
A Framework for Organizing Role Concepts
in Ontology Development Tool: Hozo

Eiichi Sunagawa, Kouji Kozaki, Yoshinobu Kitamura and Riichiro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan

{sunagawa, kozaki, kita, miz} @ei.sanken.osaka-u.ac.jp

Abstract
Establishment of computational framework of role concepts
contributes effectively to management of instance models
because it provides us with a useful policy for treatment of
views and contexts related to roles. In our research, we have
developed an ontology building environment, which
provides a framework for representation of role concepts
and their characteristics. In this paper, as an extension of
this framework, we present a framework for organizing role
concepts according to their context dependencies. We
especially focus on defining and organizing a role concept
which depends on several contexts.

1 Introduction
Currently, Ontological Engineering attracts a lot of
attention in many research areas and has been investigated
from various view points; fundamental theory,
development, application, and so on. However, many
ontology development tools do not have enough
frameworks to discriminate concepts, which is essential for
“Specification of a Conceptualization1”. And, few tools
provide an advanced framework for ontology description
compliant with fundamental theories of ontology.
 It is one of the important and essential themes for
ontology development to discriminate role concepts from
the others (Guarino 1992, Kozaki et al. 2002, Mizoguchi et
al. 2000, Sowa 2000). By a role concept, we mean a
concept of a role which an entity plays in a context. And,
by a basic concept, we mean the other concept which can
be defined without referring to other concepts. For
example, role concepts include Lerner, Fuel and Food.
Then, we strictly distinguish them from basic concepts
such as Human, Gasoline and Yogurt.
 However, it is difficult to conceptualize and represent
roles correctly. For example, a parent is often represented
by a property such as a parent-of property or a parent
property in RDF(S) or OWL without fundamental
discussion of their conceptualization. Furthermore, these
representations are often confused with each other
although they are actually differentiated from each other.
The former is a relation which is conceptualized according
to a parent-child relation and represented as a binary

Copyright © 2005 American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.
1 http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

relation like “parent-of (A, B)”. On the other hand, the
latter is conceptualized according to a parental
characteristic and represented as a unary predicate like
“parent (A)”. Without recognition of such a difference,
they are often confused with each other.
 Needless to say, a parent is a role concept which is
determined according to a manner of participation in a
parent-child relation. This conceptualization of a Parent
Role is based on clear discrimination of a parent-child
relation from a parental characteristic. However, it is not
easy to represent this definition only in the framework
which most of the ontology description languages provide,
since we often are confused by the gap between our
recognition of concepts and the conceptual framework of
ontology languages. One of the approaches for controlling
this problem is to use a framework which helps us to
differentiate concepts and to represent such differentiation.
 That gap resembles to the gap between a high-level
programming language and an assembler language. Every
program code in any high-level language can be translated
down into the assembler language. The program code in
the assembler language, however, does not represent
directly programmer’s intention about algorithms/data
model because it regulates just lower level semantics. In
contrast, a program code in a high-level language can
represent it more accurately and directly. That is why a
high-level language is more familiar to human
programmers. Likewise, the frameworks of RDF(S) or
OWL provide a framework of ontology representation, and
they focus on making bases and common formats to
represent definitions of concepts. So, many ontologies can
be described in RDF(S) or OWL even if each of them is
constructed on their own ontological primitives. However,
the frameworks provided by RDF(S) or OWL are not
suitable for representing higher semantics of concepts.
Developers of the ontologies can represent definitions of
concepts more naturally and easily in such frameworks that
provide higher level semantics.
 In this background, we have developed an ontology
building environment, which provides a framework based
on the theory of role concepts and their characteristics
(Kozaki et al. 2000, 2002). However, in the framework,
role concepts are dealt with in a basic-concept-centered
view and their definitions are scattered around in the
respective related concepts which give the context of the
roles. This is why users still have some amount of

difficulty in representing relations among role concepts
and grasp their whole image in an ontology. In this paper,
as an extension of the previous framework, we present a
framework for organizing role concepts in a hierarchy in
the role-centered view. First, we investigate how to
organize role concepts according to their contextual
dependencies. We especially focus on defining and
organizing a role concept which depends on several
contexts. And we design a system to realize organization
of role concepts.

