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Abstract

Intelligent environment research has benefited medical care
in a number of ways, including emergency detection, comfort
and accessibility. However, most of these techniques have
been applied in the context of a single resident, leaving out
situations where there is more than one person in the living
space. A current looming issue for intelligent environment
systems is performing these same techniques when multiple
residents or care providers are present in the environment. In
this paper we investigate the problem of attributing sensor
events to individuals in a multi-resident intelligent environ-
ment. Specifically, explore and contrast using two different
classification techniques. The naı̈ve Bayesian and Markov
Model classifiers present different capabilities and features
for identifying the resident responsible for a unique sensor
event. We present results of experimental validation in an in-
telligent workplace testbed and discuss the unique issues that
arise in addressing this challenging problem.

Introduction

With the introduction of smart home technologies into
homes and care facilities, the possibilities for customiz-
ing system behavior have increased dramatically. Signifi-
cant headway has been made in tracking individuals through
spaces using wireless devices (Bahl and Padmanabhan
2000)(Priyantha, Chakraborty, and Balakrishnan 2000)(Yin,
Yang, and Shen 2007) and in recognizing activities within
the space based on video data (Feng et al. 2001)(Intille
2002)(Snidaro, Micheloni, and Chivedale 2005), motion
sensor data (Jakkula and Cook 2007)(Wren and Tapia 2006),
or other sources of information (Moncrieff 2007)(Orr and
Abowd 2000). However, much of the theory and most of
the algorithms are designed to handle one individual in the
space at a time. Passive tracking, activity recognition, event
prediction, and behavior automation becomes significantly
more difficult when there are multiple residents in the envi-
ronment. Since care of people commonly includes multiple
residents, a resident and care provider, or a number of res-
idents and care providers, having the ability to discern in-
dividual activities and events is a base requirement for real-
world deployment of smart home technologies.
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The goal of this research project is to model and auto-
mate resident activity in multiple-resident intelligent envi-
ronments. There are simplifications that would ease the
complexity of this task. For example, residents could be
asked to wear devices that enable tracking them through the
space (Hightower and Borriello 2001)(Yin, Yang, and Shen
2007). This particular solution is impractical for situations
in which individuals do not want to wear the device, for-
get to wear the device, let the device’s power source die, or
enter and leave the environment frequently. Similarly, cap-
turing resident behavior with video cameras aids in under-
standing resident behavior even in group settings (Krumm et
al. 2000). However, surveys with target populations have re-
vealed that many individuals are adverse to embedding cam-
eras in their personal environments (Intille 2002), although
new techniques using silhouette-only imaging has shown it-
self to be more palatable. As a result, our aim is to identify
the individuals and their activities in an intelligent environ-
ment using passive and low profile sensors.

To achieve this overall goal, our first step has been to de-
sign an algorithm that maps sensor events to the resident
that is responsible for triggering said sensor event. This in-
formation will allow our algorithms to learn profiles of res-
ident behaviors, identify the individuals currently in the en-
vironment, monitor their well-being, and automate their in-
teractions with the environment. Some previous works have
focused on passive multi-resident systems (Cook and Das
2007), and give some indication of techniques that have suc-
ceeded on real-world data sets for activity recognition (Lu,
Ho, and Fu 2007).

To date, the focus has often been on looking at global be-
haviors and preferences with the goal of keeping a group of
inhabitants satisfied (Roy et al. 2005). In contrast, our re-
search is focused on identifying an individual and logging
their preferences and behaviors in the context of the multi-
resident spaces. This will bring simpler, more private smart
home technologies to care facilities, and individual homes
that have multiple residents.

The solutions used in this work revolve around using very
simple passive sensors, such as motion, contact, door sen-
sors, appliance interaction and light switches to give a pic-
ture of what is transpiring in the space. These information
sources offer the benefits of being fixed, unobtrusive and
robust devices, as well as being commonly found in living



spaces. Examples of the motion detectors and light switches
we use in our testbed are shown in Figure 2.

