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Abstract

In this paper we present a novel artificial auditory system for
humanoid robots. We address the problem of estimating an
articulatory representation of the speech of the talker who is
speaking to the robot using our auditory system. According to
the motor theory of perception, the articulatory representation
is the first step of a robust speech understanding process.
The system is composed by two parts, namely a beam-
forming module and a perception module. The beam-former
is two-channel (i.e. dual-microphones) and it is based on the
super-directive beam-forming algorithm. The environment is
scanned for seeking a sound source; when the direction of the
source is found, the reception lobe of the dual-microphone
system is steered to that direction and the signal is acquired.
The perception module is based on a fuzzy computational
model of human vocalization. In summary, the relationships
between places of articulation and speech acoustic parame-
ters are represented with fuzzy rules. Starting from the ar-
ticulatory features, a set of acoustic parameters are generated
according to the fuzzy rules. These acoustic parameters are
used to generate a synthetic utterance which is compared in
the perceptual domain to the corresponding spoken utterance.
The goal of that is to estimate the membership degrees of the
articulatory features using analysis-by-synthesis and genetic
optimization.

Introduction

It is well known that through the auditory system, living cea-
tures gather important information about the world in which
they live. For lower animals, it may mean to be able to es-
cape from a danger or to catch a prey, for humans it may
mean to be able to focus one’s attention on events, such as
phone ringing, person talking etc. Robots also greatly ben-
efit from auditory capabilities because their intelligence can
be improved by fusing auditory information with the infor-
mation coming from other sensors such as vision. The aim
of this paper is to propose an artificial auditory system that
gives a robot the ability to locate sounds sources using bin-
aural perception, and to perceive speech, in terms of articu-
latory representation, on the basis of the motor theory of per-
ception (Liberman & Mattingly 1985). In Fig. 1 the block
diagram of our auditory system is reported. In summary, this
paper focuses on the following two auditory capabilities
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e binaural localization of human talkers
e speech perception by articulatory features estimation
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Figure 1: Block diagram of the artificial auditory system.

The environmental noise is reduced through a super-
directive beam-former which is steered to the direction of
the sound source. The obtained signal is then given as in-
put to the perception module. We instrumented a mobile
robot (Mumolo, Nolich, & Vercelli 2003) with a couple of
microphones, at a distance of 15 cm, as reported in Fig. 2
where only the upper part of the system is shown. In this
part the video and acoustic sensors are located.

Hearing is concerned with the sound processing mech-
anisms that occurs in the brain, and involves a very wide



Figure 2: Picture of the prototype used in this work.

range of biological structures, from the transducers, which
generally performs a kind of spectral representation of the
input signal, to the brain where the high level functions are
realized. Generally speaking, auditory capabilities include
the approximate localization and tracking of sound sources,
sound perception and classification, language recognition
and the capacity to concentrate the attention on one flow of
information, which allows human listeners to separate si-
multaneous talkers.

Clearly the human brain and even the brain of lower ani-
mals is by far too complex to mimic in an artificial auditory
system. However, in this paper we study how and to what
extent some speech perception theories can be included in
an artificial auditory system.

It is worth briefly reviewing now some concepts of the
speech perception theory which has, to some extent, inspired
this work. The Motor Theory of Speech Perception, though
severely criticized, is one of the most widely-cited theo-
ries of human speech perception. According to Liberman
& Mattingly this theory states that the objects of speech per-
ception are the intended phonetic gestures of the speaker,
represented in the brain as invariant motor commands that
call for movements of the articulators. According to this the-
ory, when we perceive speech, we perceive the gestures that
correspond to the articulatory movements of the speaker,
such as lip rounding and jaw raising. Furthermore, in this
theory there is a specialized module in the brain that trans-
lates from the acoustic signal to the intended articulatory
gestures. According to Bell et al., such a module might work
using the analysis-by-synthesis method (Bell ef al. 1961),
in which a mental model of a speech synthesizer is used to
generate various acoustic properties. The acoustic-gesture
parameters that are input to this synthesizer are varied un-
til the error between the synthesized acoustic properties and
the observed acoustic properties is minimized.

Our perception module is based on fuzzy logic. The pos-
sibility of facing the vagueness involved in the interpretation
of phonetic features using methods based on fuzzy logic has
been realized in the past, when approaches to speech recog-

nition via phonetic classification were proposed (De Mori
1983; De Mori & Laface 1980).

In this work, we developed fuzzy rules which relate places
of articulation with the corresponding acoustic parameters.
The system requires a training phase for estimating the de-
grees of membership. Thus, the algorithm tries to reproduce
some input speech and, in this way, the articulatory charac-
teristics of the speaker who trained the system are learned.

