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1Abstract 
On-board supervisory execution is crucial for the 
deployment of more capable and autonomous remote 
explorers. Planetary science is considering robotic explorers 
operating for long periods of time without ground 
supervision while interacting with a changing and often 
hostile environment. Effective and robust operations require 
on-board supervisory control with a high level of awareness 
of the principles of functioning of the environment and of 
the numerous internal subsystems that need to be 
coordinated. We describe an on-board rover executive that 
was deployed on a rover as past of the “Limits of Life in the 
Atacama Desert (LITA)” field campaign sponsored by the 
NASA ASTEP program. The executive was built using the 
Intelligent Distributed Execution Architecture (IDEA), an 
execution framework that uses model-based and plan-based 
supervisory control as its fundamental computational 
paradigm. We present the results of the third field 
experiment conducted in the Atacama desert (Chile) in 
August – October 2005. 

Introduction 

At the highest level, the goal of the LITA project [12] was 
to unambiguously detect life in one of the most arid 
locations on Earth as a precursor to a futuristic unmanned 
rover exploration on the Martian surface. For such a 
mission to succeed, it is imperative to develop a system 
that is capable of operating for extended periods of time, 
constantly collecting scientific data, analyzing them and 
also making real-time decisions with little or no input from 
human operators. It is also important to build a system that 
is robust to inevitable fault conditions. Autonomous 
recovery from faults is an absolute necessity for remote 
missions. Autonomy also plays a role in resource 
allocation and task prioritization at many different levels, 
starting from generating a plan of action to achieve the 
goals set out for the day to coordinating the activities of 
several instruments on board that will be vying for 
resources.  
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In this paper, we address one of the key components of an 
autonomous system, namely, the execution system. Many 
execution systems have been used to control complex 
systems ranging from robots to spacecraft. Besides 
differences inherent in the software architecture, execution 
systems can be categorized by whether they are coupled 
with a planner and also by the methodology used to 
represent domain knowledge. Execution systems such as 
PRS [5, 6] provide a real time response by choosing an 
appropriate set of plans from a library of procedures during 
each step of the execution cycle without a planner in the 
loop. On the other hand, there are also systems where the 
execution engine works in conjunction with a planner 
(internal, external or both). Examples of such systems are 
Apex [4], CRL [2,10], PROPEL [9], SCL [3], Titan [13]. A 
survey of different planning and scheduling technologies is 
given in [8]. IDEA (Intelligent Distributed Execution 
Architecture) provides a framework for an execution 
system where the planner operates at the core of the 
execution engine. A detailed description of IDEA can be 
found in [1]. 
 
There are four top-level components in an IDEA-based 
system: the domain model, plan database, an internal 
reactive planner and a scheduler. A domain model 
describes patterns of constraints between time intervals 
representing concurrent transitions between states of the 
controlled subsystem and the environment in which they 
operate. We call such a time interval a token and a 
collection of non-overlapping tokens representing mutually 
exclusive states is a timeline. The plan database connects 
all tokens and timelines by explicit constraints into a single 
constraint network. The constraint-based planning 
technology we use is EUROPA [7]. The reactive planner 
has the responsibility for generating a locally consistent 
plan that is executable, by taking into account the current 
state of the data base and any asynchronous external event 
that might have taken place. 
 
This paper describes the Rover Executive (RE) and how 
the nominal executions and recoveries from off-nominal 
conditions were modeled. A plan is generated on the fly to 
prescribe valid courses of actions that satisfy the model’s 
constraint patterns. The executive simply sends commands 



to subsystems and receives message from sensors and 
subsystems strictly following the plan. If the plan is 
incomplete or violates the actual conditions of execution 
(e.g., sensory messages) then it is extended or repaired. 
The same occurs if new goals are communicated to the 
rover. 

Scope of the Rover Executive (RE) 

There were several responsibilities levied upon the Rover 
Executive (RE) in the LITA project. Foremost was to 
execute a nominal plan consisting of navigational and 
scientific activities laid out for the day. Goals were 
specified by scientists working in a remote location 
(Pittsburgh, PA) that were then up linked to the rover 
operating in the Atacama desert via a satellite. Examples of 
high-level goals are: commanding the rover to move to a 
specific location, approach an area of interest and gather 
scientific data or deploy a plow to dig a shallow trench to 
collect information about sub-surface elements. The RE 
was also responsible for handling faults by coordinating 
the recovery process, the most important of which was to 
quickly stop the rover before it puts itself in harm’s way. 
 