2 Role Concepts

2.1 Needs of Differentiation of Role Concepts
Context dependence is one of the important characteristics
of roles and explains how and why an entity changes its
roles to play according to the context it depends on. For
example, a Man would be regarded as a Teacher in a
School and as a Husband in his Marital Relationship.
While such roles can be modeled in connection with time
passing, the context-dependence according to the aspect is
also necessary semantics for capturing roles property.
 Improper modeling of roles will greatly influence the
semantics of is-a hierarchy of concepts (Guarino 1998).
We focus here on the semantics that an instance of a
concept is always recognized also as an instance of its
super-concept. For example, in WordNet2, Dairy Product
and Food are treated as hypernyms of Yogurt. If role
concepts are not discriminated from the others and these
lexical hyponymies among the words are regarded as is-a
relations among concepts with no distinction, instances of
Yogurt are always recognized as instances of Dairy
Product and also Food. In such a model, however, we may
often have to struggle for faithful representation of events
in the real world. To represent that some yogurt has been
eaten, we delete the instance of Yogurt. And, it in turn
means deleting instances of Dairy Product and Food,
which is totally OK. However, in the case where a yogurt
has rotted and become inedible, we need to manage
instances more sophisticatedly. Because the instance of
Yogurt has lost an identity as Food but keeps one as Dairy
Product, we can delete only the instance of Food. These
managements of an instance model might force us to make
different semantics of is-a relation and to establish routines
for ad-hoc management of instances. Such a strategy
detracts from the value of an ontology, which ensures
consistency of an instance model. Moreover, it is difficult
in such a model to represent the instance of Yogurt
changes its roles to play such as Load, Merchandise,
Foodstuff, etc. according to changes of its contexts or
aspects. It is advisable for a computer model and an
ontology behind it to correspond to the real world as truly
as possible.

2 http://wordnet.princeton.edu/

 On the other hand, based on fundamental theories of
roles in an ontology (Guarino 1992, Kozaki et al. 2002),
we can differentiate clearly role concepts (e.g. Food) from
the others and can cope with the problems caused by
adulterating role concepts and the others. For example, the
hyponymy between Yogurt and Food is not regarded as an
is-a relation. And, we acquire a consistent policy to
manage instances of yogurt and food consistently. It is not
easy but worth for ensuring quality of an ontology as a
backbone of an instance model to differentiate role
concepts from others and organize them.

2.2 Role Concepts in Hozo
With citing work by Charles S. Peirce, Sowa introduced
the firstness, the secondness and the thirdness of concepts
(Sowa 1995, 2000). The firstness can be roughly defined
as a concept which can be defined without mentioning
other concepts. Examples include iron, a man, a tree, etc.
In a similar, the secondness can be defined as a concept
which cannot be defined without referring to other
concepts. Examples include a wife, a teacher, a child, etc.
The thirdness links the firstness and the secondness.
Examples include paternity, brotherhood, etc. Based on
these theories, we call one kind of the secondness type a
role concept in this paper. It represents a role which an
entity plays in a context or a label changed according to
the context. And, by a class constraint, we mean
constraint on a class which an instance playing the role
belongs to. On the other hand, we treat a concept which is
defined without referring to a definition of other concepts
as a basic concept. The class constraint usually refers to
the basic concept which is defined elsewhere. When the
instance of a basic concept plays the role, we call it a role
holder. For example, a Man, who is recognized as a
Teacher, is a role holder when he/she plays a Teacher Role.
But, we do not classify him/her into a Teacher. By a role
holder, we just mean that the instance is playing the role.
The role holder has both properties of the role concepts
and the basic concepts as its components. The relations
among the definitions of these concepts are explained
roughly in Fig.1. In this manner, we can recognize a role
concept with identification of its context, class constraint
and role holder.