Previous work

Artificial auditory systems in robotics is a quite recent field
of research, and in the following we report a few significant
results.

At Kyoto University the SIG robots have been developed
since 2000. These robots have increasing binaural auditory
capacity. Latest developments, besides localization, have
been directed to sound separation and speech recognition of
the separated signals (Yamamoto et al. 2004). Other sys-
tems use more than two microphones. The robot described
in (Choi et al. 2003) uses eight microphones organized in a
circular array and performs beamforming and speech recog-
nition.

Talker localization
The estimation of the direction of arrival of a talker is per-
formed by scanning the environment and computing the
probability of vocalization on the signal coming from that
direction. Assuming that the noise is Gaussian, (Soon, Koh,
& Yeo 1999) report that the probability of vocalization can
be computed as:

P(H,|V) = e Io(2y/ e/ (1 + e Io(2y/ &) (1)
where H; is the speech presence hypothesis, V is the mea-
sured signal envelope, & is the a-priori SNR, 4 is the a-
posteriori SNR, and Ij is the zero-order modified Bessel
function.

The super-directive beam-forming algorithm
A general description of a two channel beamformer is given
by: y(n) = Zi:o x;(n) *a;, where x;(n) is the input signal
and * denotes convolution with the filter a;, which realizes
beam-forming. In the frequency domain, beam-forming be-
comes Y (w) = 23:0 Xi(w)A;(w). In the super-directive
beamformer described in (Bitzer, Simmer, & Kammeyer
1999), the filter A is given by:
r-td

A= dr—1d @
where I' is a coherence matrix whose elements are the nor-
malized cross-power spectral density of the two sensors and
d is the steering vector. In Fig. 3 we report the diagram of
the beam received at the beamformer of our auditory system.

The perception module
Preliminaries

According to the distinctive feature theory (Fant 1973),
phonemes are classified in terms of manner and place of ar-
ticulation. The manner of articulation is concerned with the



Figure 3: Beam pattern at 1546 Hz of the super-directive
beamformer.

degree of constriction imposed by the vocal tract on the air-
flow. On the other hand, place of articulation refers to the
location of the most narrow constriction in the vocal tract.
Using manner and place of articulation, any phoneme can
be fully characterized in binary form. The idea of our work,
instead, is that the features are not binary, but fuzzy: as a
matter of fact, a certain degree of fuzzyness, due to the lack
of knowledge, is involved in their characterization, which
thus should be fuzzy rather than strictly binary. For exam-
ple, it may be that the /b/ phoneme, classically described
as plosive, bilabial and voiced in binary forms, may involve
also a certain degree of anteriority and rounding, as well as
some other features. In fact, our approach can be viewed as
an extension of classical distinctive feature theory where all
sounds of human languages can be described by a set of bi-
nary features where binary means that the feature in question
is present or not.

The following phonemes in Italian language were consid-
ered in this work: vowel, liquid, nasal, fricative, plosive,
affricate. Such phonemes are described using the following
six manners of articulation: vowel, nasal, fricative, plosive,
affricate, liquid.

Moreover, the following places of articulation for the
vowels have been used: open, anterior, sonorant and round.
A vowel opening is related to the distance of the tongue from
the palate, which is as far as possible; the anterior sounds are
produced with the tongue at or in front of the alveolar ridge.
A sonorant sound is produced when the vocal cords vibrate,
while the round vowels are produced with a considerable de-
gree of lip rounding.

Similarly to the vowels, the places of articulation for the
consonants are related to the place where the vocal tract is
narrower. We consider the following places of articulation:
bilabial, labiodental, alveolar, prepalatal, palatal, vibrant,
dental and velar.

The next important issue related to this work is the rela-
tion between articulatory and acoustic features. The acous-
tic features, such as the formant frequencies, are obviously
related to the dimension and constrictions of the oral and
laryngeal phonetic organs (Ladefoged 1996; Pickett 1999).
For example, raising the tongue to the palate enlarges the
pharyngeal cavity and decreases the volume of the oral cav-
ity. As a result, F1 is low and F2 is high. In the same way,
retracting and lowering the tongue lengthens the oral cavity

and decreases the pharyngeal cavity. As a result, F1 is high
and F2 is low and so on.