Smart homes and medical care systems are often tar-
geted towards recognizing and assisting with the Activities
of Daily Living (ADL’s) are used by the medical community
to categorize levels of healthy behavior in the home. The
ability of smart homes to help disabled and elderly individ-
uals to continue to operate in the familiar and safe environ-
ment is currently one of the greatest reasons for their contin-
ued development, alongside energy efficiency technologies.
So far, most smart home research has focused on monitor-
ing and assisting a single individual in a single space. Since
homes often have more than a single occupant, building so-
lutions for handling multiple individuals is vital. Dealing
with multiple inhabitants has rarely been the central focus
of research so far, as there have been numerous other chal-
lenges to overcome before the technology can effectively
handle multiple residents in a single space.

Since smart home research has the ultimate goal of be-
ing deployable in real-world environments, seeking solu-
tions that are as robust as possible is always a factor in the
systems we engineer. With that in mind, building an entirely
passive solution gives the advantage of keeping the technol-
ogy separate from the inhabitants while they go about per-
forming their daily routines. This lets the smart home feel
as ”normal” as possible to the residents and their guests. By
reducing the profile of the new devices as much as possible,
people’s behavior should be less effected by the technology
that surrounds them.

In this paper we present a pair of solutions to part of the
problem described above. Specifically, we apply two alter-
native supervised machine learning algorithms to the task
of mapping sensor events to the resident responsible for the
event. Each of the algorithms show different kinds of ca-
pabilities in determining differences in behavior, which will
make them more or less suitable for use in different smart
home environments.

The solutions offer the advantage of using previous be-
havioral data collected from the set of known residents with-
out requiring significant additional actions to be performed
by the residents. This historical behavior is used to train the
learning algorithms for use in future real-time classification
of the individuals and can be updated over time as new data
arrives.

Here we present the results of using the naı̈ve Bayesian
and Markov Model classifiers to learn resident identities
based on observed sensor data. Because the algorithms are
efficient and robust, we hypothesize that they will be able
to accurately handle the problem of learning resident identi-
ties and be usable in a real-time intelligent environment. We
validate our hypothesis using data collected in a real smart
workplace environment with volunteer participants.

Data Gathering Environment

The smart home testbed environments at Washington State
University consist of a lab space on campus and a town
home off campus. These testbeds are part of WSU’s CASAS
smart environments project. For our study, we used the lab

space on campus, as there are multiple faculty, staff, and stu-
dents who regularly enter the space and a number of differ-
ent kinds of activity take place throughout the rooms. The
space is designed to capture temporal and spatial informa-
tion via motion, door, temperature and light control sensors.
For this project we focus on events collected from motion
sensors and resident interaction with lighting devices. Part
of the testbed layout for both sensors and furniture is shown
in Figure 1. The rest of the space is very similar with desks,
tables and cubicles being the predominate features.

Figure 1: 2D view of inner office furniture and sensor loca-
tions.

Throughout this space, motion detectors are placed on the
ceilings and pointed straight down, as shown in Figure 2.
Their lenses are occluded to a smaller rectangular window
giving them roughly a 3’x3’ coverage area of the corre-
sponding floor space. By placing them roughly every four
feet, they overlap (between a few inches, up to a foot) and
allow tracking of an individual when a motion occurs. The



motion sensor units are able to sense when a motion as small
as reaching from the keyboard to a mouse. With this level
of sensitivity, sensors around work spaces trip even when
people sit quietly in a private space to work at a computer.

To provide control and sensing over the lighting,
InsteonTMbrand switches (similar to X10 devices) are used
to control all of the ceiling and desk lights in the room.
These switches communicate with a computer and all inter-
actions with them are logged. Figure 2 shows examples of
both the motion and light switch sensors.

Figure 2: CASAS sensors: motion detector and Insteon light
switch.

The entire lab space, including the portion shown in Fig-
ure 1, has two doors with simple magnetic open/closed sen-
sors affixed to them. These record door openings and clos-
ings via the same bus as the motion detectors.