Fig.1 An example of a role concept, a role holder, a class
constraint

Subject
Class

Name Tall
Age

Role Holder

Teacher
Role

Address

Role Concept

Person

Teacher Class
Constraint

b

d

c

a

Fig.3 An example of the hierarchy of basic concepts

 In these considerations of role concepts, we have
developed an ontology building environment, which
provides a framework for representation of role concepts
and their characteristics. The system is named Hozo 3
(Kozaki et al. 2000, 2002) and composed of Ontology
Editor, Onto-Studio, Ontology Server and Ontology
Manager. Users of Hozo can browse and modify
ontologies with its ontology editor (in Fig.2). In Hozo, two
kinds of basic concepts: a whole concept and a relational
concept are defined. And, a role concept is defined within
the context specified by the basic concept. The system
manages some basic concepts as contexts of role concepts
and provides a framework to define a role concept. Fig.2-
a) shows the form of presentation for definitions of
concepts on a browsing panel of Ontology Editor. A role
concept is represented as a node connected with the other
node representing a concept as its context. The connection
is shown as a link representing a part-of relation (denoted
by “p/o”) or a participate-in relation (by “p/i”) according
to the classification of its context. For example, Fig.2-b)
represents that a Person, who is referred to as the class
constraint, plays a Teacher Role, and then becomes a role
holder a Teacher.

3 Organizing role concepts
In this section, we present a framework for organizing role
concepts in an ontology. By organizing role concepts, we
mean mainly constructing a hierarchy of role concepts in
order to grasp and represent relations among role
concepts and structures of their context dependences. In
the following sections, we explain some considerations
as guides to organizing role concepts and what
information a hierarchy of role concepts has.
 Here, we discuss organizing role concepts referring to
an example: hierarchies of basic concepts and role
concepts constructed using Hozo. The hierarchies are
composed of some concepts in school4 (in Fig.3 and
Fig.4).
 To begin with, a Role is defined at the top of the
hierarchy of role concepts (in Fig.4-a) as a class which
has three slots: a context, a holder and a role part. The
first is related by a participate-in relation and describes
in what context the role concept is recognized. The
second is also related by a participate-in relation and
show a basic concept which can carry the role concept.
The third is related by a part-of relation and associated
with role aggregation (described in 3.2).

3.1 Organizing role concepts according to
classification of their contexts
Because role concepts are generally regulated in their
context-dependencies, they can be organized according
to categories of their contexts and formalities of the

3 http://www.hozo.jp
4 This ontology is developed in order to discuss semantics of role concepts.
So, it is incomplete and concepts are not defined in detail.

dependences5. For example, task knowledge for solving
problem can be discriminated from domain knowledge of a
target world. Then, roles recognized in the task knowledge
are classified into a Task Context Role, which represents
a set of classes of roles depending on task knowledge. And,

5 According to domain and scope of a target world of an ontology or its
purpose to use, developers of the ontology can decide a standard for

Browsing Panel

Definition Panel

Tool Bar & Menu Bar

Is-a hierarchy
browser

Class Constraint

a) a legend

School

Teacher
Teacher Role

Personp/o *

b) an example: a Teacher Role

Basic Concept (as Context)

Role Conceptrelation
Role HolderRole Holder

Fig.2 Ontology Editor in Hozo and its form of presentation
for definitions of role concepts

