
Engineering an E-learning application using the

ARL Theory for Agent Oriented Software Engineering
Salaheddin J. Juneidi, George A. Vouros

Department of Information and Communication Systems Engineering
School of Sciences

University of the Aegean
Karlovassi 83200, Samos

Greece
{jneidi,georgev}@aegean.gr

Abstract
Software engineering development is crucial for industrial
and commercial applications as systems are required to
operate in increasingly complex, distributed, open, dynamic,
unpredictable, and inherently highly interactive
environments. This work is being motivated by the need to
engineer complex systems with autonomous entities, to
manage systems’ inherent complexity during analysis, design
and implementation. This article presents the Agent Role
Locking (ARL) theory that provides a new conceptualization
of the relation between agents and roles in Multi Agent
Systems. ARL concepts are being explained and illustrated
using an e-learning system case study. ARL extends UML
with both static and dynamic structures by means of role
class, agent class diagrams and Agent Interaction Protocol
(AIP) diagrams.

1. Introduction.
Agent oriented software engineering (AOSE) has been
introduced as a new paradigm for engineering complex
software systems. Indeed, advances in software
engineering are crucial for industrial and commercial
applications, as software systems are required to
operate in increasingly complex, distributed, open,
dynamic, unpredictable, and inherently highly
interactive settings.

Agent based computing appears to be a very
promising and natural development for building such
systems, by integrating entities with agency
characteristics into software applications. Therefore,
AOSE, which appeals to the agent based computing
paradigm, becomes a necessity rather than luxury for
developing the required systems. Although many tools
and applications concern with integrating agent entities
into software applications [1], most of them do not
follow any formal software engineering process.

Most AOSE approaches agree on the importance of
roles during analysis [2,3,4,5]. However, roles are not
reflected in the final system design and
implementation. This creates an engineering gap. This
gap affects the development of complex systems with
autonomous entities, restricts the level of complexity
that can be handled during analysis, design and
implementation, resulting into rigid systems, with no
adaptation abilities. As stated elsewhere (e.g. in [6]) a

new engineering paradigm and a new way of thinking
must emerge to adopt agents smoothly into the
software development process.

This paper introduces Agent Role locking (ARL)
theory which is an approach to AOSE that integrates
role-oriented and goal-oriented system analysis,
emphasizing on agents, roles and on their interplay,
clearly distinguishing between agent and role entities.
ARL has its own view of Multi-Agent Systems (MAS),
emphasizing on agents’ autonomous and flexible
behavior: Agents may perform any “appropriate” role
with respect to system objectives, permissions, own
goals and other constraints imposed. ARL has its own
methodology for analyzing MAS by defining the MAS
environment, organizations that belong to the
environment, super roles and atomic roles of these
organizations. It defines the dynamic structure of
agents’ interactions by means of Agent Interaction
Protocols (AIP), and the static structure of MAS
entities by means of agent and role classes. An agent
and a role class become an active class only when the
agent entity plays (locks into) the role. The static and
dynamic structures are integrated with the Unified
Modeling Language (UML), to be extended into
Agent-UML.
This article is structured as follows: Section 2 presents
the ARL Multi-Agent Systems view. Section 3 presents
the e-learning case study system. Section 4 explains the
ARL theory and its approach towards the development
of MAS. Section 5 presents the static and dynamic
models’ diagrams and their integration within UML.
Finally, section 6 concludes the paper.

2. ARL: MAS view
The main concepts in ARL view of MAS structure are
Environment, Organization, Role, and Agent.
Environment: According to ARL, identifying and
modeling the environment involves determining all the
entities, interactions among them and resources that
entities in MAS can exploit, control or consume when
they are working towards the achievement of system’s
objectives [7, 8]. This implies that everything (tangible
or not) that affects system objectives must be

mailto:jneidi@aegean.gr

represented in the computational MAS environment.
Therefore, ARL distinguishes between the physical
environment in which MAS is situated and the MAS
computational environment in terms of organizations,
agents and roles.
Organizations: The organizational view in ARL
comprises roles that correspond to systems’ objectives.
Roles are classified into super roles- that correspond to
the most abstract system objectives- and atomic roles
that correspond to fine-grained objectives that are
subsidiary to the objectives of super roles. It must be
pointed that:

 The organizational structure is fixed in terms of
roles. Each organization has a fixed number of
defined roles.