We implemented the RE using IDEA and deployed it in the 
Atacama desert as part of the 2005 field campaign between 
August and October. The core of IDEA provided the 
execution framework and also the necessary 
communication services while the domain declarative 
model captured the rover-specific behavior. Domain 
models were developed in consultation with system 

engineers who were familiar with the rover hardware. The 
RE ran on board the rover on a processor dedicated for 
autonomy. In the following sections we present the RE in 
greater detail and its interaction with other rover sub-
systems. We then provide a description of faults that were 
handled, details of the declarative model that captures the 
nominal and fault recovery scenarios and results of the 
field experiment. 

Overall Schematic 

Interaction between the RE and the rest of the rover 
software is illustrated in Figure 1. After all the processes 
start up and reach a steady state, a human operator is 
responsible for issuing a command to commence the 
autonomous activity for the day via the Operator Interface. 
The mission specification up linked from scientists prior to 
the operator signaling the start of daily activity is then 
forwarded without any modification by the RE to the 
Mission Planner. The RE treats the Mission Planner as an 
external entity and exchanges no information with it except 
sending plan requests and subsequently receiving the 
appropriate response. IDEA’s External Planner module 
requests and then translates the plan received from the 
Mission Planner into a local representation. The External 
Planner interacts with the Mission Planner through a 
communication relay (MPRelay) which publishes the 
appropriate sequence of messages. The plan returned by 
the Mission Planner is a series of actions that the rover is 
expected to execute so as to satisfy the goals laid out by the 
scientists for the entire day. For example, the Mission 
Planner fills in waypoints that are approximately 30 meters 
apart between the points of interest listed in the mission 
specification. The end times of each of the actions (and 
therefore the start times of the successive actions) specified 
in the plan are time intervals thus making the plan a 
flexible one. 
 
When a complete plan arrives, the RE first loads it into the 
EUROPA plan database. This is performed by the Goal 
Loader, which is a part of the External Planner. The actions 
that make up the plan are translated into tokens that are 
then inserted into empty slots on a single goal timeline in 
the same chronological order in which actions appear in 
the generated plan. The final step of the goal-loading 
procedure is to activate deliberative planning wherein 
constraints consistent with compatibilities specified in the 
domain description model are enforced via propagations in 
the plan database. Since we already receive a full plan 
from the Mission Planner, the deliberative planning does 
not in this case have to fill in any gaps. It merely does a 
temporal and constraint network consistency check to 
ensure that the plan generated by the Mission Planner is 
indeed a valid one. 
 
Upon successful completion of the deliberative planning 
step, the RE commences the first activity in the plan either 
as soon as the External Planner finishes its task of loading 
the plan in the database or at the earliest start time of the 
first activity, whichever of the two events is later. For 
every drive action that appears in the plan, the RE sends a 
waypoint to the Navigator and expects a notification when 
the rover reaches the intended destination. Similarly for 
science actions, the RE directs its commands to the 
Instrument Manager. 
 
During nominal operation, the RE executes each and every 
action in the order in which it appears in the plan. In 
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addition, the RE also makes sure that all actions start and 
finish within the time bounds stipulated by the Mission 
Planner. As can be expected, the behavior is different when 
a fault occurs. Some of the faults are detected by the 
Health Monitor which, by keeping track of heart beats 
posted by different modules on a periodic basis, can infer 
whether a particular module is still operating within normal 
limits. The RE is inherently capable of detecting faults that 
are temporal in nature such as actions completing before 
(or after) a stipulated time interval. Details of fault 
recovery steps coordinated by the RE are given in 
subsequent sections. Any fault that has the effect of putting 
at risk the completion of all the actions in a timely manner 
results in the RE requesting the Mission Planner to 
generate a new plan. When such a re-plan request is made, 
the Mission Planner is informed of the list of unfinished 
goals, the current time and position of the rover.  

The RE also communicates directly with the Vehicle 
Controller to set or clear the software emergency stop. 
Setting the software emergency stop prevents the Vehicle 
Controller from sending control commands to the micro-
controller that actuates the wheels of the rover. The RE 
also has the responsibility for broadcasting the initial 
position of the RE to the Position Estimator. 

The RE supports scenarios involving opportunistic science 
(science-on-the-fly). A Science Planner runs on board and 
gets activated whenever the Instrument Manager is asked 
to perform a planned science activity. The Science Planner 
sends a message to interrupt the RE to make allowances for 
any follow-on activity that it thinks might be necessary to 
explore the terrain for signs of life. The RE reacts by 
suspending the planned end time of the science action that 
is currently being executed and waiting for a signal to be 
issued by the Instrument Manager marking the completion 
of the follow-on action. 

