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Abstract 
Video surveillance is an alternative approach to staff or self-
reporting that has the potential to detect and monitor 
aggressive behaviors more accurately. In this paper, we 
propose an automatic algorithm capable of recognizing 
aggressive behaviors from video records using local binary 
motion descriptors. The proposed algorithm will increase 
the accuracy for retrieving aggressive behaviors from video 
records, and thereby facilitate scientific inquiry into this low 
frequency but high impact phenomenon that eludes other 
measurement approaches. 

Introduction   

Resident-on-resident physical aggression (RRPA) is a 
highly neglected clinical phenomenon in long-term care 
settings that has clear implications for public health policy 
(Shinoda 2004; Lachs 2007).  RRPA, as previously 
defined, is a major public health concern as highlighted in 
a federal legislative report.  Aggregating both RRPA and 
staff-on-resident aggression (verbal, physical or sexual) 
using data from the Online Survey, Certification, and 
Reporting (OSCAR) and Nursing Home Complaints 
Databases, the report found almost 9,000 abuse violations 
in more than 5,200 nursing homes nationally over a two 
year period from January 1999 to January 2001.  Over 
2,500 of these abuse violations were described as, “serious 
enough to cause actual harm to the residents or to place 
them in immediate jeopardy of death or serious injury.”  
The report however neither attempted to estimate the actual 
number of residents who were victims of aggression, nor 
disaggregate RRPA from staff-on-resident aggression.  The 
actual prevalence of aggression is thought to be much 
                                                  
Copyright © 2008, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 
 

higher since over 40% of these abuse violations did not 
come to light during annual state nursing home inspections 
but rather were discovered during complaint investigations.  
Echoing these findings, the Alzheimer’s Association of 
Central Indiana’s study, Violence & Dementia, also 
concluded that RRPA in particular is significantly 
underreported for reasons that include: fear of liability, fear 
of being cited for violations by state health officials, and 
factors related to suboptimal staffing and training in the 
management of aggression in nursing homes (Johnson, 
2002).  In spite of these barriers to truthful disclosure, 
long-term care ombudsman programs nationally received 
3,000 complaints of resident-on-resident aggression in the 
year 2000, up from approximately 2,500 complaints in 
1996.  Moreover, since a greater proportion of younger 
disabled persons (e.g., traumatic brain injuries) and those 
with chronic mental illnesses who develop severe cognitive 
deficits are expected to require increased levels of care, the 
incidence of RRPA will likely continue to rise (Sherrell 
1998).   
The literature to date has overwhelmingly focused on 
physical aggression that is directed by residents towards 
staff during intimate care in private spaces (Hoeffer 2006; 
Farrell-Miller 1997). In contrast, little is known about the 
prevalence, phenomenology and longitudinal predictors of 
RRPA. We postulate that RRPA is significantly under-
reported, is more likely to occur during congregate 
activities, and has the potential to inflict serious physical 
and psychological harm on frail residents who may be less 
well able than staff to protect themselves.  Moreover, 
timely and appropriate management of RRPA is a moral 
imperative since safety is an indispensable aspect of 
quality-of-life. To date, the limited data from these 
retrospective analyses provide only a preliminary estimate 
of the actual prevalence, and no information about 
predictors of the phenomenon or its longitudinal course 