 Agents do not belong to any organization.
However, at a specific time instance, some of
these agents may (according to permissions
granted, system needs and agents’ internal state)
lock to roles.

Roles: In a human organizational structure a role can
be considered as a position. In ARL a role has a clear
correspondence to system’s objectives. Objectives are
accomplished through activities, which as it will be
explained, are distinguished to dependent and
independent activities. These activities constitute the
responsibilities of an agent that locks to the
corresponding role.
Agents: Agents may perform legitimate (according to
the permissions granted) roles in various organizations.
Unlike other MAS methodologies, agents in ARL are
the “activators” of the roles to be performed (and vice
versa). Agent entities in ARL have different types1,
each of which has its own rights to perform some roles
in MAS organizations.

3. The E-learning Case Study
The e-learning case study provides an illustrative
example of developing a MAS application using the
ARL theory.
E-learning refers to a wide range of applications and
processes designed to deliver instruction through
computational means. Usually this means over the
World-Wide-Web [9,10,11].
Figure 1 shows the entire e-learning environment with
the following organizations:

 E-learning administration. This organization is
responsible for users’ (author, learner, instructor,
reviewer, administrator) identification and
certificates (keys) assignment, users’ profile
(enrolment, interests, payment…etc) management,

1 An agent type provides a blueprint of a specific agent category that
can be instantiated. Instances of the same agent type share the same
characteristics and each has its own id.

events, recourse, and course scheduling, user–user
co-ordination and collaboration

 Learning content management. This organization
has the objective to manage and co-ordinate the
use of the learning material according to courses’
objectives, personalized user interests, needs and
preferences.

 Learning Management: This organization is
responsible for users’ login, course registration,
provision of general information concerning
courses and schedules, teaching / learning through
synchronous / asynchronous user’s collaboration,
online course and class management, virtual
classroom management, student attendance and
course completion reports, testing and test scoring.

4. Agent-Role Locking (ARL) theory
The first step of analyzing MAS according to ARL is
to define the MAS environment. This is set by the
system’s functional requirements and, as already
pointed, it concerns all these aspects that affect system
functionality. Specifying the MAS environment, one
has to define the organizations that belong to this
environment. To specify the organizational view one
has to identify the most general objectives of the
system. These objectives correspond to roles with
responsibilities. Figure 1 specifies an ARL
environment that comprises 1...a organizations. Each
organization comprises a number of super roles. These
roles represent positions with responsibilities for
achieving system objectives and identify permissions
for playing roles, indicated by a key. Super roles
correspond to abstract objectives and are decomposed
to roles with subsidiary objectives and responsibilities.
The decomposition process proceeds until we reach
atomic roles. The distinction between super and atomic
roles is further elaborated in section 3.1. Atomic role
performers are agent entities that can lock into
legitimate atomic roles in the organization. When
locked into a role, agents take “responsibilities” to
perform these roles. This ARL view of MAS, is
consistent with the role definition in [12] and
comprises:
• Objectives: Specify the functions that need to be

performed.
• Responsibilities: Represent the activities that must

be carried out for achieving the objectives.
• Permissions: Eligibility constrains for agents to

lock into roles. These are represented by role/ agent
keys.

Figure 1: An overview of ARL on MAS environment, role

decompositions and role specification.

ARL assumes that an individual agent can perform a
single role at a given time. Therefore, it is important to
identify fine-grained roles that can be played by agents
to achieve specific objectives. For instance, if an agent
is specified to play the role of studying at a university,
this agent can play the role of a reader, writer, class-
participant, etc. These are eligible subsidiary roles of
the student agent, which have different objectives and
responsibilities and can be performed by the student
agent. Therefore, to reduce complexity, we have to
decompose roles into more specific sub-roles.