All communication between processes was achieved using 
the publish-subscribe paradigm implemented in IPC [11]. 

Fault Handling 
Except for faults that are temporal in nature, the RE is 
informed of the occurrence (triggering) or the clearing (un-
triggering) of faults by the Health Monitor. After being 
informed that a particular fault has occurred, the RE 
coordinates the necessary steps to recover from it. In this 
paper, we will not discuss strategies the Health Monitor 
uses to detect faults, but focus on the recovery actions 
coordinated by the RE. The RE deployed in the Atacama 
desert was capable of coordinating the recovery actions for 
10 different types of faults. The causes and recovery steps 
for each of the faults are discussed below.
Early Completion of Actions: This fault is detected by 
the RE and is triggered whenever actions are completed 
before their earliest end time stipulated in the plan. An 
inconsistency is triggered in the temporal network when an 

action token (DriveAction or ScienceAction) is forced to 
terminate before the allowed earliest end time by the 
arrival of a completion status from an external sub-system 
(Navigator or Instrument Manager resp.). The recovery 
action is to issue a re-plan command to the Mission 
Planner. 
Timeout (late completion) of Actions: Similar to the 
early completion fault, this is also detected by the RE when 
an action has not completed by the latest end time. In other 
words, the completion status of an action token 
(DriveAction or ScienceAction) had not arrived from the 
external sub-system (Navigator or Instrument Manager 
resp.) before the scheduled latest end time. The recovery 
action is to first send a command to cancel the action that 
caused the failure and then issue a re-plan request to the 
Mission Planner.
Process Crashes: These faults are triggered by the Health 
Monitor when the Navigator, Position Estimator or the 
Vehicle Controller crashes (stop sending heart beats). The 
recovery is performed in multiple steps. In all three cases, a 
software emergency stop command is issued right away to 
make sure that the rover does not get into a hazardous 
situation. In addition, the rover is put into a safeguarded 
mode. Then we attempt to restart the process that crashed 
by sending a request to a daemon that runs in the 
background. This daemon, called microRaptor, is capable 
of starting and stopping processes with the appropriate 
command line options specified in a configuration file. 
When a process gets restarted successfully, i.e., when the 
RE receives a fault un-trigger message from the Health 
Monitor, the rover is switched to the autonomous mode 
and the software emergency stop is cleared. In the case of 
Navigator recovery it may also be necessary for the RE to 
resend the waypoint which the rover was heading towards 
prior to the crash. Similarly, in the case of a Position 
Estimator Crash recovery, it is necessary for the RE to 
send the position of the rover prior to the crash. 
No Arc Found Failure: This fault is triggered by the 
Health Monitor whenever the Navigator is not able to find 
a clear path ahead while the rover is moving towards a 
waypoint. The responsibility of the RE is to send a 
command to start the recovery action. In response to this 
command, the Navigator performs a pre-determined course 
of action, which is to reverse the rover. If no arcs are 
visible even after the recovery maneuver, the Health 
Monitor broadcasts another message to indicate that the 
fault is still triggered. In response, the RE sends the 
recovery command again. This cycle is repeated up to three 
times, after which the control is handed over to the 
operator. The RE does not actually tell what recovery 
action to take, but just commands the Navigator to take 
one. 
Pose Uncertainty: This fault is triggered by the Health 
Monitor when the error in estimation of the current 
position of the rover exceeds a certain pre-defined 
threshold. The recovery action is for the RE to just stop the 
rover until the fault gets cleared. Stopping the rover gives 



the position estimator an opportunity to refine and correct 
its estimates by integrating data gathered from the sun-
tracker.
Not On Map Fault: This fault is triggered when the rover 
veers out of the boundary of an environment map 
maintained by the Navigator. The recourse from this fault 
is for the RE to cancel the waypoint that was previously 
issued and then request the Mission Planner to send a new 
plan given the current time and position of the rover. 
Low Battery Power: This fault is triggered by the Health 
Monitor when the battery voltage falls below a certain 
threshold. The recovery action is to stop the rover and let 
the battery get recharged using solar energy. The fault will 
get un-triggered when the battery voltage reaches the 
desired level. 