(Shinoda 2004; Lachs 2007). Thus, the current knowledge 
base is grossly inadequate for the development of 
prevention and intervention strategies. 
In this paper, we propose an AI algorithm to automatically 
recognize and classify RRPA behaviors from continuous 
video records collected in a long-term care nursing home. 
A dementia unit within the nursing home has been 
instrumented with unobtrusive ceiling-mounted digital 
cameras and microphones that directly capture data onto 
computer hard drives.  Consenting residents’ activities and 
behaviors were continuously recorded in real-time 24 
hours a day for 26-day periods  
 In order to analyze the recorded digital data, human coders 
viewed video segments of the digital recordings using an 
adjustable speed computer interface and complete an 
electronic checklist consisting of nearly 80 non-duplicate 
directly observable aggressive, non-aggressive and positive 
behaviors.  This list was compiled from a review of over 
50 instruments that measure dementia related behaviors.  
Typical aggressions include spitting, grabbing, banging, 
pinching/squeezing, punching, elbowing, slapping, 
tackling, using object as a weapon, taking from others, 
kicking, scratching, throwing, knocking over, pushing, 
pulling/tugging, biting, hurting self, obscene gesture, 
and physically refusing care or activities. This manual 
coding is a very expensive human task. The key to 
enabling a video-based approach for wider application 
amongst institutions and for longer observation periods is 
machine-based algorithms that can recognize human 
activities automatically from video data. 
Video-based human action recognition addresses the 
problem of classifying simple human behavior units from 
video scenes. The biggest classification challenge is the 
fact that observed video appearances for each human 
action contain large variances stemming from body poses, 
non-rigid body movements, camera angles, clothing 
textures, and lighting conditions. There are two main 
approaches to analyzing human motions and actions: 
model-based and appearance-based. 
A model-based approach employs a kinematic model to 
represent the poses of body parts in each snapshot of body 
action. A recognition algorithm first aligns the kinematic 
model to the observed body appearance in each video 
frame and then codes the motion of the body parts with the 
model transformations. Most kinematic models are closely 
related to the physical structure of the human body. Akita 
(Akita 1984) decomposed the human body into six parts: 
head, torso, arms and legs, and built a cone model with the 
six segments corresponding to counterparts in stick images. 
Hogg (Hogg 1983) used an elliptical cylinder model to 
describe human walking. A Hidden Markov Model 
(HMM) was used to recognize tennis actions (Yamato 
1983). Yamato, et al. extract symbol sequences from 
image sequences and build an HMM to model the tennis 
actions. Bregler (Bregler 1997) further extended HMM to 
dynamic models which contain spatial and temporal blob

information extracted from human bodies. Lee, et al. (Lee 
2002) applied a particle filter on a set of constraints on 
body poses. Finally, Deutscher, et al. (Deutscher 2000) 
propose an annealed particle filter method that uses 
simulated annealing to improve the efficiency of searching. 
Model-based approaches require reliable analytical body 
part detection and tracking, a complex computer vision 
problem that continues to merit further exploration.  
An appearance-based method builds classifiers to directly 
remember the appearance of actions in each class without 
explicitly representing the kinematics of the human body. 
A good example is template matching, which is widely 
used as an appearance-based action recognition algorithm. 
Polana, et al. (Polana 1994) computed a spatio-temporal 
motion magnitude template as the basis for activities 
recognition. Bobick, et al. (Bobick 2001) constructed 
Motion-Energy Images (MEI) and motion history images 
as temporal templates and then searched the same patterns 
in incoming test data. Appearance models can be generally 
extended to detect various actions without introducing 
knowledge on constructing domain specific models. 
However, appearance-based methods require more training 
examples to learn appearances under different body poses 
and motions compared with model-based methods. Many 
appearance-based methods also rely deeply on adequate 
actor segmentations that are difficult to guarantee.  
In recent years, a branch of appearance-based approaches 
called part-based approaches has been attracting interest. 
A part-based method decomposes the entire appearance of 
an actor into a set of small, local spatio-temporal 
components, and applies statistical models to map these 
local components to actions. It has adequate scalability and 
does not require constructing specific models as is the case 
with model-based approaches.. It is also more robust under 
varying translations, background noise, 2D rotations, and 
lighting changes than appearance-based methods that 
require global appearances. Local features in the space-
time representation have been applied to human action 
recognition with an SVM classifier (Schuldt 2004). As an 
alternative, Dollár, et al. (Dollár 2005) proposed to detect 
sparse space-time interest points using linear filters. 
Niebles, et al. (Niebles 2006) considered an unsupervised 
learning method to categorize and localize human actions 
with a collection of spatial-temporal interest points. Ke, et 
al. (Ke 2005) proposed volumetric features to describe 
events. The features are extracted from optical flow and are 
represented as combinations of small volumes. 