By being able to log any major movement through out the
space, as well as device interactions, this system captures
basic temporal and spatial activity that can be used to iden-
tify individuals based on behavior. The tools used in this
project are designed to exploit both the spatial and temporal
differences, such as personal work spaces and activity times,
to accurately classify a given individual.

Data Representation

The data gathered by CASAS for this study is represented
by a quintuple:

1. Date
2. Time
3. Serial Number
4. Event Message
5. Annotated Class (Resident ID)

The first four fields are generated automatically by the
CASAS data collection infrastructure. The annotated class
field is the target field for this problem and represents the
resident ID, to which the sensor event can be mapped.

Date Time Serial Message ID
2007-12-21 16:41:41 07.70.eb:1 ON abe
2007-12-21 16:44:36 07.70.eb:1 OFF abe
2007-12-24 08:13:50 e9.63.a7:5 ON john
2007-12-24 14:31:30 e9.63.a7:5 OFF john

Table 1: Example of data used for naı̈ve Bayes classifier
training.

Training data was gathered during several weeks in the
lab space by asking individuals working in the lab to log
their presence by pushing a unique button on a pin pad when
they entered and left the space. During post processing, the
database was filtered to only use sensor events during the
time windows when there was a single resident in the space.
The corresponding data for the given time frame was then
annotated and supplied as training data to our machine learn-
ing algorithm. The total time frame for data collection was
three weeks, and over 6000 unique events were captured and
annotated as training data. For an example of the resulting
quintuples, see Table 1.

Naı̈ve Bayes Data Representation

Building more complex parsings of the data was done with
a number of strategies that were designed to capture the dif-
ferences in behavior between individuals. Primarily, these
strategies revolved around using the data and time informa-
tion to give the classifier additional information in the form
of ”feature types”, as shown in Table 2. The times that dif-
ferent people work, especially in any kind of care facility,
are very helpful in discriminating between residents and care
providers.

Markov Model Data Representation

One of the biggest advantages of using a Markov Model over
a naı̈ve Bayes classifier is context. To represent the same
data for a Markov Model, it is presented as a series of evi-
dence. In a smart home context, this is given as the series of
sensor events that a resident has caused.

For this work, the data set was broken into the event series
caused by our subjects. The series was noted with the ID of
the person and used to train their personal classifier.

Additional features that could be explored in these kinds
of classifiers include more temporal information about time
of day and the time it took for an individual to perform ac-
tivities, both of which will give even greater differentiation
between behavior patterns.

The Classifiers

The classifiers used for this comparison are a naı̈ve Bayes
classifier and a Markov Model-based classifier. These kinds
of classifiers have been used with great effect in other smart
home research projects (Tapia, Intille, and Larson 2004).
The two classifiers made use of the same data to accomplish
the same goal, but they are able to take into account very
different strategies of determining the current resident.



# Feature Type Example
1 Plain 07.70.eb:1#ON
2 Hour of Day 07.70.eb:1#ON#16
3 Day of Week 07.70.eb:1#ON#FRI
4 Part of Week 07.70.eb:1#ON#WEEKDAY
5 Part of Day 07.70.eb:1#ON#AFTERNOON

Table 2: Feature types used for classifier training

In the first approach, a simple naı̈ve Bayes classifier was
trained, where the features were built from the event infor-
mation, with the given class as the individual to whom the
event is associated with. This required it be distilled to only
a single feature paired to a given class. The class is set by the
annotation, but the feature chosen can be built from a com-
bination of the fields. The resulting feature to class pairing
is used for the classic naı̈ve Bayes statistical classifier based
primarily on frequency of occurrence.

For the simplest interpretation, only the serial number
coupled with event message was used, see Table 2, row 1.
This simple feature set provides a good baseline to com-
pare more complex parsings with. The more complex pars-
ings, such as ”Part-of-Week” (ie WEEKDAY or WEEK-
END) capture more information about the given behavior,
and can give the classifier more information for correct fu-
ture classifications. Depending on the facets of the data set,
different kinds of feature types can give the classifier better
or worse results.

