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Abstract

We are investigating how sensors can improve a portable
reminder system (PEAT) that helps individuals accomplish
their daily routines. PEAT is designed for individuals who
have difficulty remembering when to perform activities be-
cause of cognitive impairments from strokes or other brain
injuries. These impairments can cause a significantly reduced
quality of life for afflicted individuals and their caregivers.
PEAT provides assistance by planning a schedule of activities
for a user, and by cueing the user when activities should be-
gin or end. One limitation of PEAT is that it requires the user
to manually indicate when an activity starts or stops, which
causes unnecessary cues for a user who needs only occasional
reminders. By incorporating feedback from reliable sensors,
the software can automatically infer which activity the user is
performing. With this information, we expect that PEAT will
be able to cue the user more effectively, by not cueing the
user when sensors indicate that activities have already started
or stopped, and by providing compliance cues that remind
the user when steps of an activity have been forgotten. We
present a description of the system, implemented scenarios,
and a discussion of potential benefits and pitfalls with this
approach.

Introduction

Impaired cognitive function presents a significant challenge
for many elderly persons. Common failures include fail-
ing to start an activity, stalling after an activity, forget-
ting a required component, or performing the activity in-
correctly. Although everyone experiences occasional lapses,
when these lapses become chronic then activities of daily
living (ADLs) become infeasible without regular assistance
from a caregiver. This presents a significant burden to the
patient, the caregiver, and the health-care system.

PEAT (the Planning and Execution Assistant and Trainer)
is a cognitive orthosis which runs on a cell phone and
helps compensate for executive function impairment. Ex-
ecutive functions refer to cognitive abilities that are required
for goal-directed behavior. People rely on executive func-
tions for planning and carrying out daily activities, staying
on track by inhibiting distractions, adjusting to novel situ-
ations and recovering from performance errors (Levinson
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1995a). Many individuals with mild cognitive impairment
can still function independently, given appropriate external
cues. The role played by a caregiver or PEAT is to compen-
sate for the user’s impaired executive function by monitoring
the user’s behavior and providing reminders when required
to ensure that activities are performed correctly. We can
think of the performance of activities as a two level system,
with a set of low-level reactive behaviors capable of com-
plex environmental interaction through sensory motor coor-
dination, and with a high-level deliberative supervisor that
recognizes behaviors, enforces constraints, and intervenes
when appropriate.

In previous work, the primary focus of PEAT has been
on scheduling and enforcing temporal constraints between
activities (Levinson 1997). PEAT’s perception of what ac-
tivity the user is performing is limited to self-reports where
the user indicates the current activity on the GUI. The pur-
pose of this work is to explore how PEAT can incorporate
sensors to automatically infer the current activity and thus
provide more appropriate cues.

Augmenting PEAT with sensors provides several poten-
tial benefits to the user. First is a reduction in irrelevant cues
for starting and stopping activities when an activity classi-
fier can infer the user’s current activity. Second, the sen-
sors permit therapy compliance cueing where PEAT can re-
mind a user to use an object as part a task (for example,
to use a cane while getting the newspaper). Third, PEAT
can cue the user when they are stalled or perseverating in a
task. Fourth, PEAT can assist with performance errors such
as going to the wrong location or picking up the wrong ob-
ject. Finally, there is the possibility for therapeutic monitor-
ing, where logs from PEAT can be used to infer how often
the user used the cane while walking, or how much time the
user spent outside.

To the best of our knowledge, this is the first portable re-
minder system to “close the loop” by using sensors to de-
tect what the user is doing instead of forcing the user to
directly respond to the device. Moreover, we demonstrate
that these improvements are feasible in real-time with the
limited computation and memory available on a cell phone.
The following sections provide a more detailed description
of PEAT and our progress on this project, along with some
implemented scenarios. We conclude with a discussion of
both related work and open issues.
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Figure 1: Several technologies are integrated in this project. (a) PEAT runs on a cell phone. PEAT cues the user using dialog
boxes. (b) A wearable RFID reader is used to detect handled objects. (c) A pressure mat detects that someone is at a known
location. The sensors transmit data through wireless interfaces.