task context roles are divided
into more specific concepts
according to concrete tasks. For
example, a Fault Hypothesis
Role and a Test Substance
Role are classified relatively
into a Fault Diagnosis Context
Role and an Experiment
Context Role. In such a manner,
roles in the domain knowledge
are also organized
characteristically according to
their target worlds. When a
Function class is defined as a
concept, an Air-conditioning
Role and a Pressure Indicator
Role are classified into a
Function Context Role, which
is decided by the function an
artifact achieves. Likewise, we
consider that there are, at least,
the following kinds of a role
concept: an Action Context
Role (a Weapon, a Learner), a
Relation Context Role (a
Friend, a Brother), a Capacity
Context Role (a Club Member,
a King), a State Context Role
(a Newcomer, a High Temperature Reactor) and so on. We
treat these categories as major divisions of roles at a top
level of a hierarchy of role concepts.
 In the example, an Action Context Role and an
Organization Context Role are defined and classified into
a Role as a top-level category of the hierarchy (Fig.4-b).
The relations among these role concepts describe from the
role-centered view that an Action and an Organization
are categorized as contexts at the top-level of the hierarchy
of basic concepts (Fig.3-a, b).

3.2 Aggregation of role concepts
Because some roles are conceptualized from several
viewpoints and depend on several contexts, they are
difficult to organize simply according to their contexts. For
example, a Teacher is recognized not only as a Teaching
Agent but also as a School Staff. In order to organize such
role concepts which depend on several contexts, we need
to consider how to represent and manage such multiple
context-dependence. Then, we devise the idea of Role
Aggregation: a framework for organizing role concepts,
which depends on several contexts, according to their
essential dependencies. Role aggregation is represented in
both hierarchy of basic concepts and role concepts. And
they have the same semantic information on role
aggregation. Fig.5 shows hierarchies extracted from the

recognizing contexts and their concrete categories. Here, we just mention
typical ones.

hierarchies shown in Fig.3 and 4 in order to focus on role
aggregation.
 A central purpose of role aggregation is decomposition
of context dependencies. As examples described above,
contexts dependences are generally decomposable. And,
for each the most primitive context, we can recognize a
role concept which depends only on it. By a primitive role
concept, we mean such a role concept depending on a
single context.
 To summarize an outline of role aggregation, we here
organize an example of role concept which depends on two
contexts. At the start, the most essential context is chosen
among the two contexts after investigating and
decomposing the context dependence of the role concept6.
Assume that a Teacher Role depends on two contexts: an
Organization as its essential (primary) context and a
Teaching Action as its secondary one. And then, two
primitive role concepts are identified; a Staff Role and a
Teaching Agent. They depend on each of those contexts
respectively.
 As described in 2.2, we can constraint on a class which
an instance plays the role. In our previous work, a class
constraint refers to only basic concepts. Here, we extend
our framework and enable the class constraint to refer to
also role holders. In this way, a role holder, which is
playing some role(s) already, can play other role(s). It also

6 The most essential context is decided by developers of an ontology. We
do not discuss or conclude generally what the essential context should be.
Based on the relativity of essence, we think that, essences of concepts are
decided by the developers intended as far as the decision is consistent in
the while ontology.

Fig.4 An example of the hierarchy of role concepts

a

b

c

f

d

g

e

means aggregating context dependences of these roles.
This role aggregation is represented in the following
manner (Fig.5-a); a Teacher Role is defined as a
specialized concept of a Staff Role and a Teaching Agent
(role holder) is referred to as a class constraint of a
Teacher Role. Then, a Teacher Role is defined as a role
concept which depends on both contexts of a Staff Role
and a Teaching Agent Role.
 Next, we explain role aggregation in a hierarchy of role
concepts (Fig.5-b). A role concept which has multiple
context-dependencies is classified into a role concept
which depends on an essential context. Role aggregation is
represented by using a is-a relation and a part-of relation7
as the following manner; a Teacher Role is defined as a
sub-concept of a Staff Role through is-a relation, and a
Teaching Agent Role is defined as a part concept of a
Teacher Role through part-of relation. By Role Part, we
mean a primitive role concept defined as a part of a role
concept which has multiple context dependences.
 In our framework of role aggregation, an essential
context is decided for each role concept. Otherwise,
without such a decision, it is possible to merge context-
dependences also in a framework of multiple inheritances.
However, it makes relations among role concepts
complicated enormously. So, we do not take multiple
inheritances to aggregation of role concepts.