To specify roles, the first step is to specify the
super roles of each organization. As already pointed,
super roles correspond to the most general
objectives/functions of the organization. The set of
super roles constitute the organizational view of the
system being modelled. Analysis and specification of
roles proceed in parallel to the analysis and
specification of system’s objectives. Having the super
roles, one must specify their subsidiary roles. The
method for specifying sub-roles is to decompose each
general objective of a given role into more specific
objectives. This process is called objective
normalization. Objective normalization assures that no
more than two agents (role players) communicate to
accomplish one objective. The outcome includes
atomic objectives that are carried out by atomic roles
(e.g. check e-mails, send e-mail, buy, bid …etc).2 Each
atomic objective is accomplished by means of an
activity. Such an activity can be of two kinds:
• Independent activities: These are performed

individually by an agent playing a role, by using the
objects in its disposal.

• Dependent activities: These are activities that require
two agents to interact by playing two distinguished
atomic roles.

2 Due to the close relation between atomic objectives and atomic
roles, roles are named according to the objectives intended to
accomplish.

Decomposition of roles proceeds until we reach atomic
roles. These are the roles that have atomic objectives
that can be fulfilled either by independent or by
dependent activities. In other words, the criterion to
stop role decomposition is that for each role, there must
be an activity that can be carried by a single agent
eventually locked in the role, either individually or in
interaction with at most one other agent. In case an
agent needs to communicate with more than one role
player to fulfil an objective, then for each of these
roles, a new sub-role must be introduced.
The motivation behind decomposition is to reduce the
complexity of engineering MAS by identifying the
fine-grained roles (atomic roles) that can be played by
discrete agents in the system for achieving specific
objectives.
Figure 2 depicts the Learning Management (LM)
organization that comprises four super-roles. Each
super role is decomposed into atomic roles. The atomic
roles specify the functionality of the organization. The
set of all organizations represent the functionality of
the system as a whole.
Agents may perform (lock/unlock into) atomic roles.
The eligibility of an agent to play an atomic role is
determined by means of the key assigned to the super-
role of this atomic role. An agent that has the super role
key is eligible to lock into any atomic role which is
subsidiary to that super role. Agents perform atomic
roles by two methods:

 Role launching: An agent may launch an atomic
role according to its internal state.

 Role satisfying: An agent may play an atomic role
that is interdependent to an atomic role that has
been launched by another agent.

5. Dynamic and static models

ARL provides the dynamic model for the representation
of communication, interaction, and behaviour in MAS,
and the static model for the representation of agent and
role classes. ARL supports the idea of UML extension
toward Agent UML: Proposed models integrate
smoothly with UML.

The following sub-sections clarify these two upgraded
types of models and provide examples from the e-
learning case study.
 launching role key satisfying role key
Arrange virtual class Θ open virtual class β
Run virtual class θ Attend virtual class ω
Check learner θ Provide profile α
get answer LO’s θ Content provide LO’s χ
Instant massage ω Replay to query θ
Test online π Sit for exam ω

Table 1: ARC table, some selected interdependent atomic
roles

Figure 2: Organizational view (distance learning): Super roles and their sub-roles and atomic roles of Learning Management
organization

5.1 Dynamic model
Having specified the atomic roles in each organization
and the types of agents, keys are spread on agent types
and super roles. Then we can collect interdependent
atomic roles into the Atomic Roles Couples table
(ARC). This table defines the couples of interdependent
roles and the keys required by the candidate agents. An
example of an ARC is provided in Table 1.
Interdependent roles are roles with dependent
activities. To specify the details of interaction between
role couples ARL uses the Agent Interaction Protocol
(AIP) that has been proposed in [13,14,15].
From the agent point of view, the system starts
functioning when an agent locks into and launches a
role that interacts with an interdependent role. The
latter role calls for a satisfying agent, which when it
locks into the role interacts with the former agent
towards performing their dependent activity.
ARL distinguishes between three types of AIP:
• Simple atomic role coupling: In this case none of

the atomic roles needs special arrangements with
other roles to perform its activities.