Proposed approach 

We propose to characterize human behaviors in 
surveillance video though the use of local binary motion 
descriptors (LBMD) as shown in Figure 1. We detect 
points that are crucial in describing scenes and motions in 
video and extract spatio-temporal video cubes. A spatio-
temporal video cube is a small, short and local video 



sequence extracted from an interest point to capture small 
but informative motions in the video. These small motions 
can be finger raising, knee bending, or lips moving. We 
then compress a spatio-temporal video cube into a local 
binary motion descriptor, which can capture local 
appearance of a combination of these different types of 
movements and is robust or invariant to global appearance, 
posture, illumination, occlusion, etc. A video codebook is 
learned from a large number of LBMDs via a clustering 
algorithm to merge similar LBMDs together. We then 
represent each behavior as a bag-of-video-words and build 
recognizers to classify aggressions from non-aggressive 
behaviors.  

 

Figure 1: Framework of the proposed human behavior 

recognition. It includes 3 major stages: (1) feature point 

detection and local feature extraction, (2) clustering and bag-

of-words representation based on video codebooks, and (3) 

classification to achieve behavior recognition. 

Detection of Points of Interest 
Local representations are usually extracted from certain 
interesting points instead of all the image pixels in a video. 
Typically, an interest point is extracted as a local response 
maxima pixel that corresponds to a predefined response 
function. In 2D images, such a response function could be 
a corner detector. In video, a spatio-temporal corner can be 
defined as a spatial corner that contains non-constant 
movements. Laptev, et al. (Laptev 2003) extended the 
Harris interest point detector to extract spatial-temporal 
corners in a video sequence. Spatial-temporal corners are 
spatial interest points corresponding to the moments with 
non-constant motion. In other words, a spatial-temporal 
corner is a region with strong local gradients in orthogonal 
directions along x, y, and t, i.e., a spatial corner or edge 
whose velocity vector is changing. In practice, true spatial-
temporal corners are quite rare. This proved to be a

challenge in detection and recognition tasks observed by 
Lowe (Lowe 2004). Therefore, another local spatial-
temporal interest point detector is proposed to detect 
periodic movements (Dollár 2005). It applies 1D Gabor 
filters temporally and attempts to capture periodic motions. 
This provides a richer set of features, but it remains to be 
seen whether complex actions can be represented by 
periodic motions alone.  
Our proposed interest point detection is based on the Harris 
corner detector. Instead of corner points in spatial 
positions, we extract points along edges with velocity 
vectors by simply replacing the 2nd moment gradient 
matrix with gradient magnitudes of x, y, and t. The goal is 
to find high contrast points both in space and time together. 
For example, the points are along edges in a video image 
and contain velocity vectors. In comparison to using the 
Harris detector and the temporal information (e.g. 
background subtraction), this algorithm provides dense 
rather than sparse features. It also contains points with a 
range of different types of motions, not just periodic 
motions.  
The proposed formula for interest point calculation is as follows: 

 
 

(1) 

L denotes a smoothed video, which is computed by a 
convolution between the original video I and a Gaussian 
smoothing kernel g. To simplify the computation, we only 
keep the diagonal values of the covariance matrix Σ and 
use the variances in x, y, and t dimensions independently to 
control smoothing scales in space and temporal sequence. 
The response function R combines the magnitudes in the 
space and temporal dimensions. We calculate the response 
function value for each pixel and extract local-maxima 
pixels as interest points. The gradient over time performs a 
similar function as background subtraction to remove static 
background and preserve moving objects. We calculate 
approximate gradients with Sobel operators instead of true 
gradients to speed up the algorithm. 