It is worth noting that, in this work, we have described
this knowledge into fuzzy rules (in a way described for ex-
ample as: “for each first phoneme, if the second phoneme
is open, then F1 is medium”, or “for each first phoneme, if
the second phoneme is anterior, then F2 is medium-high”.
The rules require some basic phonetic knowledge which is
language dependant, but they don’t need to be more detailed
than those described. What makes things work, is the sub-
sequent optimization which find the best values of the mem-
bership degrees which are used in the actual synthesis.

The perception algorithm

The perception module is described in Fig. 1. According
to the block diagram, we now summarize the actions of the
algorithm.

The system requires a supervised learning phase which
works as follows: the operator pronounces a word and the
robot generates an artificial replica of the word based on the
articulatory and acoustic estimation. This process iterates
until the artificial word matches the original one according
to the operator’s judgement. At this point the speech learn-
ing process is completed and the robot has learnt how to
pronounce that word in terms of articulatory movements. It
is worth noting that several repetitions of the same phoneme
in different contexts are needed to improve performances.

The synthesis of the output speech is performed using a
reduced Klatt formant synthesizer (Klatt 1987).

Since the fuzzy rules, however, describe the locus of the
acoustical parameters, a model of the parameters profiles
has been introduced. The profile of each synthesis param-
eter ‘p’ is described with four control features, namely the
initial and final intervals I(p) and F(p), the duration D(p)
and the locus L(p). The I(p) control feature determines the
length of the starting section of the transition, whose slope
and target values are given by the D(p) and L(p) features.
The parameter holds the value specified by their locus for an
interval equal to F(p) ms; however, if other parameters have
not completed their dynamic, the final interval F(p) is pro-
longed. The I(p), F(p), and D(p) parameters are expressed
in milliseconds, while the target depends on what synthesis
control parameter is involved; for example, for frequencies
and bandwidths the locus is expressed in Hz, while for am-
plitudes in dB.

Phoneme and Control Parameters Fuzzification

As mentioned above, the phonemes are classified into broad
classes by means of the manner of articulation; then, the
place of articulation is estimated by genetic optimization.
Therefore, each phoneme is described by an array of nine-
teen articulatory features, six of them are boolean variables
and represent the manner of articulation and the remaining
thirteen are fuzzy and represent the place of articulation. In
this way, our approach appears as an extension of the classi-
cal binary definition; in our case a certain vagueness in the
definition of the places of articulation of the phonemes is
introduced.



Representing the array of features as (vowel, plosive,
fricative, affricate, liquid, nasal | any, rounded, open, an-
terior, voiced, bilabial, labiodental, alveolar, prepalatal,
palatal, vibrant, dental, velar). The /a/ phoneme, for exam-
ple, can be represented by the array:

[1,0,0,0,0,0|1,0.32,0.9,0.12,1,0,0,0,0,0,0, 0, 0]

indicating that /a/ is a vowel, with a degree of opening of 0.9,
of rounding of 0.32, and it is anterior at a 0.12 degree. The
/b/ phoneme, on the other hand, can be considered a plosive
sonorant phoneme, bilabial and slightly velar, and therefore
it can be represented by the following array:

[0,1,0,0,0,0/1,0,0,0,0.8,0.9,0,0,0,0,0,0,0.2].

The arrays reported as an example have been partitioned
for indicating the boolean and the fuzzy fields respectively.
Such arrays, defined for each phoneme, are the membership
values of the fuzzy places of articulation of the phonemes.

The output of the phonetic module, described in the fol-
lowing, is given in terms of these four parameters; hence, the
translation to the synthesis parameters trajectories required
by the synthesizer must be performed.

On the other hand, the I, D, F and L fuzzy variables, de-
fined in a continuous universe of discourse, can take any
value in their interval of definition. The fuzzy sets for these
variables have been defined as follows:

e Duration D(p). The global range of this fuzzy variable is
0-130 ms, with trapezoidal membership functions. Such
values are indicated as follows:

Very Short, Medium Short, Short, Medium,
Medium Long, Long, Very Long 3)

o Initial Interval I(p). As D(p), this fuzzy variable is divided
into trapezoidal membership functions in a 0-130 ms in-
terval. The fuzzy values are indicated, in this case:

Instantaneous, Immediate, Quick, Medium,
Medium Delayed, Delayed, Very Much Delayed (4)

e Final Interval F(p). The numeric range is 0—130 ms and
the fuzzy values are the same as indicated for the Initial
Interval I(p).

e Locus L(p). The fuzzy values of this variable depend on
the actual parameter to be controlled. For AV, AH and AF
the fuzzy values are:

Zero, Very Low, Low, Medium Low, Medium,
Medium High, High, Very High 5)
and their membership functions are equally distributed
between 12 and 80 dB with the trapezoidal shape. The
other gain factors, namely A2F-A6F and AB, take one of
the following values:
Very Low, Low, Medium Low, Medium,
Medium High, High, Very High ©6)

in the range 0-80 dB with the same trapezoidal shape
as before. The values of L(F1), L(F2) and L(F3) are

named as in (6), with trapezoidal membership functions
uniformly distributed from 180 to 1300 Hz, 550 to 3000
Hz and 1200 to 4800 Hz for the first, second and third
formants respectively. Finally, the loci of the bandwidths
B1, B2 and B3 take one of the fuzzy values described
in (6), and their trapezoidal membership functions are reg-
ularly distributed in the intervals 30-1000 Hz for B1, 40-
1000 Hz for B2 and 60-1000 Hz for B3.

Fuzzy Rules and Defuzzification By using linguistic ex-
pressions which combine the above linguistic variables with
fuzzy operators, it is possible to formalize the relationship
between articulatory and acoustic features.

In general, the rules involve the actual and the future
phonemes. Moreover, the fuzzy expressions involve the
fuzzy operators AND, NOT and OR. Since the manner of ar-
ticulation well partitions the phonemes in separated regions,
the rules have been organized in banks, one for each manner.

P1: Vowel Plosive Fricative Afficate  Liquid Nasal
vO->VO [|vo->PL [|Vo->FR ||vo->aF |[vo->LI [[vo->Na

PO: Vowel 9 rules 13 rules 13 rules 4 ules 5 rules 8 rules
. PL->VO CO->FR CO->LI -
Plosive PL->NA
15 rules 13 rules 12 rules 15 rules
. N FR->VO CO->FR CO->LI
Fricative
12 rules 13 rules 12 rules
. AF->VO CO->FR CO->LI
Affricate
11 rles 13 rules 12 rules
Liquid LI->VO [|CO->PL [|CO->FR [|CO->AF ||CO->LI
iqui 14 rles 15 rules 13 rules 4 ules 12 rules
Nasal NA->VO [|CO->PL ||CO->FR ||CO->AF ||CO->LI ||NA->NA
11 ules 15 rules 13 rules 4 ules 12 rules 9 ules

Figure 4: Outline of the bank of fuzzy rules. PO and P1 rep-
resent the actual and target phonetic categories. CO denotes
a generic consonant.

That is, calling PO and P1 the actual and the future
phonemes respectively, the set of rules is summarized in
Fig. 4. The rule decoding process is completed by the de-
fuzzification operation, which is performed with the fuzzy
centroid approach.

As an example, the fuzzy rules related to F1 and F2 for
the silence-nasal transition are the following.

IF ( PO IS ANY AND P1 IS ANY ) THEN
{ L(F1) IS VERY_LOW ; }

IF ( PO IS ANY AND P1 IS PALATAL ) THEN
{ L(F2) IS MEDIUM;

L(F2) IS MEDIUM_HIGH; }

IF ( PO IS ANY AND P1 IS DENTAL ) THEN
{ L(F2) IS LOW ;
L(F2) IS MEDIUM_LOW; }

IF ( PO IS NOT SON AND P1 IS DENTAL ) THEN
{ L(F2) IS MEDIUM; }

IF ( PO IS ANY AND P1 IS BILABIAL ) THEN
{ L(F2) IS VERY_LOW; }

Concluding, as shown in Fig. 4, there are several tran-
sitions which are performed with the same set of rules.
For example, all the transition toward fricatives and liquid
phonemes are realized with the same bank of rules. This
is because the related transitions can be approximated with
a strong discontinuity, and thus they can be considered in-
dependent from the starting phonemes; the symbol ‘CO’
used in these banks stands, in fact, for a generic consonant



sounds. Other banks are missing; this is because they are
concerned with transitions which occur very rarely in Italian
language.

Genetic optimization of articulatory and acoustic pa-
rameters Let us take a look again at Fig. 1. Genetic op-
timization estimates the optimum values of the degrees of
membership for the articulatory features used to generate an
artificial replica of the input signal by comparing the artifi-
cial with the real signal.

Genetic optimization module The optimal membership
degrees of the articulatory places minimize the distance
from the uttered signal; the inputs are the number of
phonemes of the signal and their classification in terms of
manner of articulation.

One of the most important issues of the genetic algorithm
is coding. The chromosome used for the genetic optimiza-
tion of a sequence of three phonemes is shown in Fig. 5.
It represents the binary coding of the degrees of member-
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Figure 5: The binary chromosome obtained by coding.
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ship. The genetic algorithm uses only mutations of the chro-
mosome. This means that each bit of the chromosome is
changed at random and the mutation rate is constant to 2%.