• Atomic role coupling with agent instantiation:
In this case, couples of atomic roles must be
performed simultaneously. Acting agents (i.e.
agents playing a role) must instantiate themselves
to keep playing their roles and make their
instances lock into other atomic interdependent
roles.

• Atomic role couples spanning: In this case agents
playing atomic roles interact, but at least one of

them needs to lock to a third party role to perform
some of its (dependent) activities. In this case,
agents perform a spanning couple of roles using the
unlock \ lock mechanism.

AIPs are integrated with other UML diagrams for
specifying agents’ interaction. Returning to our case
study, let’s consider the specification of the virtual
classroom functionality. Starting from the UML Use
Case diagram in Figure 3, interactions among
interdependent roles shown in Figure 3 are specified
by means of AIPs. So we can specify the AIP given in
Figure 4 that represents the interaction among agents
locked into the Instructor, Learner and Admin roles in
a virtual classroom. This AIP shows a combination of
simple, agent instantiation, and spanning role couples.

Figure 3: Use Case diagram for a virtual class in the e-

learning system

5.2 Static Model
ARL proposes the specification of agent and role
classes as two separate entities. When instances of
agent classes lock to specific atomic roles, then the
agent and the role become active. This new static view
can be integrated with UML reaching to Agent UML
that supports object as well as agent and role classes, to

represent static models of MAS. Separating these two
types of entities (agents and roles) ARL can represent
phenomena where an agent entity can “move” from
one role to another without any pre-assigned agent-role
mapping: Agent entities can be instantiated to perform
atomic roles, agents can move freely and instantiate
themselves according to system functionality
constrains (agent–role switching constrains[14,16]) or
according to their internal mental state.

Figure 4: An entire view of role couples needed to open and
arrange a virtual classroom

Agent Class. As shown in Figure 5 this class has the
following attributes:
Agent Type –ID: The name of the agent type with an
identification number determined by agent
instantiation.
Internal State: Description of agents’ internal state,
including the role to which the agent has locked for a
time interval and the candidate roles for the agent to
perform next. For more advanced agent architectures,
the internal state may contain agent’s beliefs, desires,
goals and intentions as well as other knowledge
elements.
Key-role: This is the certificate that entitles an agent to
play some roles. An agent may have more than one
key. However, it can lock only to one role at each time.
Agent Goals: Each agent type may have some goals
that are set by the agent designer. Goals are normally
consistent to the role objectives.

Role sensors and preceptors: Methods for the agent to
sense the roles that need to be satisfied, and to perceive
the physical environment in which it is situated. For
more advanced agents these methods may enable
agents to learn new keys.

Figure 5: Agent – Class

Role Class. The role class represents atomic roles and,
as Figure 6 shows, it has the following attributes:
Flag-vacancy: This is binary value attribute, which
shows that the corresponding role needs to be served
by an agent.
Role-name: A description of role objectives. In case of
atomic roles this is the atomic objective of this role.
Role constrains and rules: It represents special
conditions and constrains that need to be satisfied for
performing the role.
Service description: Represents the dependent and
independent activities of the role. More detailed
descriptions of independent activities can be specified
by means of UML activity diagrams or state charts.
Role-key slot: A method that checks whether an agent
is eligible to lock into this role.
Communication Acts & Protocols: These specify the
protocols for dependent activities. More detailed
descriptions of protocols can be provided by means of
Agent Interaction Protocols (AIP).

Figure 6: Role – Class

6. Concluding Remarks
The Agent - Role Locking theory provides a new
approach towards engineering Multi Agent Systems.
The basic idea of ARL is that an agent, to be active,
must have a role to perform, but it cannot perform
more than one role at a given time.
ARL proposes the following additions to UML towards
Agent UML (AUML):

 Modeling dynamic aspects of MAS by means of
Agent Interaction Protocol (AIP), so as to capture
the system dynamics and interaction though agent-
role to agent- role communication.

 Modeling static structure of MAS by means of
distinguishing between agent and role classes.