Local Binary Motion Descriptor (LBMD) 
At each interest point, a cube  is extracted which 

contains the spatio-temporally windowed pixel values in 
the video. The window size is normally set to contain most 
of the volume of data that contributed to the response

 
Figure 2: An illustration of local binary motion descriptors 



function. We first convert the cube  to be binary cube 

 by thresholding pixels in the cube with one threshold 

τ.  
The threshold τ is determined by performing a class 
variance algorithm (Wang 2000) on the first frame of the 
cube. Formally, the discrete probability distribution 
function of the intensity of pixels in a cube  is p(i). The 

probability of pixels below the threshold τ  can be 
expressed as: 

 (2) 

A class variance algorithm classifies pixels into two classes 
B0 and B1 with means ( 0, 1) and variances (σ0, σ1), by 
minimizing the ratio between the within class variance σW 

and between class variance σB,  

 
(3) 

 
where the means are given by: 
 

,  (4) 

and N is the maximum intensity value of the pixels. The 
variances of the two classes are  

,  (5) 

 
The within class variance σW is defined by 

 (6) 

and the between class variance σB  is  

 (7) 

We choose only the first frame to determine the threshold 
because an edge passes the center of the first frame of the 
cube according to our definition of the interest point. We 
assume that one side of the edge belongs to the actor’s 
body and the other side belongs to the background. Most 
likely, the two sides contain a similar number of pixels. We 
expect an adequate threshold to be found by solving a 
binary classification problem as in the class variance 
algorithm. In other frames, there may be a very unbalanced 
number of pixels between the body and background 
regions due to the actor’s motion, where an adequate 
threshold may be difficult to guarantee.  
 

A local binary feature BF(S,M) is computed from a binary 
cube , which consists of shape feature S and motion 

feature M. The shape feature S is the first frame of the 
binary cube. We characterize this frame by modeling the 
“0” and “1” regions with two Gaussians cross the spatial 
dimensions respectively.  

 
(8) 

The motion feature is defined as a vector which records the 
motions of the geometric means of the “0” and “1” regions 
between frames.  

 (9) 

The first frame has no motion features. If one of the 
regions moves out of the cube at frame t, we record motion 
features in frame i frame i+1 as “NULL”.  
LBMD has many advantages in representing local 
appearances of behaviors. As many other local descriptors, 
LBMD is invariant to global translations. In comparison to 
pixel or template representations (Ke 2005, Chen 2008), it 
compressed the dimension of the feature with a factor of 
10. Varying lighting conditions may scale the contrast in a 
cube and render the grayscale of a cube pixel in very 
different values. By converting the cube to be binary, we 
only preserve the shapes of the strong edges in each cube 
image. Therefore, a resulting binary cube is more robust 
than the grayscale cube under lighting changes. Specially, 
the shape and motion descriptors are separated in the 
LBMD. This makes the LBMD more robust to 3D 
rotations and movements. Figure 2. displays frames of a 
binary 5x5x7 cube. We can see that an object moves out of 
the cube window from the right bottom and moves back.  

Feature codebook 
Local motion features extracted from the same body part 
contain similar motion information. Therefore we can 
cluster them to reduce the feature space into a fixed size of 
feature codebook.  
We apply a modified K-Means algorithm to perform this 
spatial-constraint clustering. The detailed algorithm was 
proposed by (Chen 2008). It uses a graphic model to group 
local object appearance features into clusters under the 
constraint that spatially nearby local features should most 
likely be grouped into the same cluster. We replace their 
2D appearance features by the proposed local binary 
motion features and train the clusters with the EM process 
in the algorithm.  

K-Mean clustering. K-Means is a traditional clustering 
algorithm which iteratively partitions the dataset into K 
groups. The algorithm relocates group centroids and re-
partitions the dataset iteratively to locally minimize the 
total squared Euclidean distance between the data points 
and the cluster centroids. Let ,  be 
the set of data points. Let n denotes the total number of 



data points in dataset and m means the dimensionality of 
feature for data points. We denote  
as centroids of clusters and K is the number of clusters. 

 denotes cluster label for each 
data point in X. The K-Means clustering algorithm can be 
formulized to locally minimize the object function as 
follow: 