Technologies

The PEAT software is sold by Attention Control Systems
and runs on Windows Mobile platforms, including cell
phones (Figure 1). The intended users are people with im-
paired executive functions who have difficulty remembering
when and how to perform daily activities. Primarily, PEAT
provides assistance by maintaining a schedule of a user’s
activities and automatically cueing the user when activities
need to be started, resumed, or completed. A distinctive as-
pect of PEAT is the use of reactive planning to adjust a user’s
schedule when an activity takes an unexpected amount of
time, or the user updates the calendar. PEAT monitors ac-
tivity durations and warns the user about approaching dead-
lines and scheduling conflicts.

PEAT represents an instance of an activity as a task. Each
task has temporal properties such as a start time and ex-
pected duration. As the user progresses through their day
and updates the status of the current task, PEAT reactively
updates the day’s schedule, and advises the user when tasks
should start or stop, when conflicts arise, or when decisions
must be made.

A federally-funded, three-year randomized controlled
trial to evaluate PEAT’s efficacy with 100 subjects has re-
cently been completed (Fisch et al. 2007), and a similar
study is beginning at the University of Maastricht in the
Netherlands. Preliminary results show that PEAT provides
benefits over a traditional therapy of pen and paper sched-
ules.

In order to provide effective cues to users with cogni-
tive limitations, the original version of PEAT provides all
cues in modal dialog boxes that simplify the user interface
by requiring the user to respond before permitting any fur-
ther interaction with the device. However, this is the only
manner in which PEAT is able to track the user’s activities.
Thus, to benefit from PEAT, the user is forced to respond
to two cues for every scheduled activity to inform PEAT
of progress. This cueing may be reassuring to some users
(PEAT is managing the schedule), but may be annoying to

users who make only occasional mistakes (the cost of re-
sponding to unnecessary cues outweighs the perceived ben-
efit from when PEAT catches an error). Moreover, the user’s
executive function could deteriorate through excessive re-
liance on reminders from PEAT. Reducing the number of
unnecessary cues that PEAT generates could reduce the risk
of learned dependency.

We are extending PEAT with sensors in order to auto-
matically detect when a user is performing an activity. The
sensors provide input to activity classifiers that infer which
activity the user is currently attempting to perform. A vari-
ety of sensors are currently available, including RFID, pres-
sure mats, and GPS. Each sensor has distinct characteris-
tics with respect to availability, coverage and error rates.
We are focusing on sensors with a low false positive error
rate. The sensor coverage is effectively disjoint for GPS sig-
nals (which are only available outdoors) and pressure mats
(which are intended for indoor use). Hence, although mul-
tiple sensors are available, they may not all be available si-
multaneously or for a single activity. The absence of a sensor
observation can be managed by the introduction of a miss-
ing observation symbol into the sensor stream. The GPS has
two symbols for missing observations, one to handle the case
when GPS is turned off, and one for when GPS is turned on
but no signal is being received.

We have implemented interfaces to PEAT for several sen-
sors. The RFID reader is a prototype developed by Intel
Research Seattle and has a bracelet form-factor. The RFID
reader scans RFID tags and then transmits the identifiers in
real time through a wireless ZigBee network. RFID tags are
placed on several objects in the environment, and whenever
the bracelet is within a few inches of a tag, the reader is
able to scan the tag’s unique identifier. The pressure mats
come from Trossen Robotics and are connected to PEAT
through a Bluetooth network. The pressure mats provide
strong evidence that someone is working in a certain area.
The iPaq cell phone running PEAT has on-board GPS capa-
bilities. The GPS provides a secondary source of location
information.



Theory

PEAT compensates for a user’s impaired executive function
by monitoring the execution of user activities and interven-
ing when required to enforce constraints on sequences and
deadlines. Previously, PEAT emphasized managing con-
straints and generating effective cues. PEAT’s perception
of the user’s behavior was limited to self-reports.