The different feature choices available (ie Simple vs Hour
of Day, etc.) divide the data up in different ways. Each way
captures the behaviors or the residents with varying degrees
of accuracy, depending on the feature types chosen and the
behavior of the individuals in the data set. The purely sta-
tistical nature of a naı̈ve Bayes classifier has the benefit of
being fast for use in prediction engines, but lacks the ability
to handle context in the event stream that could be advanta-
geous in discerning different behaviors.

Conversely, the simple Markov Model classifier is built
around whole series of events, giving it the ability to gener-
ate classifications with more context. In this approach, one
model was trained for each resident, where the states of the
model map directly to the sensors in the system. This direct
exposure of the possible states makes this implementation a
simple Markov Model.

When given a test series of events, it was applied to each
model in turn using the forward backward algorithm, and
the model with the highest resulting probability was chosen
as the guess. This kind of system requires more calculation
time to run then the naı̈ve Bayes solution, but it is highly
parallizable by the number of residents.

We selected Markov models for our second approach be-
cause this representation encapsulates additional contextual
information. As a result, the context of the sensor event
is used when labeling the sensor event. By adding transi-
tions between states in the Markov Model, the spatial and
temporal relationships between sensor events are captured.
Thus, by taking more of both the physical and the temporal
information into account, our smart environment will more

Figure 3: Average accuracy rates by feature type.

effectively scale to a larger number of residents. The clas-
sification algorithm will also be able to express and learn a
mapping based on more subtle differences in behavior be-
tween the residents in the space.

Results

Figure 3 shows the classification accuracy of our naı̈ve
Bayesian classifier for the three residents we tested in our
lab space, while Figure 4 gives the results for all three resi-
dents over a number of event series sizes.

The most direct comparison between these two classifiers
is to take the ”plain” feature type for the naı̈ve Bayes and
compare it to the middle event series sizes of the Markov
Model. Neither one of these take into account information
about the time of day, nor the time taken for a given event
series. Looking at these two, the naı̈ve Bayes classifier runs
about 76%, while the Markov Model is about 84%. This
difference is significant when using the classifiers without
additional temporal information. It is likely attributed to the
Markov Model taking into account more contextual infor-
mation about the physical layout and ordering of the sensors.

The naı̈ve Bayes classifier can be enhanced to include
more temporal information via adding it to the feature for-
mat. In particular, we added the date and time of each sensor
event, as shown in Table 2. The classifier can now use time
of day or day of week information to differentiate between
the behaviors of the various individuals. For example, John
always arrived early in the day, while Abe was often in the
space late into the evening. Finding the correct features to
use for this kind of capturing of the behavior can be done
by balancing the overall correct rate and false positive rate
against one another.

For this data, it was found that using the hour of day pro-
vided the best improvements. These are shown in both the
overall accuracy (Figure 3), and in each individual’s results
(Figure 5 and Figure 6).



Figure 4: Markov Model classification varied by event
stream size.

Figure 5: John’s rate of correct classification across feature
types.

Figure 6: Charlie’s rate of correct classification across fea-
ture types.

Note that the classification accuracy is quite high for the
John values, but so is the false positive rate (Figure 7). This
is because our John participant was responsible for most
(roughly 62%) of the sensor events in the training data. As a
result, the apriori probability that any sensor event should be
mapped to John is quite high and the naı̈ve Bayesian classi-
fier incorrectly attributes Abe and Charlie events to John as
well. On the other hand, while Charlie has a much lower
correct classification rate, he also has a lower false positive
rate.

Figure 7: John’s rate of false positives across feature types.