     (10) 

where J is the objective function of K-Means and D 
denotes a distance function which is L2 norm distance. The 
EM algorithm can be applied to locally minimize the 
object function. In fact, K-Means can be seen as mixture of 
K Gaussians under the assumption that Gaussians have 
identity covariance and uniform priors. The objective 
function is the total squared Euclidean distance between 
the data point to its center point. There are three steps to 
achieve K-Means by an EM process: initialization, E-step 
and M-step. It first initializes K centroids in the feature 
space and then starts to execute E-step and M-step 
iteratively till the value of the objective function converges 
or it reaches maximum iteration. In the E-step, every point 
is assigned to the cluster that minimizes the sum of the 
distance between data points and centroids. The M-step 
updates centroids based on the grouping information 
computed in the E-step. The EM algorithm is theoretically 
guaranteed to monotonically decrease the value of 
objective function and to converge to a local optimal 
solution. As we mentioned before, the centroids 
initialization could sometimes decide the local optimal 
solution and the clustering result. 

EM clustering with pair-wised constraints. Our interest 
point detector tends to detect dense interest points from the 
outline of moving objects. Therefore, we may extract 
interest points from positions in the video which are both 
spatially and temporally nearby. By visualizing our 
clustering results, we discover that clustering algorithm is 
sometimes too sensitive. It sometimes separates continuous 
components into difference clusters. These components are 
the same part along a time sequence, and people will 
intuitively expect they are clustered into the same group. 
This mainly results from two factors. First, the method we 
use to detect interest points tends to extract rich features. 
Ideally, we decide to extract points from moving edges and 
to select representative points by local maxima in the area. 
However, it extracts a very rich number of video cubes and 
some of them only have small differences in feature space. 
When this goes to a clustering process, the small difference 
can cause conceptually similar cubes to be pushed into 
different clusters due to sensitivity of the clustering 
algorithm. The second factor comes from the center point 
initialization and the distance function in the clustering 
algorithm. These two factors can also change the clustering 
result a lot. Center point initialization makes the clustering 

result unstable because initial center points may not be 
suitable for the current dataset and thus force the clustering 
result to fall into a local optimal solution which doesn’t 
help the recognition task. In high dimensional feature 
space, the distance metric can change the shape of cluster’s 
boundary and the clustering result too. In our proposed 
method, we believe the spatial-temporal nearby 
components should be clustered into the same cluster. 
Therefore, we introduce a pair-wised constraint clustering 
algorithm to force video cubes which are spatial-temporal 
related to be clustered into the same cluster if possible 
during clustering process. 

In the original K-Means algorithm, data points are 
independent of each other. However, in our proposed 
method, video cubes could have either spatial or temporal 
dependency between them. Our intuitive idea is to add 
constraints to video cubes which are both spatial and 
temporal nearby. Although, we don’t really do tracking in 
our framework, we tend to pair video cubes which are the 
same component over time and hope they are clustered to 
the same cluster. 
A semi-supervised clustering algorithm tries to employ 
some data labels to the clustering process and significantly 
improves the clustering performance. Basu et al. (Basu 
2006) propose to add pair-wised constraints in a clustering 
algorithm to guide the algorithm toward a better grouping 
of the data. The algorithm aims to manually annotate data 
and apply this information to the clustering process. They 
have two different types of relationships between data: 
must-link pair and cannot-link pair. The idea is very 
intuitive. The penalties will be added to an objective 
function if two data points which are labeled as must-link 
belong to different clusters during the clustering process. If 
two points are labeled cannot-link but belong to the same 
cluster during the clustering process, penalties will be 
added too. In our proposed method, we will only penalize 
pairs which are spatial and temporal nearby (which we 
consider as potential continuous components) that belong 
to different clusters. It’s the same as the must-link relation 
in Basu’s method. We do not really manually label the data 
points. The pairs we generate are purely from data and 
therefore they are pseudo-labels in our framework. 
Therefore, we revise the objective function of clustering as 
follows: 

  (11) 