ARL has resolved many agent – role disputed issues in
the agent oriented engineering research field. Firstly,
pro-activeness and adaptability: By engineering agents
and roles entities independently from each other,
agents are free to launch or satisfy roles without a
specific preplanned scenario. Secondly, it supports
managing system complexity. MAS are considered to
be highly complicated systems, including many
interdependent roles and entities interacting to
accomplish objectives. Role decomposition is the main
method for managing complexity. Thirdly, ARL
supports agents’ autonomous behavior, since an agent
may lock to candidate roles, as well as instantiate itself
to perform simultaneously other roles according to
system’s constrains and functionality.

References:

1. Bernhard Bauer, Jorg P. Muller, James Odell.

Agent UML: A Formalism for Specifying
Multiagent Software Systems. Proceedings, ICSE
2000 Workshop on Agent-Oriented Software
Engineering AOSE 2000, Limerick. Springer
Verlag, pp. 121-140

2. Marc-Philippe Huget, Extending Agent UML
Sequence Diagram, F. Giunchiglia ct al. (Eds.) :
AOSE 2002 ,Lncs 2585, pp 150-161, Springer-
Verlag Berlin Heidelberg 2003.

3. Jemes Odell, H. Van Dyke Parunak, Sven
Brueckner, John Stuart : Temporal Aspects of
Dynamic Role Assignment, AOSE 2003, LNCS
2935, pp. 201-213, Springer – Verlag Berlin
Heidelberg 2004

4. Ioannis Partsakoulakis and George Vouros. Roles
in MAS: Managing the Complexity of Tasks and
Environments. Multi-Agent Systems: An
application Science, T. Wagner (eds.), Kluwer
Academic, 2004

5. James Odell, H. Van Dyke Parunak, Mitchell
Fleischer: The Role of Roles, in Journal of Object
Technology, vol. 2, no. 1, January-February 2003,
pages 39-51.

6. S. J. Juneidi, Toward Programming Paradigms for
Agent Oriented Software Engineering. IASTED
International Conference on Software
Engineering (SE 2004), Innsbruck, Austria, 2004
pp 431-436.

7. M. Wood and S.A. DeLoach. An overview of the
multiagent systems engineering methodology. In
Agent-oriented software engineering (P.

Ciancarini and M.J. Wooldridge Eds),
Proceedings of the First International Workshop
(AOSE-2000), Lecture Notes in Artificial
Intelligence, Vol. 1957, Springer-Verlag, 2001,
pages 207-222.

8. Michael Wooldridge , Nicholas Jennings, David
Kinny. The Gaia Methodology for Agent-
Oriented Analysis and Design. Autonomous Agent
and Multi- Agent Systems, Kluwer Academic
Publishers pp. 285-312, Netherlands, 2000.

9. E-learning post: http://www.elearningpost.com.
10. Cognitive Design Solutions, Inc. with affiliation

of CISCO systems Phoenix, Arizona, USA.
11. Virtual University (VU): Nipomo, California,

USA.
12. M.Wooldridge and N.R. Jennins Intelegent

Agents: Theory and Practice ,The Knwledge Eng.
Rev. Vol l.,10, Nov.2,1995

13. Marc-Philippe Huget, Extending Agent UML
Sequence Diagram, F. Giunchiglia ct al. (Eds.)
:proceedings AOSE 2002, pp 150-161, Springer-
Verlag Berlin Heidelberg 2003.

14. Salaheddin J. Juneidi, George A. Vouros. Agent
Role Locking (ARL): Theory for Multi Agent
System with E-Learning Case Study, IADIS
International Conference Applied Computing
2005 Algarve, Portugal February 2005.

15. Jorg P. Muller, Barhard Bauer, Jemes Odell,
Agent UML : A formalism for Specifying
Multiagent Interaction, Springer – verlag , Berlin
, pp. 91- 103, 2001

16. Salaheddin J. Juneidi, George A. Vouros, Agent
Role Locking (ARL): Theory for Agent Oriented
Software Engineering, IASTED International
Conference SE November 2004, MIT, Cambridge,
MA. USA.

http://www.elearningpost.com/