The introduction of sensors necessitates some changes to
PEAT. The structure of the modified PEAT system can be
represented by the tuple

<X, AC, CM,CG>

consisting of a state vector X and separate modules for ac-
tivity classification, constraint management, and a cue gen-
eration. The state contains the latest sensor readings, the
current attempted activity, and the activity schedule. By in-
corporating sensors into the platform, the new activity clas-
sification module provides the perception, while the con-
straint manager compares the activity that the user is at-
tempting to perform with the activity’s constraints. When
errors are detected, a cue is generated based on the user’s
cueing preferences. Note that the activity classifier does not
need to detect errors in the performance of a task, nor does
it need to generate appropriate cues, as these functions are
provided by the constraint manager and the cue generator
respectively. This provides a clear separation of concerns
between the modules.

State Vector

The state vector contains multiple types of information.
It contains the most recent observations from each sen-
sor. For example, the last object touched was the coffee
mug and the last location was the kitchen. It contains the
CurrentActivity as estimated by the activity classification
module. It also contains the current schedule of activities.

Activity Classification

Activity classification (AC) using RFID sensors can be quite
accurate (Patterson et al. 2005). Moreover, positioning sen-
sors such as GPS or pressure mats provide a valuable inde-
pendent source of information, when they are available.

Given observation streams from sensors, activities can be
classified with a hidden Markov model (HMM) (Rabiner
1989). In a simple HMM for activity recognition there is one
state per activity (Figure 2), and each activity has some prob-
ability of generating the current sensor observation. For-
mally, given a set of activities A and a set of observations
O, at time t the probability that the activity performed at

was α after seeing the observations o1,...,t is determined by
knowing the probability distribution over the activities at the
previous time step.

P (at = α|o1,...,t) ∝ P (ot|at = α)×
∑

β∈A

P (at = α|at−1 = β)P (at−1 = β|o1,...,t−1)

Although an HMM is commonly used with the Viterbi al-
gorithm to find the most likely sequence of states to explain

Figure 2: A hidden Markov Model is used to classify the
user’s activities from sensors. The hidden state at represents
the user’s activity at time t while ot is a sensor observation.

a complete sequence of observations, PEAT needs to know
what the user is currently attempting. This classification
must be provided online and in real time for timely and ef-
fective interventions. Hence instead of the Viterbi algorithm,
HMM filtering uses the above recursive equation to compute
P (at = α|o1,...,t) the probability distribution for the current
activity given the previous observations. Since the obser-
vation and activity sequences do not have to be stored, the
filtering algorithm requires only a constant amount of mem-
ory.

At each time-step, the best estimate of the current activity
is updated in the state vector. The estimate is qualitative,
either indicating that the activity classifier is confident that
the activity is currently being attempted or indicating that
the current activity is ambiguous when the classifier is not
confident.

CurrentActivity ∈ A ∪ {Ambiguous}
The classification is ambiguous when the probability of the
most likely activity falls below a threshold. The use of a
symbolic state for ambiguity provides a principled yet sim-
ple mechanism to integrate deterministic reasoning in PEAT
with probabilistic state estimation.

The constraint manager also primes the activity classi-
fier to expect certain activities based on the user’s schedule.
While accurate classification is difficult when selecting be-
tween many activities, the user’s schedule will indicate that
only a few activities are currently likely. For example, the
schedule for a user’s morning routine may only contain three
activities. The constraint manager tells the activity classifier
that these activities are substantially more likely than any
other activities. The activity classifier then sets the proba-
bility distribution for the current state in the HMM filter ac-
cordingly. Priming does not change the CurrentActivity
in the state vector until new observations are received. Prim-
ing combines the strength of knowing that only a few ac-
tivities are likely to occur (from the user’s schedule) with
the flexibility to recognize unlikely activities when there is
sufficient evidence. Priming also allows the activity clas-
sification to be robust to arbitrary reorderings of expected
activities.



We further have developed the Interleaved HMM
(IHMM) (Modayil, Bai, and Kautz 2008) as a better vari-
ant of an HMM for the classification of interleaved activi-
ties. The IHMM augments the state representation in a sim-
ple HMM (one state per activity) with a richer HMM state
representation that stores the last observation seen in each
activity (one state for each observation symbol for each ac-
tivity). When activities are interleaved, the IHMM can bet-
ter predict the next observation based on the last observa-
tion for the new activity. The IHMM has a very large state
space, but an effective approximation reduces the portion of
the state space considered at each time step to be compara-
ble to that used for the simpler HMM. The introduction of
explicit representations for the interleaving of activities im-
proves the accuracy for both the Viterbi algorithm and the
filtering algorithms.