The first term of the new objective function remains the 
same as K-Means. The second term represents our idea to 
penalize pairs which are considered as continuous 
components but do not belong to the same cluster.  N 
denotes the set which contains spatial and temporal nearby 
pairs. � function equals to one if two data points are not in 
the same cluster. In the second term, we can discover that 
penalty is correlated to reversed distance between two data 



points. Theoretically, continuous components should be 
very similar in feature space because they could be the 
same motion unit overtime. In this assumption, the penalty 
is high if they don’t belong to the same cluster. However, 
two exceptions may happen. The motion is too fast or the 
motion is changing. If the motion is too fast, we may link 
different parts together no matter how we define “spatial-
temporal nearby”. We can try to set up a soft boundary 
instead of hard boundary to release the strict definition. In 
practice, we extract hundreds of thousands of video cubes 
from our data set. It’s not tractable given that n-square 
pairs are involved in the EM process. Therefore, we may 
mis-label two different cubes as must-link and penalize 
them if they are not in the same cluster. The other reason 
we may mis-label data pairs comes from motion changing. 
Since we try to make spatial and temporal nearby cubes as 
pairs, we have a good chance to link two cubes from two 
different actions which are continuous. Since we do not 
track interest points nor analyze points’ relationship in 
location, we can’t avoid these exceptions when we try to 
connect video cubes as clustering constraints. However, we 
can reduce the penalty for these mis-labeled pairs. In both 
exceptions, we believe these pairs have a large difference 
in feature space. It means the distance between two video 
cubes should be large and it turns to a small penalty in our 
penalty function. Therefore, the objective function will be 
penalized more given that similar pairs in feature space are 
not in the same cluster. The objective function will be 
penalized less if the pair is actually quite different in 
feature space which means the pair does come from 
continuous motion. 
In our work, we replace Euclidean distance in K-Means by 
the Mahalanobis distance to achieve a Gaussian 
assumption for partitioning data points. The Mahalanobis 
distance function is: 

   (12) 

 is a m x m is a diagonal matrix called covariance 

matrix. The distance function  between two 

points mixes distance metrics from both Gaussians to be 
adequate: 

         (13) 

The optimization process still goes though an EM 
algorithm. The only difference is M-Step. In M-Step, we 
not only update centroids but also update covariance 
matrices for clusters. 

 

Figure 3: Classification performance using varying 

sizes codebooks in the KTH dataset. 

The size of the codebook is determined by cross validation 
on the KTH human action dataset. The KTH human 
motion dataset is widely used to evaluate event detection 
and recognition (Schuldt 2004). It’s also the largest 
available video dataset of human actions for researchers to 
evaluate and compare with. The dataset contains six types 
of human actions (walking, jogging, running, boxing, hand 
waving, and hand clapping) performed by 25 different 
persons. Each person performs the same action four times 
under four different scenarios (outdoor, outdoor with 
different scale, outdoor with camera moving, and indoor). 
We performed leave-one-subject-out cross-validation to 
evaluate the size of the codebook. Figure 3 shows the 
recognition performance of using different sizes of video 
codebooks. The result shows there is a peak to achieve best 
performance (600 in KTH dataset). Too many video code 
words or too few video code words will all hurt the 
recognition performance.  

Behavior classification  
Human behaviors can vary greatly in global appearance. 
We may therefore extract a different number of video 
cubes from behavior sequences. This is a challenging 
problem in building behavior descriptor access by machine 
learning algorithms. The video codebook allows us to 
borrow the idea from document classification in building 
behavior descriptors. For each code in the video codebook, 
we can treat it as a word in documents. In text 
classification, documents with different lengths are 
represented by a bag-of-words, which contains the 
frequencies of each word within a limited-size vocabulary. 
In our case, we can map extracted video cubes to their 
closest code word.  
A behavior is represented by a histogram of all local binary 
features within a region of interest. The histogram is 
generated on the basis of the codebook, where code words 
are used as bins. Each local binary feature is mapped to its 
closest code word and added into the associated bin. We 
eventually normalize the counts in bins into frequencies. 



This descriptor does not consider the spatial correlations 
among local features, because the spatial information has 
somehow been used in the clustering step. A behavior 
descriptor is treated as a vector with the same size as the 
codebook.  
Due to the rarity of aggressive behaviors in real life in 
comparison to normal behaviors, we use a one-center SVM 
to train a model for all normal behaviors and detect 
aggressive behaviors as outliers. 
  