Fitness computation and articulatory constraints An
important aspect of this algorithm is the fitness compu-
tation, which is represented by the big circle symbol in
Fig. 1. The fitness, which is the distance measure be-
tween original and artificial utterances and is optimized by
the genetic algorithm, is an objective measure that reflects
the subjective quality of the artificially generated signal.
For this purpose we used the Modified Bark Spectral Dis-
tortion (MBSD) measure (Wang, Sekey, & Gersho 1992;
Yang, Dixon, & Yantorno 1997). This measure is based on
the computation of the pitch loudness, which is a psycho-
acoustical term defined as the magnitude of the auditory sen-
sation. In addition to this, a noise masking threshold estima-
tion is considered. This measure is used to compare the ar-
tificial signal generated by the fuzzy module and the speech
generation module against the original input signal.

The MBSD measure is frame based. That is, the orig-
inal and the artificial utterances are first aligned and then
divided into frames and the average squared Euclidean dis-
tance between spectral vectors obtained via critical band fil-
ters is computed. The alignment between the original and
artificial utterances is performed by using dynamic program-
ming (Sakoe & Chiba 1978), with slope weighting as de-
scribed in (Rabiner & Juang 1993).

Therefore, using the mapping curve between the two sig-
nals obtained with dynamic programming, the MBSD dis-
tance D between original and artificial utterances repre-

sented respectively with X and Y is computed as follows:

ZM ) | La(®a(k), ) — Ly(Py(k), )| m(k)
where T is the number of frames, K is the number of crit-
ical bands, ® = (®,,®,) is the non-linear mapping ob-
tained with dynamic programming, L¢ is the length of the
map, L. (i, ) is the Bark spectrum of the i-th frame of the
original utterance, L, (i, j) is the Bark spectrum of the i-th
frame of the artificial utterance, M (4, j) is the indicator of
perceptible distortion at the i-th frame and j-th critical band,
and m(k) are the weights. The coefficient M (i, ) is a noise
masking threshold estimation which determines if the distor-
tion is perceptible by comparing the loudness of the original
and artificial utterances.

The fitness function of the Place of Articulation (PA), i.e.
the measure to be maximized by the genetic algorithm, is
then computed as:

N,
1 c
) j:1

where P; is the j-th penalty function and NV, is the number
of constraints. In fact, in order to correctly solve the inverse
articulatory problem, several constraints, due to the physiol-
ogy of the articulations, have been added to the fitness.

In conclusion, the optimization of places of articulation
(PA) can be expressed as follows:

PA = argmaz {Fitness (PA)} .

Experimental results

The membership degrees of the phonemes are estimated
from speech and included in the matrix reported in Fig. 6.
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Figure 6: Membership degrees of phoneme transitions com-
ing from ’any’ phoneme. The membership degrees for the
utterance 'no’ are shown.



In Fig. 7 the dynamic of the estimated membership de-
grees of the articulatory places of articulation for the Italian
word "nove’ is reported.
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Figure 7: Places of articulation of the Italian word ‘nove’
estimated with the perception module.

Final remarks and conclusions

In this paper we have dealt with auditory systems for hu-
manoid robots. Our approach is based on a beam-forming
module and a perception module. The beam-former is based
on the super-directive algorithm of (Bitzer, Simmer, & Kam-
meyer 1999) while the perception module is a new approach
which uses a set of fuzzy rules and a genetic algorithm for
the optimization of the degrees of membership of the places
of articulation. The membership values of the places of ar-
ticulation of the spoken phonemes have been computed by
means of genetic optimization.

The proposed auditory system has many potential applica-
tions in robotics: first of all the super-directive beam-former
can identify the direction of arrival of a sound source - in or-
der to facilitate approaching manoeuvre of the mobile robot
- and it allows the acquisition of a noise-suppressed signal,
which is important in distant talking context. Then, the per-
ception module estimates acoustic and articulatory features
on the basis of the motor theory of perception.

Aa additional outcome of our auditory system is the pro-
duction of artificial speech which mimics the input signal.
It is worth noting that, besides their use is speech recogni-
tion, the estimated articulatory features can be used for con-
trolling the mechanical parts of talking heads in humanoid
robotics.

At the present state of this research, much care must be
put in the module *Broad Phonetic Classification’ which es-
timates the phonetic categories from speech because there
isn’t yet a mechanism which correct false classifications.
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