Domain Model 

The domain specific information of the RE is captured in 
the declarative model that gets loaded during the 
initialization process. It is written in a language we have 
developed called XIDDL. XIDDL is an XML-based 
domain description language and has the semantics to 
define timelines, tokens and constraints (also called 
compatibilities) that relate tokens within and across 
timelines. To start the discussion on the model, we’ll first 
look at the nominal mode of operation and then address the 
more involved case of fault recovery. There are three main 
timelines that form the backbone of the model. The 
timeline MissionExecutive_SV, on which the Goal Loader 
inserts action tokens received from the Mission Planner is 
a goal timeline. Two executable timelines, 
RoverMobilty_SV and InstrumentManager_SV get 
populated during the course of plan execution. Insertion of 
tokens in the two executable timelines results in commands 
being broadcast to the Navigator and Instrument Manager 
modules, respectively. 

Every DriveAction token in the MissionExecutive_SV 
activates a GoToWaypoint token in RoverMobility_SV. 
Activation of the GoToWaypoint token is achieved by the 
“starts” compatibility in the model. The exact syntax used 
in the model to achieve this is; 

<define_compatibility>  
  <master type="single">  
   <class>RoverExecutive_Class</class>  
   <attr>MissionExecutive_SV</attr>  
   <pred>DriveAction</pred>  
  </master>  
  <subgoals>  
   <starts type="single">  
    <class>RoverExecutive_Class</class>  
    <attr>RoverMobility_SV</attr>  
    <pred>GoToWaypoint</pred>  
     <constraint name="eq">  
      <arg>x</arg>  
      <master>x</master>  

     </constraint>  
     <constraint name="eq">  
      <arg>y</arg>  
      <master>y</master>  
     </constraint>  
     <constraint name="eq">  
      <arg>z</arg>  
      <master>z</master>  
     </constraint> 
   </starts> 
  </subgoals>  
</define_compatibility> 

where, [x, y, z] is the waypoint in ECEF (Earth Centered 
Earth Fixed) coordinates towards which the rover is 
required to move. A similar constraint is defined between a 
ScienceAction token in MissionExecutive_SV and 
InstrumentManager_SV. Start of the GoToWaypoint token 
results in an IPC command consisting of the [x, y, z]
coordinates being published to the Navigator. After the 
rover reaches the waypoint, the Navigator publishes a 
completion message that is handled by the RE. 
Confirmation that the rover has reached a waypoint (i.e., 
the return status variable being set to “OK”) results in the 
termination of the GoToWaypoint token that is currently 
executing. GoToWaypoint then terminates the goal token 
DriveAction via the “ends” compatibility defined in the 
model as shown below. 

<define_compatibility>  
  <master type="single">  
   <class>RoverExecutive_Class</class>  
   <attr>RoverMobility_SV</attr>  
   <pred>GoToWaypoint</pred>  
   <guard name="eq">  
    <arg>status</arg>  
    <value>OK</value>  
   </guard>  
   <guard name="eq">  
    <arg>statusFlag</arg>  
    <value>True</value>  
   </guard>  
  </master>  
  <subgoals>  
   <ends type="single">  
    <class>RoverExecutive_Class</class>  
    <attr>MissionExecutive_SV</attr>  
    <pred>DriveAction</pred>  
     <constraint name="eq">  
      <arg>rStatus</arg>  
      <value>OK</value>  
     </constraint>  
     <constraint name="eq">  
      <arg>statusFlag</arg>  
      <value>True</value>  
     </constraint> 
   </ends>  
  </subgoals>  
</define_compatbility> 



Figure 2 shows the interaction between the three timelines 
that participate in the nominal scenario described above. 

A simple plan consisting of three DriveActions and a 
ScienceAction is inserted on the MissionExecutive_SV 
timeline in the RE’s database. There is also a dummy 
marker token called the End_Of_Day which signifies the 
end of the plan. The first DriveAction is dispatched at time 
t1. This results in the activation of the GoToWaypoint 
token on the RoverMobility_SV timeline, which publishes 
a command to the Navigator with the ECEF location of the 
waypoint. When the RE receives a notification from the 
Navigator that the rover has indeed reached the destination 
at time tx, the executable token GoToWaypoint gets 
terminated which then ends the DriveAction goal token. 
The next goal action is then dispatched at time t2. The time 
difference between t2 and tx will depend on the latency2 of 
the RE. Upon completion of the second drive action, a 
ScienceAction goal token is dispatched at time t3. This 
results in the insertion of a DoScience token on the 
InstrumentManager_SV timeline in a manner very similar 
to the interaction between the DriveAction and 
GoToWaypoint tokens. The execution process is flagged as 
complete when the End_Of_Day token gets dispatched at 
time t5.