 

Figure 4: Camera placement in the nursing home 

Experiments 

We evaluate our algorithm using the CareMedia aggression 
dataset (Caremedia 2005), that was collected from a real 
world surveillance video application. CareMedia dataset is 
a surveillance video data collection from a dementia unit 
within a nursing home. The unit has 15 residents served by 
4 nurses and a number of assistants. We placed 24 cameras 
in public areas such as the dinning room, TV room and 
hallways. Figure 4 shows the camera set up in the nursing 
home. We recorded resident life 24 hours daily for 26 days 
via those 24 cameras. The recording set up is 640x480 
resolution and 30 frames per second of MPEG2 recording. 
We collected over 13,000-hours of video which was about 
25 terabytes.  
We demonstrate the robustness of our algorithm in 
recognizing aggressive behaviors in the CareMedia dataset. 
Forty-two physically aggressive behavior video clips and 
1074 physically non-aggressive behavior video clips 
recorded in a dining room with multi camera views were 
labeled for training and testing.  We used 1000 non-
aggressive behavior video clips for training and the 
remaining 116 (42 + 74) clips for testing. 
We smoothed input videos by a Gaussian filter with zero 
mean and variances (5, 5, 10) and extracted 5x5x10 video 
cubes from the interest point.  Each video cube was first 
converted into a binary cube and then represented by local 

binary features. ROIs in the Caremedia dataset were 
labeled manually. We created a local binary behavior 
descriptor for each ROI in each video clip using a 600-
word codebook.  

 
Figure 6. Aggression retrieval accuracy. 

Figure 6 shows the performance of the proposed algorithm 
in recognizing aggressive behaviors. The top 10 retrieval 
results include about 80% aggressive behaviors, which is 
much better than the random accuracy 36.2%. 
Figure 7 shows some frames extracted from the top 10 
retrieval results. These behaviors involve large and colorful 
objects such as chairs and signs and can be well recognized 
by the proposed algorithm. Figure 8 shows some examples 
from the last 20 retrieval results. We can see that 
aggressive behaviors here are either occluded or only 
involve small objects that are difficult to notice even for 
humans. We also observed that many “aggressive 
behaviors” would not have been truly aggressive if they 
did not involve an object, i.e., spoon or chair. Recognizing 
subtle forms of aggressive behavior will require more than 
human kinemics models alone. Our approach, on the other 
hand, is able to model the action of the arm, body, and the 
object together.  

Conclusions 

We have demonstrated the feasibility of using an AI-based 
approach and digital video to automatically classify RRPA 
behaviors in a long-term care nursing home facility. In 
contrast to the current self and caregiver aggression 
reporting and tabulating methods, our approach has many 
advantages in observing incidents over extended periods in 
multiple areas, in enabling the recall and examination of 
individual aggression incident details, in determining 
antecedent and consequent events, in reducing the 
workload of caregivers and improving the overall quality 
of care and safety of the residents. In the coming future, we 
will extend the LBMD method into multiple spatial and 
temporal scales. 
 



References 

Agarwal, S., Awan, A., and Roth, D.  2004, Learning to 
detect objects in images via a sparse, part-based 
representation, PAMI, November 2004 
Akita, K. 1984, Image sequence analysis of real world 
human motion, Pattern Recognition, 17(1):73-83, 1984 
Hogg, D. 1983, Model-based vision: a program to see a 
walking person. Image and Vision Computing, 1(1):5-20, 
Basu, S., Bilenko, M., Banerjess, A. and Mooney, R.J. 
2006, Probabilistic Semi-Supervised Clustering with 
Constraints, In Semi-Supervised Learning, MIT Press, 
2006. 