The choice of feature descriptors to use is quite important
and has a dramatic effect on the classification accuracy re-
sults. Looking at the accuracy rate as effected by the feature
type chosen as shown in Figure 3, it shows that using hour-



Figure 8: Charlie’s rate of false positives across feature
types.

of-day increases the average identification significantly. Ad-
ditionally, by using hour-of-day, the false positive rate drops
dramatically, as shown in Figure 9. When the right features
are selected from the data set, the classifier is able to make
better overall classifications.

Figure 9: Average false positive rates by feature type.

Choosing the best feature type to pick means balancing
the accuracy against the false positive rate. A visual way
of showing this kind of balancing is shown in Figure 10.
By choosing time-of-day the benefits to the accuracy rate
will probably outweigh the increase in false positive rate.
In this case, a 2.5x increase in accuracy balances against
a 2x increase in false positives. Unless the final applica-
tion is highly dependent on the certainty of the predictions,
it should be a simple algorithm to determine which feature

type is most advantageous.
If the intelligent environment can take false positive rates

into account, this information about false positives can be
leveraged accordingly via a belief value. As we move to-
wards the use of ensembles of classifiers to build the smart
home identification systems, the ability to determine how
accurate a result is likely to be will become a necessity. This
value will need to be taken into account by any fusion en-
gine we use to make the final identification determination,
and could be passed onto any historical data gathered for
further training, leading to even the classifiers being built
with data giving them a value of believed accuracy.

Figure 10: Overall classification rates for all features for
Charlie.

With the initial introduction of temporal information, the
classifiers begin to see correctness rates of over 93% and
false positive rates below 7%. A prediction engine that relies
on these classifiers can have a high degree of confidence that
it is correctly identifying an individual and attributing events
to them. This then leads to proper ADL detection, activity
trending, and better information provided to care providers
using a low profile, passive smart home infrastructure.

Time Delta Enhanced Classification

Adding more features to our data set did improve the resi-
dent classification accuracy. Due to the nature of the naı̈ve
Bayes classifier, the features can only be complexified a little
bit before they are no longer useful. To add additional infor-
mation to the data, short events were left out. The length of
an event was calculated to be the length of time from when
someone first tripped a given sensor until they tripped an-
other sensor. This had the effect of giving the system less
information about ”mixed” areas, where people often walk
through quickly.

This was based around the fact that the majority of our
events were short. The breakdown is shown in Figure 11,
and further inspection showed the the majority of the short



events were the ones the confused the naı̈ve Bayes style of
classification.

To begin, we removed from our data set any motion sensor
events whose durations, or time elapsed between events, fell
below two standard deviations from the mean, leaving the
longest deltas. With an even more reduced set in hand, the
data splitting, training and testing were all done the same
way as before with the full data set.

Figure 11: Count of lengths an individual spends on any
sensor.

The resulting classifier only used a handful of the avail-
able sensors throughout the living space, but the accuracy
and false positive rates improved dramatically. This is at-
tributed to the fact that motion sensors in shared spaces or
walkways will mostly have very small time deltas associated
with them. Since these sensors are also the ones with the
highest false positive rates in the full set classifier, removing
these sensor events will improve the overall performance of
the classifier. Note that with this filtered-data approach, sen-
sor events with short durations will not be assigned a map-
ping to a specific resident. However, by combining this tool
with one that tracks inhabitants through the space(Jakkula,
Crandall, and Cook 2007), only a handful of sensor events
need to be classified as long as they have a high accuracy.
For the naı̈ve Bayes classifier, applying this kind of filtration
was very valuable. The accuracy rates exceeded 98%, with
corrospondingly low false positive rates in some instances
(See Figure 12).

This kind of filtration does not assist the Markov Model
classifier. The inclusion of short events is valuable to the
Markov Model because because it uses the context of the
whole event series to differentiate between individuals. Re-
moving these events renders the classifier unusable, as there
is too little evidence to process.

