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Abstract
The ability to rise from a chair is a prerequisite for 
independent ambulation.  Difficulty rising from a chair, 
moreover, is an indicator of balance deficits likely to result 
in a fall.  In this paper we present preliminary work to 
affordably detect sit to stand strategies associated with 
balance impairment using web cameras.  The long term goal 
is to create systems that can monitor functional movements 
that are common at home in a way that reflects changes in
stability and impairment.

Introduction
More than 2 million people over the age of 65 experience
difficulty rising from a chair [1].  The ability to rise from a 
chair, however, is vital to functional mobility in the home.  
In addition, difficulty rising from a chair is associated with 
an increased likelihood of sustaining a fall [2], and this 
likelihood increases as people age.  

In our research, we seek to affordably measure changes 
in elders’ ability to perform activities like rise from a chair.  
We want to do this to: (1) enable early detection of 
mobility problems associated with instability, (2) alert
therapists when there is a need for adjusted seating 
arrangements in the home, and (3) detect when an
individual adopts a movement strategy that may inhibit his 
or her rehabilitation.  

In this paper we present preliminary work to 
automatically and unobtrusively detect sit to stand (STS) 
strategies known to reflect functional disability.  Our long 
term goal is to create systems that can continuously 
monitor behaviors like sit-to-stands in locations where
such behaviors most routinely take place.  To facilitate 
monitoring at home, we focus on technologies that are 
affordable, that can operate without markers, and can 
perform quickly and robustly.  We are currently using low 
cost commercial webcams to identity STS strategies that 
reflect instability as well as functional change.

Defining Sit to Stand Strategies

Strategies known to impact the ability to rise from a 
chair include foot positioning, movement of the torso, and 
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swinging or pushing with the arms against the chair while 
rising.  Some of these strategies are encoded into popular 
assessments of balance like the Berg Balance Scale [3]; 
detecting changes in the STS strategy, then, directly
reflects changes in clinically defined balance health.  

Here, we present preliminary work to detect the 
following STS strategies:

1. Use of the hands or arms while rising.  Prior 
research has revealed a hierarchy of arm related 
movement strategies that are commonly used as STS
difficulty increases and/or functional ability 
decreases [4].  While severely disabled individuals 
cannot rise from a chair, those at the lower end of 
the functional spectrum may use hands to push from 
the seat.  Those who are more functional may swing 
the arms while rising or not require arms for support.

2. Positioning of the feet while rising.  Many 
elderly subjects are inclined to place their feet 
forward while rising from a chair; a major reason for 
this is may be to alleviate discomfort experienced as 
a result of arthritis [5].   Far foot placement, 
however, requires increased momentum at the hip 
while rising, which, in turn, creates a potential for
instability [6].  Moving the center of mass over the 
feet before leaving the seat, by contrast, reduces the 
difficulty of transitions [7]; this strategy is 
commonly adopted as well.

Measuring Sit to Stand Strategies
In our current implementations, detecting an STS

strategy with web cameras involves extracting features
from input images and relating them to canonical poses 
or motions that represent the strategy.  The image 
features we are currently exploring are two dimensional 
and three dimensional in nature.  In two dimensional 
images, we are looking at features of foreground 
silhouettes.  Silhouettes have been used extensively to 
recognize canonical poses or actions; specific features of 
silhouettes commonly used for pose detection include 
Hu Moments [8], Feret diameters [9] and wavelet 
responses [10].

We are also, however, exploring three dimensional 
features.  In our application, three dimensional 
reconstructions are made by triangulating features of 
silhouettes, like centroids and extrema, across multiple



synchronized camera views.  Similar blob based stereo 
reconstructions have been used for sign language 
recognition [11] and gesture recognition in interactive
games [12]. Three dimensional reconstructions have an 
advantage over 2D ones in that they more directly relate to 
kinematic and dynamic analyses of STS stability, like [6].

Using Web Cameras to Predict Strategies

Figure 1. STS recognition system.  Three calibrated Logitech webcams 
are used to capture synchronized video of individuals as they rise from a 
chair.  At the top are input images from all cameras; at the bottom are 
extracted silhouettes annotated with 2D estimates of the head, feet and
torso locations.  2D features are triangulated across views to create 3D
reconstructions of the torso and lower body.  An example reconstruction 
is shown at the far right; this reconstruction has been back projected on 
top of a silhouette from one view.

Our system includes three Logitech web cameras that
record at a rate of 30 frames per second and are 
synchronized by means of a DirectShow filter. Video is 
encoded in MPEG4 format, at a resolution of 340 x 280 
pixels, and is transferred to a laptop via USB.

To compute two and three dimensional image features, 
we first extract silhouettes of people from two dimensional 
views by means of foreground segmentation.  From these
two dimensional silhouettes, Hu moments [7] are 
computed, as these are shape descriptors that are robust to 
changes in scale and translation. 