The model gets more complicated when fault recoveries 
are involved. For each of the ten faults handled by the RE, 
we have defined a triplet of timelines to intercept, register 
faults and coordinate the recovery steps. An executable 
timeline is used to intercept the message published by the 
Health Monitor and post the appropriate information in the 
database. Another timeline is used for registering the state 
of a particular fault at any given time, i.e, it tells us 
whether a fault is triggered or un-triggered. The third 
timeline is an executable one which consists of tokens that 
command the recovery sequence.  

2 Latency is the sampling period with which the RE 
operates. 

Recovery from the Navigator process crash during a rover 
traversal is illustrated in Figure 3. Let us consider the 
scenario where the rover is heading towards a waypoint 
and midway through the traversal, the Navigator crashes 
and ceases to send heart beats to the Health Monitor. The 
absence of heart beats will prompt the Health Monitor to 
trigger a Navigator fault message which the RE, say, 
receives at time t1. For the sake of simplicity we’ll ignore 
the processing delay between the time the notification 
arrives and the time when the RE commences the fault 
recovery procedure. A message to trigger the fault is 
posted to the database via a status variable of an executable 
token called NavCrashFault in FaultNotification_SV. In 
the domain model, we have specified compatibilities to be 
enforced when the status variable of NavCrashFault is 
bound to a particular state, in this case a fault being 
triggered. As can be seen in Figure 3, at time t1, the 
FaultMode_SV transitions from a NoFault state to a Fault 
state. In addition, FaultRecovery_SV shows the activation 
of a token SStopSet which results in a software emergency 
stop message being published to the Vehicle Controller. 

After a pre-specified duration of one latency, at time t2, a 
command to restart the Navigator is issued by the RE to 
the microRaptor daemon as a result of the Restart token 
being activated on FaultRecovery_SV. After the Navigator 
comes up and starts sending stable heartbeats to the Health 
Monitor a message is broadcast to signal un-triggering of 
the fault at time t3. The fault un-trigger message is also 
posted to the database via the status variable of the 
NavCrashFault token, as was done when the fault was 
initially triggered. The RE reacts to this by resending the 
waypoint coordinates towards which the rover was headed 
when the Navigator crashed. One latency after the RE 
resends the waypoint, the FaultMode_SV is reset to a 
NoFault state.  

The example described above illustrates a scenario in 
which the recovery process completes successfully and, 
more importantly, before the latest end time of the drive 
action during which the fault occurred. Since there is still a 
possibility for the rover to reach its waypoint before the 
latest end time specified in the plan, it is not necessary to 
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interrupt the original plan that is being executed. However, 
if the drive action was scheduled to end at a time before the 
recovery process completed, it would have been necessary 
to discard the remainder of the original plan and request 
the Mission Planner for a new plan immediately after the 
recovery action completes. 

Results

The RE was deployed on board the rover during the 2005 
field campaign in the Atacama desert. Data from all the 
logs collected in the field were analyzed from the point of 
view of stability and robustness of the RE and also from 
the perspective of the state of integration with the other 
processes running on-board. As can be expected, an 
undertaking of this magnitude, where there are 15-20 
different software processes competing for resources and 
working in coordination with each other, is bound to 
stretch the limits of software integration. In addition, there 
were several hardware components to be controlled and 
operated in one of the harshest of environments. All 
processes contributing to rover autonomy, such as the 
Rover Executive, Mission Planner, Science Planner and 
Science Observer ran on a dedicated Pentium 4, 2.2GHz 
processor. A second processor was dedicated to the rest of 
the rover software, such as the Navigator, Position 
Estimator, Vehicle Controller, Health Monitor and various 
Instrument Controllers. As a measure of robustness, we 
collected information on the duration of operation of the 
RE. Obviously, an executive that operates uninterrupted 
for a long period of time bodes well for any autonomous 
system in general. Looking at the duration of operation of 
any process also sheds some light on the software 
integration process as a whole. We ran into several 
software startup and integration glitches that had to be 
resolved during field operations. This resulted in processes 
being started and killed manually in quick succession. We 
have also collected information on all the instances where 
the RE ceased to operate due to a fault of its own or forced 
to operate under conditions it wasn’t equipped to handle. 
Reasons for RE malfunction have been summarized in the 
form of a histogram later in this section. We have also 
gathered data on the faults that were triggered during the 
entire course of the field operation. 