3.3 Other considerations for organizing role
concepts
After classifications of role concepts according to
categories of their contexts (described in 3.1), they are
organized in detail. This kind of organizing role concepts
is located in a middle layer of a hierarchy of role concepts
between top categories of role concepts and aggregated
role concepts from the bottom (described in 3.2). Here, we
mention three significant points of organizing role
concepts.
 The first is to organize role concepts according to the
aspects of entity playing the roles and manners of its
participation into contexts. They are clarified in definitions
of the contexts and their categories depend on the
definitions. For example, we classified a Weapon Role
and a Lerner Role as an Action Context Role. And, with
investigation of them in more detail, we conclude that the
former participates in an action context as an instrument
and the latter participates as an agent. Then, we can define
an Action Instrument Role and an Action Agent Role
and classify them into an Action Context Role. In the
example of the hierarchy of role concepts, a Staff Role and
a Non-staff Role are classified into Organization Context
Role depending on an Organization as its context (in
Fig.4-d). This classification represent that a Staff Role and
a Non-staff Role are defined as parts of an Organization
in the hierarchy of basic concepts (in Fig.3-a).

7 Here, we focus on a semantics of is-a relation that a sub-concept inherits
properties of its super-concept and part-of relation that a whole concept
possesses properties of its part concepts.

 The second is to organize role concepts based on an is-a
relation between basic concepts as contexts. In general,
role concepts related to an is-a relation depends on the
same category of context. Assume that there are a sub-
concept and its super-concept in a hierarchy of basic
concepts. A role concept depending on the sub-concept is
recognized by specialization of the context of the role
concept depending on the super-concept. Then, in a
hierarchy of basic concepts, a relation between these role
concepts is represented by using overriding. And, in a
hierarchy of role concepts, it is represented as an is-a
relation. In the example of the hierarchy of basic concepts,
a High School Teacher Role is defined as a part of a High
School and is recognized by specialization of the context
of Teacher from a School to a High School (in Fig.3-d).
Then, according to this specialization, in the hierarchy of
role concepts (in Fig.4-f,g), <High School Teacher Role
is-a Teacher Role> is determined.
 The third is also based on an is-a relation between basic
concepts, but it is shown only in a hierarchy of role
concepts. For organizing role concepts appropriately, it is
indispensable to define role concepts which cannot be
described in a hierarchy of basic concepts. Such role
concepts are defined for constraint of contexts as
intermediate concepts among role concepts described in a
hierarchy of basic concepts. They are used mainly for
constraint of contexts and not instantiated directly. We call
them Abstract Role Concepts like an abstract class in an
object oriented programming. In the example of the
hierarchy of basic concepts, a Teacher Role and a Janitor
Role as parts of a School is defined by specializing a Staff
Role as a part of Organization (in Fig.3-c). So, in the
hierarchy of role concepts, <Teaching Staff Role is-a
Staff Role> and <Janitor Role is-a Staff Role> are held
(in Fig.4-d,f). And then, according to <School is-a
Organization>, <School Staff Role is-a Staff Role> is
described (in Fig.4-d,e). In this case, according to their
context dependences, a School Staff Role is classified into
a Staff Role and defined as a super class of a Teaching
Staff Role and a Janitor Role in the hierarchy of role
concepts (in Fig.4-e).