To create three dimensional reconstructions, we
triangulate silhouette centroids across all camera views.  
This creates a single three dimensional point corresponding 
loosely to the position of a tracked individual’s torso.  We 
also triangulate points on contours of silhouettes that are 
maximally distant from centroids to estimate head and foot 
positions.  Finally, we smooth estimates of all 3D positions 
with a Kalman filter.  This is illustrated in Figure 1. 

Methods

To determine the utility of two and three dimensional 
measurements made with web cameras, we performed a
pilot experiment; in this experiment image statistics were 
related to various compensatory STS strategies.

Two healthy individuals were asked to sit and stand 
repeatedly from a pair of chairs while being recorded with 

the cameras.   The two chairs were located two feet from 
one another and were oriented to form a 90 degree angle
between them.  Two chairs were used to test the ability of 
the system to detect sit to stands and STS strategies at 
various orientations and locations with respect to the 
cameras.

Figure 2. Estimated torso flexion (in degrees) during sit to stand 
transitions.  At the top is estimated flexion when a subject rises

repeatedly using his or her arms. In the middle is flexion when no arms 
are used and at the bottom is flexion when arms are swung.  The time of 

all transitions have been normalized so they span 100 samples each.

Each trial required subjects to sit first on one chair, then 
the other.  Each time a subject sat on a chair, however, he 
or she was asked to use one of a set of eight possible STS
strategies defined by use of the arms or placement of the 
feet.  Recorded arm strategies were as follows:

(1) no use of the arms while rising;
(2) use of the arms to push from the seat;
(3) swinging of the arms to generate momentum.

Foot strategies, by contrast, were as follows:

(1) with knees “normally” extended, at 90° angles;
(2) with knees under-extended, at 80° angles; 
(3) with knees over-extended, at 100° angles.

All combinations of hand and arm positions were 
recorded save for the combination involving over-extended 
knees and no arm use; this was difficult to perform, even 
for young subjects.  Three instances of each strategy were 
recorded and the order was randomized, yielding a total of
24 trails (and 48 STS actions) per subject.  

Based the data, classifiers were designed to create robust 
mappings between image statistics recorded at each frame
and phases of sit-to-stands (i.e. sitting, transitioning, or 
standing).  In addition, images statistics measured at each 
frame during hand segmented STS transitions were 
mapped onto the eight STS strategies.  Image statistics 



used to form mappings included 7 Hu moments and the 
following 3D features: distances between the torso, head 
and feet; distances between the torso, head and floor; the 
angle created by the head, torso and feet; the speed of the 
head; the angular speed of the torso; and the raw positions 
of the feet.  Examples of recorded “torso angles” (i.e. 
angles between head, torso and feet) are shown in Figure 2.  

The classification algorithm used was a J48 decision 
tree, which is an extension of the classic C4.5 algorithm of 
Quinlan [13] and has been built into the Weka Machine 
Learning Toolkit [14].  To build the decision tree, input 
video data was first hand labeled to indicate STS phases 
(i.e. when subjects were sitting in the chair, when they 
were transitioning to stand and when they had risen).  In 
addition, data recorded during STS transitions was labeled 
to identify which STS strategy was used.

Using 10 fold cross validation (90% training, 10% 
testing each time), the ability of image statistics to predict 
phases and sit to stand strategies at every frame was tested.  
We present results from one classifier built for both 
subjects, although reasonable results were obtained by 
training classifiers with one subject and testing on the 
other.  Preliminary results are found below:
Table 1. Results using 2D features alone, from 1 view
Foot Posn 80 degrees 90 degrees 110 degrees
80 degrees 1367  434  112
90 degrees 509 1060  197
110 degrees 189  291  707
Total accuracy: 64%
Arm Usage No arms Push seat Swing arms
No arms 784  296  223
Push seat 250 1321  248
Swing arms 221  340 1183
Total accuracy: 67%
STS Phase Sitting Transitioning Upright
Sitting 8331  472  976
Transitioning 337 7440  369
Upright 1488  775 2603
Total accuracy: 81%
Table 2. Results using 3D features
Foot Posn 80 degrees 90 degrees 110 degrees
80 degrees 1817   79   17
90 degrees 89 1646   31
110 degrees 16   36 1135
Total accuracy: 94%
Arm Usage No arms Push seat Swing arms
No arms 1136  100   67
Push seat 92 1636   91
Swing arms 79   95 1570
Total accuracy: 89%
STS Phase Sitting Transitioning Upright
Sitting 9258  222  299
Transitioning 196 7626  324
Upright 360  388 4118
Total accuracy:  92%

Conclusion
We have presented preliminary data indicating that 2D 

features from silhouettes can reasonably be used to detect 
STS phases (i.e. Sits, Transitions, Stands) that take place at 
multiple orientations; coarse 3D reconstructions, moreover,
predict STS strategies associated with disability.  We 
expect results can improve significantly with temporal 
smoothing of classifications.  Admittedly, results are 
limited as they relate to a small number of healthy
individuals who are similar in size.  In the future, we 
expect to deploy functional monitoring devices in the 
homes of elders to look for changes in behaviors, like sit to 
stands, which reflect instability or have the potential to 
adversely impact rehabilitation outcomes.
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