tool representative Object
Teams. This is an eclipse plugin. The role handling is un-
usual in comparison to established approaches. Thus, it is
not very comprehensible. New code constructs have to be
learned and applied. Nevertheless, this approach is power-
ful and innovative. Thanks to the introduction of teams new
possibilities are open. Separation of concerns is also well
suited in this approach. The supporting Eplipse plugin has a
quite advanced progress of development. But we think that
this is too early to use it widespread in enterprise projects.
Many software developers must rethink before this is possi-
ble. This tool will be developed further but today we rec-
ommend to use standard approaches as interface inheritance
and role object pattern.

The syntactical extension, roles as components of classes,
is exclusively developed for roles and is suited well for the
requirements of roles with the exception of dynamicity. It
is comprehensible because of a syntactic separation of role
and natural types. Above all the support of dependencies
of roles is extensive. The disadvantage is that this approach

is in an early stage of development. There is neither any
documentation nor any supporting tool.

Established approaches which are close to the object
model are better in this comparison. But other newer ap-
proaches are also very promising and have a big chance in
the future.

References
Andersen, E. P. 1997. Conceptual Modeling of Objects:
A Role Modeling Approach. Ph.D. Dissertation, Depart-
ment of Informatics, Faculty of Mathematics and Natural
Sciences, University of Oslo.
Bækdal, L. K., and Kristensen, B. B. 2000. Perspectives
and Complex Aggregates. In Proceedings of the 6th Inter-
national Conference on Object-Oriented Information Sys-
tems. England: Springer.
Bäumer, D.; Riehle, D.; Siberski, W.; and Wulf, M. 2000.
Role Object. In Pattern Languages of Program Design,
15–32. Addison-Wesley.
Baumgart, J. 2003. Analyse, Entwurf und Generierung
von Rollen- und Variantenmodellen. Ph.D. Dissertation,
University of Darmstadt.
Chernuchin, D., and Dittrich, G. 2005a. Dependencies of
Roles. In Views, Aspects and Roles at ECOOP.
Chernuchin, D., and Dittrich, G. 2005b. Role Types and
their Dependencies as Components of Natural Types. In
2005 AAAI Fall Symposium: Roles, an interdisciplinary
perspective.



Fowler, M. 1997. Dealing with Roles. In The 4th Pattern
Languages of Programming Conference.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1997.
Design Patterns. Addison-Wesley.
Gottlob, G.; Schrefl, M.; and Roeck, B. 1996. Ex-
tending Object-Oriented Systems with Roles. ACM Press
14(3):268–296.
Graversen, K. B., and Beyer, J. 2002. Chameleon. Master’s
thesis, IT-University of Copenhagen.
Hanenberg, S., and Unland, R. 2002. Roles and aspects:
Similarities, differences, and synergetic potential. In 8th
International Conference on Object-Oriented Information
Systems.
Hanenberg, S.; Stein, D.; and Unland, R. 2005. Roles
From an Aspect-Oriented Perspective. In Views, Aspects
and Roles at ECOOP.
Harrison, D.; Ossher, H.; and Tarr, P. 2004. Concepts
for Describing Composition of Software Artifacts. IBM
Research Report, IBM.
Herrmann, S. 2002a. Composable designs with ufa. In
Workshop on Aspect-Oriented Modeling with UML at 1st
Intl. Conference on Aspect Oriented Software Develop-
ment.
Herrmann, S. 2002b. Object teams: Improving modular-
ity for crosscutting collaborations. Technical University of
Berlin.
Kendall, A. 1999. Role model designs and implementa-
tions with aspect-oriented programming. In Proceedings
of the 14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, 353–
369. USA: ACM Press.
Kiczales, G.; Lamping, J.; Menhdhekar, A.; Maeda, C.;
Lopes, C.; Loingtier, J.; and Irwin, J. 1997. Aspect-
oriented programming. In ECOOP ’97, volume 1241, 220–
242. Springer-Verlag.
Kristensen, B. B., and Østerbye, K. 1996. Roles: Con-
ceptual Abstraction Theory and Practical Language Issues.
TAPOS 143–160.
Kristensen, B. B. 1996. Object-Oriented Modelling with
Roles. In Proceedings of the 2nd International Conference
on Object-oriented Information Systems.
Kristensen, B. B. 2001. Subjective Behavior. Interna-
tional Journal of Computer Systems Science and Engineer-
ing 16(1):13–24.
Lazar, O. 2005. Vergleich objektorientierter Ansätze für
Rollen. Master’s thesis, University of Dortmund.
Mezini, M. 1998. Variational Object-Oriented Program-
ming Beyond Classes and Inheritance. Kluwer.
Ossher, H.; Kaplan, M.; Harrison, W.; Katz, A.; and
Kruskal, V. 1995. Subject-oriented composition rules.
ACM SIGPLAN Notices 30(10):235–250.
Ossher, H.; Kaplan, M.; Katz, A.; Harrison, W.; and Vin-
cent, K. 1996. Specifying Subject-Oriented Composition.
In Theory and Practice of Object Systems, volume 2, 179–
202. Wiley & Sons.

Reenskaug, T.; Wold, P.; and Lehne, O. A. 1995. Working
with Objects : The OOram Software Engineering Method.
Prentice-Hall.
Riehle, D. 2000. Framework Design: A Role Modeling
Approach. Ph.D. Dissertation, ETH Zürich.
Schrefl, M., and Thalhammer, T. 2002. Using Roles
in Java. Journal Software - Practice and Experience
34(5):449–464.
Sowa, J. F. 1984. Conceptual structures: information
processing in mind and machine. In Addison-Wesley Sys-
tems Programming Series. Addison-Wesley.
Steimann, F. 2000. On the representation of roles in object-
oriented and conceptual modelling. Data & Knowledge
Engineering 35(1):83–106.
Steimann, F. 2001. Role = Interface: A Merger of Con-
cepts. Journal of Object-Oriented Programming 14(4):23–
32.
Tamai, T. 2005. Conquering the Eight-Tailed Dragon - An
Attempt to Deal with Structural and Behavioral Complexi-
ties. In ICECCS2005.
Thang, N., and Katayama, T. 2002. Collaboration-based
evolvable software implementations: Java and Hyper/J vs.
C++-templates composition. In Proceedings of the interna-
tional workshop on Principles of software evolution , 29–
33.
VanHilst, M., and Notkin, D. 1996. Using C++ Templates
to Implement Role Based Designs. In Proceedings of the
International Symposium on Object Technologies for Ad-
vanced Software, 22–37.