Fig.5 An example of Role Aggregation

a

b

3.4 Information of a hierarchy of role concepts
In this paper, we suggest not only organizing role concepts
in a hierarchy of basic concepts but also constructing a
hierarchy of role concepts and organizing them also in it.
 As described in 2.2, Hozo provides a framework to treat
role concepts in a hierarchy of basic concepts. It enables
developers of an ontology to represent context-
dependences and definitions of role concepts and also
some relations among them (e.g. specialization).
Furthermore, by extension of this framework, role
aggregation can be represented in a hierarchy of basic
concepts. Therefore, if the developers organize role
concepts only from these viewpoints, it is not always
necessary to construct a hierarchy of role concepts because
both of the hierarchies have the same semantic information
on role concepts in an ontology. In this case, the hierarchy
of role concepts can be constructed automatically
according to definitions of role concepts in the hierarchy of
basic concepts and used as a viewer of the definitions of
role concepts from the other aspect.
 However, if the developers organize role concepts in
more detail, they need to construct the hierarchy of role
concepts for representation of their organizing. For
example, the hierarchy of role concepts shows the
developers viewpoints of classification of role concepts in
the ontology. An abstract role concept compiles role
concepts appropriately and contributes to grasping a total
image of them. This information represents
conceptualization of roles on development of the ontology
in detail and helps the developers to understand them. So,
the hierarchy of role concepts enhances descriptive quality
of role concepts and contributes to making agreement
among the developers. With these intentions, we suggest
construction of the hierarchy of role concepts as a center of
organizing them.

4 Instances of Role Concepts
In this section, we discuss what characteristics of instances
of role concepts should be represented in their instance
model. Although the instance model is not the main topic
in this research, it is indispensable for application of
ontologies developed with Hozo and clarification of our
strategy for treatment of roles to consider the
characteristics of the instances of role concepts. We only
describe our current understanding.
 While we have investigated basic issues of role concepts
in our previous work (Kozaki et al. 2002), it does not
include consideration of role concepts which depend on
multiple contexts. So, in this paper, we generalize the
framework of role concepts. In the following, R denotes a
role concept, C1…Cn its depending contexts, R1…Rn
primitive role concepts aggregated for definition of the role
concept and P a concept referred to as the class constraint
by the role concept. An instance of P can play the role

conceptualized as R. We explain the framework using an
actual example of a Teacher Role described in section 3.
(A) States of an instance of a role concept
 An instance of R has the following two states. (1) Only
the role conceptualized as R is instantiated (realized). (2)
An instance of P plays the R.
 For example, an instance of a Teacher Role has two
states. One is a teacher role just defined as a part of an
instance of School. As a vacant position, it is
undetermined about who will play it. The other is a role
which some person is playing when he/she is recognized as
a Teacher (role holder).
(B) Dependence of instances of role concepts on their
context
 An instance of R exists if (and only if) all instances of
C1…Cn are instantiated. When, at least, one of them is
deleted, so does the instance of R.
 For example, a Teacher Role is instantiated and a
Teacher is recognized, on the assumption that a School
and a Teaching Action are instantiated. When the school
is closed down or when a teaching class is finished, an
instance of a Teacher Role is deleted.
(C) Dependence of instances of role concepts on their
players
 An instance of R is dealt with as a defective instance by
itself. When instances of R1…Rn as constituents of R are
played by the same instance of P, a role holder of R is
recognized with being composed by an instance of R.
 For example, when someone is employed as a staff by a
school and he/she teaches, all values or ranges of
properties of Teacher (role holder) are fixed. Then, a
Teacher Role can be instantiated and he/she is recognized
as a teacher.
(D) Extinction of a role holder
 A role holder of R is recognized as the summation of
both instances of R and P. Here, they are denoted Ri and
Pi. Then, there are four cases in which the role holder is
disappear: (1) Pi has been disappeared. (2) Ri has been
disappeared. (3) Pi has stopped playing Ri. (4) At least,
one of role holders of R1…Rn is disappeared.
 For example, there are three cases in which a person is
not recognized as a Teacher. They are (1) when he/she has
died, (2) when the post he/she filled has disappeared
because of closing down his/her school, personnel
reduction and so on, (3) when he/she has retired his/her job
as a teacher and (4) when his/her teaching class has been
finished.