 
 
Bobick, A.F. and Davis, J.W. 2001, The recognition of 
human movement using temporal templates. IEEE Trans. 
PAMI, 2001  
Bregler, C. 1997, Learning and recognizing human 
dynamics in video sequences, In CVPR, San Juan, Puerto 
Rico, June 1997 
Caremedia http://www.informedia.cs.cmu.edu/caremedia. 
Chen, M. Long Term Activity Analysis in Surveillance 
Video Archives, TR Language Technologies Institute, 
Carnegie Mellon University, March 2008 
Dollár, P., Rabaud, V, Gottrell, G. and Belongie, S. 2005. 
Behavior Recognition via Sparse Spatio-Temporal 
Features, In VS-PETS 2005, page 65-72 

Figure 7. Some aggressions in the top 10 retrieval results 

 

Figure 8. Some aggressions in the last 20 retrieval results. 



Deutscher, J., Blake, A. and Reid, I. Articulated body 
motion capture by annealed particle filtering. In IEEE 
CVPR, volume 2, pages 126–133, 2000.  
Farrell Miller M. Physically aggressive resident behavior 

during hygienic care. J Gerontol Nurs 1997;23:24-39. 
Fergus, R., Perona, P., and Zisserman, A. 2003, Object 
class recognition by unsupervised scale-invariant learning, 
In CVPR, 2003  
Hoeffer B, Talerico KA, Rasin J, Mitchell M, Stewart BJ, 

McKenzie D, Barrick AL, Rader J, Sloane PD. Assisting 

cognitively impaired nursing home residents with bathing: 

effects of two bathing interventions on caregiving. 

Gerontologist 2006;46:524-532. 
Hu, W., Tan, T., Wang, L., and Maybank, S. A Survey on 
Visual Surveillance of Object Motion and Behaviors, IEEE 
Trans. SMC 3(34), Aug. 2004 
Johnson E.  Violence in nursing homes a growing concern.  

Available at:  http://www.myinky.com/ecp/news/article/ 

0,1626,ECP_734_1581923,00.html, December 2, 2002. 
Ke, Y., Sukthankar R., and Hebert, M. 2005, Efficient 
visual event detection using volumetric features. In ICCV, 
p. 166-173, 2005 
Lachs M, Bachman R, Williams CS, O’Leary JR. 

Resident-to-resident elder mistreatment and police contact 

in nursing homes: findings from a population-based cohort. 

J Am Geriatr Soc 2007;55:840-845. 
Laptev, I. and Lindeberg, T. 2003, Space-time interest 
points, In ICCV, p. 432-439, 2003 
Lee, MW, Cohen, I. and Jung, SK. Particle filter with 
analytical inference for human body tracking. In IEEE 
Workshop on Motion and Video Computing, pages 159–
165, 2002.  
Lowe, D.G., 2004, Distinctive image features from scale 
invariant key points, IJCV, November 2004 
Niebles, J.C., Wang, H., Li,. F. Unsupervised learning of 
human action categories using spatial-temporal words. 
1983 

Polana, R., and Nelson, R. 1994, Low level recognition of 
human motion (or how to get your man without finding his 
body parts). In Proc. of IEEE Computer Society Workshop 
on Motion of Non-Rigid and Articulated Objects, p. 77-82, 
Austin TX, 1994 
Schuldt, C., Laptev, I., and Caputo, B. Recognizing human 
actions: A local SVM approach. In ICPR, pp: 32–36, 2004. 
BMVC 2006. 
Sherrell K, Anderson R, Buckwalter K. Invisible residents: 

the chronically mentally ill elderly in nursing homes. Arch 

Psychiatr Nurs 1998;12:131-139. 
Shinoda-Tagawa T, Leonard R, Pontikas J, McDonough 
JE, Allen D, Dreyer PI. Resident-to-resident violent 
incidents in nursing homes. JAMA 2004;291:591-598. 
Yang, J., Jiang Y.G., Hauptmann, A. and Ngo, C.W. 2007,  
Evaluating bag-of-visual-word representation in scene 
classification, MIR’07 ACMMM, September 2007 
Wang, X., Wu, C. Approach of automatic multithreshold 
image segmation, in the 3rd World Congress on Intelligent 
Control and Automation, June 2000. 
Yamato, J., Ohya, J., and Ishii, K. 1992, Recognizing 
human action in time-sequential images using Hiden 
Markov Model, In CVPR, p. 379-385, Champaign, IL, 
June 1992 