The Markov Model takes into account either traversing
sensors quickly, or remaining on a single sensor by de-
sign. This allows the overall architecture of the system to
no longer require this first stage of data analysis and modifi-

Figure 12: Delta filtered classification accuracy results.

cation for improvements. It also reduces the reliance on ex-
ternal tools to help manage the physical location and track-
ing of individuals. These kinds of external tools will be
required to differentiate streams of events, but the Markov
Model classifier will not require them to track and identify
nearly as much as the naı̈ve Bayes system that is relying on
a form of delta filtering the garner accurate results with.

Conclusions

In this paper, we design and evaluate two alternative ma-
chine learning approaches to identifying individuals in a
smart environment. The approaches build upon our earlier
work using a naı̈ve Bayes classifier, and introduce the use
of a Markov model. Both classifiers learned accurate con-
cept descriptions, but their internal design infuses them with
different classification capabilities for this task.

Using a real-world testbed with real-world activity, the
classifiers performed well. With simple, raw smart home
sensor data the naı̈ve Bayes classifier was showing an aver-
age accuracy over 90% for some feature selections. After
applying some filtration to the data set to exaggerate the be-
havior of the inhabitants, accuracy rates over 95% and false
positive rates under 2% were possible.

The Markov Model classifier, without the benefit of as
much temporal information managed to get near the 90%
number, but took into account more of contextual behavior
inherently. This provides a much better starting point for fu-
ture designs, as less external management of the data needs
to take place for the system to function.

Additionally, the Markov Model style of classifier should
scale better with both the size of the space and the number
of inhabitants. With a small home and a limited number of
people, the naı̈ve Bayes should be functional enough, but for
larger facilities and more individuals, making a system able
to seek out more subtle features to classify upon will be of
paramount importance.



Figure 13: Delta filtered classification false positive results.

The naı̈ve Bayes requires that different features are shoe-
horned into place and compared against one another to de-
termine which ones best fit the current historical data set.
While this is not as time consuming as many other tech-
niques would be, it still requires more passes and complexity
to accomplish. By moving towards a Markov Model solu-
tion, we were able to gather a number of these externally
built features without additional effort, allowing for more
subtle features to be used in the classification.

When using these kinds of classifiers in a medical or se-
curity environment, the false positive rate is very important.
The system should hold off on making decisions instead of
guessing because being incorrect about whether someone is
acting correctly or having the system call security without
need can lead to not just poor performance, as it would for
an energy efficiency or comfort application, but it can begin
to impact diagnosis or responsiveness of the emergency re-
sponse system. These kinds of real world issues impact deep
within smart home technology choices.

Choosing the best time-based features can strongly influ-
ence the performance of any temporally-dependent environ-
ment, and this is no exception. Whether the final application
needs a very high level of certainty for one or more of the
residents or can trade that certainty off for higher accuracy
across all individuals is up to the needs of the final smart
home application. Fortunately, as the systems move towards
ensembles of tools, the systems should be able to seek a
number of features and choose the best between them. Ad-
ditional benefits are derived by choosing classifiers that take
more context and timing information into them by design,
instead of relying on complexifying the features given to a
simpler classifier, such as naı̈ve Bayes.

Both the naı̈ve Bayes and the Markov Models have ad-
vantages and disadvantages. With identifying individuals in
a space, there are very subtle physical and temporal facets
to seek out and different kinds of classifiers will work best
together, keeping their deficiencies mitigated by allowing

them to focus on what kinds of features they are best and
leveraging.

Future Work

To continue to grow the capabilities of these kinds of classi-
fiers, a number of things can help. Additional data with more
individuals will show how robust of a solution this is. Dif-
ferentiating between two people with very similar schedules
might be very difficult for this kind of tool. Comparing this
tool as a baseline solution with Hidden Markov or Bayesian
Network based solutions will allow the continued research
to show how much contextual information assists with the
classification of individuals.

Applying this classifier to a larger preference and deci-
sion engine is a must. Adding this tool to a passive tracking
solution will give significantly more information to any in-
dividual’s history for future learning and prediction systems
that are deployed in the CASAS testbed. Comparing it to
a system without this kind of identification process, or one
based on device tracking, will be a significant step for smart
home research.
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