5 Implementation of the framework
As an extension of the ontology editor in Hozo, we
provide a pane for constructing a hierarchy of role
concepts and function to support organizing role concepts.
 We add a pane for building and editing a hierarchy of
role concepts to the ontology editor in a line of panels for
basic concepts provided previously (Fig.6). The pane
provides almost the same functions as those of the panes

for basic concepts. And, we improve the ontology editor to
support organizing role concepts in the strategies described
in section 3. Firstly, we extend the framework to define
concepts for representation of role aggregation. Secondly,
we add a function for keeping consistency between role
concepts defined in the hierarchies of basic concepts and
those defined in the one of the role concepts. This function
is based on the fact that some parts of the role concepts
defined in both of the hierarchies share the common
semantics. For example, if a developer aggregates role
concepts in a hierarchy of role concepts, this aggregation is
represented automatically also in a hierarchy of basic
concepts. And, we provide some wizards for organizing
role concepts. They support operation to deal with role
concepts and guide ontology developers.

6 Related Work
Guarino and his colleagues aim to establish a formal
framework for dealing with roles (Guarino 1992, 1998,
Masolo et al. 2004). Their research is concerned with
formalities and axioms of an ontology. In contrast, we do
not formalize role concepts because our goal is to develop
a computer environment for building ontologies. Our
notions of role concepts share a lot with their theory of
roles; that is, context-dependence, specialization of roles,
and so on. According to their theory, our framework can
be reinforced in terms of axioms. They describe
specialization and requirements as kind of sub-class
relations between role concepts. The former corresponds to
is-a and the latter to role aggregation in our framework.
However, they do not describe clearly that is-a relations
between role concepts are established only if the two
concepts share the same category of context-dependency.
While we have discussed how to define a role concept
which has complicated context-dependences, they only
point out a requirement relation. Our notions differ from
their work on other two points; that is dynamics of a role
and clear discrimination of a role from its player (role
holder). Firstly, we focus on context-dependence of a role
concept and its categories. So, time dependence of a role
concept is treated implicitly in our framework because an
entity changes its roles to play according to its aspect
without time passing. As opposed to this, their framework
deals with time-dependency explicitly. Secondly, we
distinguish role concepts and role holders (Kozaki et al.
2002, Mizoguchi et al. 2000). On the basis of this
distinction, we propose a tool for properties and relations
on roles, such as an aggregation of role concepts.
 Fan also recognizes the importance of constructing a
hierarchy of role concepts based on differentiation of them
from the others and shows an example in that a Thing is
classified into an Entity and a Role in (Fan et al. 2001).
And, he gives an Agent and an Instrument as sub-concepts
of a Role. However, he does not clarify a point of view for
organizing them. To our knowledge, they are regarded as
being organized according to their manner they participate
in their contexts.

 Breuker develops ontologies for legal domains based on
epistemology and discusses characteristics of roles in
(Breuker and Hoekstra 2004). He also mentions
adulteration between a role itself and playing role and
others between a role and its player. We share his notion in
discriminations of these concepts and differentiate a role
concept, a class constraint and a role holder from one
another (Kozaki et al. 2002, Mizoguchi et al. 2000). He
describes two kinds of roles; as a concept and as a relation.
However, he does not organize them in more detail. And,
in contrast of that he defines roles according to behavioral
requirements and so on, we allow developers of an
ontology to define role concepts just as the developers
intended because it is outside the scope of our research to
discuss how to conceptualize roles.
 Next, we focus on distinction between our framework
and one OWL provides.
 In order to represent characteristics of role concepts
discussed in this paper, we define a hozo:holderOf
property and a hozo:contextOf property. Their domains are
the same and role concepts. The range of the former is its
player and the latter the context which the role concept
depends on. And, we define a hozo:playRole as property
for a class which plays a role. Furthermore, to represent
role aggregation, we define hozo:rolePart property as a
property whiles range is its role parts. A role concept
defined with role aggregation and its role part must refer to
the same class as the ranges of hozo:holderOf properties.
For example, Fig.7-a shows the definition of a Teacher
Role (described in 3.2 and in Fig.5) in OWL.
 Here, we emphasize that role concepts are dealt with not
as an owl:ObjectProperty but as an owl:Class in our
framework. They are often defined as a
owl:ObjectProperty like Fig.7-b. However, in such a
definition, characteristics of role concepts discussed in this
paper are not represented well. In Fig.7-b, we cannot
recognize differences of a Teaching Role and a Teacher
(role holder). And, we cannot represent an instance of a
role concept in a state that its player is not determined like
a vacant position.