Figure 4 shows a histogram of the duration of operation of 
the Rover Executive. The start and stop times of every 
single run of the RE were extracted from the log to 
calculate the duration of operation per run. This analysis 
sheds some light on the stability of the RE as well as 
software integration. Over the course of about six weeks of 
the field campaign, the RE was started a total of 322 times 
in conjunction with the full suite of processes onboard the 
rover. There were 145 instances where the RE run time 
was shorter than five minutes. Except for a total of 27 
instances, the run was manually terminated by the operator 
to track down non-RE related problems. Of the 27 
instances where the RE contributed to an aborted start, 9 

instances can be narrowed down to problems inherent in 
the RE implementation. The remainder of the RE 
premature terminations were caused by corrupted input 
data, spurious messages being sent from other modules and 
similar protocol violations.  

At the other end of the spectrum we had two instances 
where the rover executive performed uninterrupted for 
over four hours. 

Figure 5 is a histogram of the types of faults that were 
triggered during the entire course of the field operation. In 
each of the pairs of graphs, the bar on the left indicates the 
number of times a particular fault was triggered and the bar 
on the right indicates the number of times the rover 
executive successfully took the necessary step(s) to rectify 
the fault. The most commonly triggered fault was the 
NoArcFound fault, which the RE successfully handled 380 
out of a total of 396 times (96% rate of success). On seven 
of the remaining 16 occasions, the NoArcFound fault was 
triggered three times consecutively and the RE went into a 
standby state as per the design and waited for the operator 
to intervene and clear the fault. This typically happened 
while negotiating a very rugged terrain, where backing up 
the rover was not sufficient to clear the fault.  

The second most frequently triggered fault was the early 
completion of science action. The Mission Planner was 
pessimistic about the completion time of science actions, 
thereby allocating more time for such activities than what 
was actually required. The RE successfully coordinated 
recoveries for early completion of science action with a 
success rate of 100%.  

The success rate of handling NotOnMap fault was not very 
high (only 58%). On three of the unsuccessful recovery 
cases, the RE received a NotOnMap during the 
initialization process at startup. This was the result of an 
inconsistency between the state of the RE and the 
Navigator. The problem was rectified during the course of 
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the field operation by requiring the RE to clear all 
waypoints cached in the Navigator before requesting the 
Mission Planner for a new plan. 

There were 55 occasions out of 322 instances where the 
RE ceased to operate and Figure 6 identifies the range of 
causes. There were 14 instances where the RE terminated 
with a “controller_timeout” error. This typically happened 
when the RE was not able to complete the reactive 
planning cycle within one latency (3 seconds) due to CPU 
starvation. When the RE succumbed to this situation, it 
would automatically be restarted by the microRaptor 
daemon. Therefore, a premature termination of the RE did 
not always mean the end of an autonomous run because 
mechanisms were put in place to restart the RE 
autonomously and submit the remaining set of goals to the 
Mission Planner without any human intervention. 

A plan parsing bug in the Goal Loader module resulted in 
the RE crashing on eight occasions. One particular plan 
returned from the Mission Planner consisting of the 
character “#” in the comment field exposed a bug in the 
Goal Loader. Although there were eight instances of such a 
crash, they all took place in succession when the operator 
kept loading the same plan repeatedly before realizing the 
cause.

On seven occasions conflicting messages were published 
by the Navigator and the Health Monitor. Within a matter 
of milliseconds, the Health Monitor triggered a 
NoArcFound fault while the Navigator published a 
message that it had reached the goal. Since this scenario 
was not taken into account in the domain model, the RE 
was unable to resolve the conflict. The problem was 
eventually resolved by improving the interaction between 
the Navigator and the Health Monitor. 

On 11 occasions the RE was handed an empty plan from 
the Mission Planner with only the End_Of_Day action 
which is a dummy marker that denotes the last action in a 
plan. The RE did not parse that special case properly but 

that problem was resolved during the course of the field 
operations. 

Conclusions

The 2005 LITA field experiment successfully 
demonstrated the usefulness of a model-based execution 
system like IDEA. The Rover Executive played its part in 
achieving the overall goals laid out for the project. Its 
presence in the loop aided during both the nominal and off-
nominal situations, thereby reducing the burden on the 
mission operators.  

There were, however, several issues that were brought to 
the forefront. The RE was found to be sluggish and wasn’t 
quite realtime, considering it operated at a latency of three 
seconds. Several improvements are being actively explored 
to streamline the IDEA framework. Current simulated 
studies have shown that we are able operate the RE at a 
latency of one second. 
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