Fig.6 Panes for building and editing hierarchies of basic
concepts and role concepts in Ontology Editor

Role ConceptRole ConceptRole ConceptRole Concept

A Hierarchy of
Basic Concepts

A Hierarchy of
Role Concepts

7 Conclusion
In this paper, we have developed a framework for
organizing role concepts in a hierarchy according to their
context-dependences. Then, we investigated instances of
role concepts. The definitions of role concepts can be
translated into statements in OWL. In conclusion, our
framework in Hozo provides a layer in which developers
can construct ontologies with high quality description of
role concepts and a mechanism for setting it in the current
linguistic expression. As future work, we plan to
implement the framework in Hozo and investigate a theory
of organizing role concepts (e.g. semantics of is-a relation
between role concepts).

References
Breuker, J. and Hoekstra, R. 2004. Epistemology and
ontology in core ontologies: FOLaw and LRI-Core, two
core ontologies for law. In Proceedings of the EKAW04
Workshop on Core Ontologies in Ontology Engineering.
15-27. Northamptonshire, UK.
Fan, J., Barker, K., Porter, B., and Clark, P. 2001.
Representing Roles and Purpose. In Proceedings of the
International Conference on Knowledge Capture (K-
Cap2001). 38–43. Victoria, B.C., Canada.: ACM Press
Guarino, N. 1992. Concepts, attributes and arbitrary
relations. Data and Knowledge Engineering (8). 249-261.
Guarino, N. 1998. Some Ontological Principles for
Designing Upper Level Lexical Resources. In Proceedings
of the First International Conference on Language
Resources and Evaluation. 527–534. Granada, Spain.
Kozaki, K., Kitamura, Y., Ikeda, M. and Mizoguchi, R.
2000. Development of an Environment for Building
Ontologies which is based on a Fundamental
Consideration of "Relationship" and "Role". In
Proceedings of the 2000 Pacific Knowledge Acquisition
Workshop (PKAW2000). 205-221. Sydney, Australia.:
Kozaki, K., Kitamura, Y., Ikeda, M. and Mizoguchi, R.
2002. Hozo: An Environment for Building/Using
Ontologies Based on a Fundamental Consideration of

Role” and “Relationship”. In Proceedings of the 13th
International Conference Knowledge Engineering and
Knowledge Management (EKAW2002). 213-218.
Sigüenza, Spain.: Splinger-Verlag.
Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario,
R., Gengami, A. and Guarino, N. 2004. Social Roles and
their Descriptions. In Proceedings of the 9th International
Conference on the Principles of Knowledge
Representation and Reasoning (KR2004). 267–277.
Whistler, Canada.: AAAI Press.
Mizoguchi, R., Kozaki, K., Sano, T., and Kitamura, Y.
2000. Construction and Deployment of a Plant Ontology.
In Proceedings of 12th International Conference on
Knowledge Engineering and Knowledge Management.
113-128. Juan-les-Pins, France.: Springer-Verlag.
Sowa, J. F. 1995. Top-level ontological categories.
International Journal of Human-Computer Studies 43(5-6):
669-685.
Sowa, J. F. 2000. Knowledge Representation: Logical,
Philosophical, and Computational Foundations.:
Brooks/Cole Publishing Co.

Fig.7 Role representation in OWL

Teacher
Role

School

Person

hozo:hasRole
hozo:contextOf

hozo:playRole

hozo:holderOf

Teaching
Agent Role

hozo:rolePart

hozo:holderOf

Teacher Personteacher-of

a

b

hozo:playRole

Teaching
hozo:hasRole

hozo:contextOf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