Constraint Management

The constraint manager (CM) relies on the
CurrentActivity in the state vector, along with the
current schedule of activities. Even though a user may
be attempting to perform an activity, the user may not be
performing the activity properly. The CM examines the
state vector to determine when an activity’s constraints are
violated and how to respond.

PEAT represents flexible time constraints between activi-
ties. Each activity has an earliest start time, latest stop time,
minimum duration and an expected duration. The CM man-
ages the schedule of activities and informs the user when
significant changes must be made.

Groups of activities may be collected to form routines,
and routines can be hierarchical. The use of hierarchical
routines simplifies the user interface, but all planning and
constraint satisfaction occurs with a flat representation. The
components of a routine may be unordered, ordered se-
quences, or disjoint choices.

In addition to the above temporal constraints, the activ-
ity descriptions have been extended to include sensor-based
constraints for prerequisites, invariants, and success condi-
tions. At each time step, the constraints of activities are com-
pared with the data in the state vector. We list examples of
these constraints for some activities below.

• Activity:GetNewspaper, Prerequisites: touch cane

• Activity:MakeTea, Invariants: location kitchen

• Activity:GetNewspaper, Success Conditions: touch mail-
box

These constraints are currently used for updating the state
of the system and for cue generation. When the AC believes
that the user is starting an activity and the prerequisites are
not satisfied, then a reminder cue is generated. If the prereq-
uisites are satisfied, then the constraint manager updates the
state vector to indicate that the new task is active. Cues are
also generated when the AC believes that the user is com-
pleting an activity and the success conditions have not been
satisfied. When an activity invariant is violated, the system
checks the constraints to see if the task may be complete or
if a cue should be generated to the user to return to the task.

At any point in time, the CM only performs inference over
a limited set of tasks (instances of activities). By comparing
the sensor constraints of the tasks to the state vector, the CM
can update the status of each task to one of pending, active,
paused, or complete. If the AC asserts that the user is trying
to perform an activity whose prerequisites are false, the CM
will cue the user to achieve the prerequisites. In this manner,
PEAT helps the user recover from performance errors during
plan execution.

Cue Generator

While it is useful to cue a user, the user may not want re-
minders if they start or stop activities manually. The user
may not want repeated reminders about the the same issue.
Perhaps the user does not want to use their cane that day.
Perhaps the user is currently talking on the phone and should
not be interrupted at the current time.

The purpose of the cue generator is to provide appropri-
ate cues based on the user’s current state as measured by
previous interactions and other sensors. In the current im-
plementation, cue generation is based solely on the user’s
preferences which are configured in the software. We expect
to extend this capability to account for the user’s cognitive
state based on how the user is responding to cues during ac-
tivities. Previous research (Boger et al. 2005) has shown
how the user’s responsiveness to cues can be used to model
their cognitive state and take appropriate action. For exam-
ple if the user is not making progress on their schedule in
response to cues, then a human caregiver may be called for
assistance.

The addition of sensors offers new possibilities for cue-
ing. One is to provide confirmation when the activity clas-
sifier detects that the user has started a new activity without
requiring a user response. The confirmation can be as sub-
tle as a vibration, or more blatant such as an audible tone, a
pre-recorded sound segment or context-specific synthesized
speech. This provides feedback to the user that the system
is operating correctly without requiring the user to respond
to PEAT. In future work, the user may provide feedback to
PEAT to improve the probabilistic activity models.

Module interfaces

The constraint manager provides top-down priming to the
activity classifier with a list of activities that are likely causes
of the next observation. This limits the difficulty of activity
classification. Even though an individual may have hundreds
of different activities in a day, PEAT knows that at any point
in time only a few of these activities are likely. However,
given sufficient evidence the AC can overcome the strong
prior belief to correctly infer that a user is performing some
unusual activity.

Conversely, the AC module infers which activity the user
is attempting to perform, and PEAT can use this to reduce
cues to the user. In particular, cues to start an activity are not
required if the state vector indicates that the user has already
started the activity and all prerequisites are satisfied. Also,
if the AC infers that a user has moved on to the next activity,
then PEAT can change the status of the previous activity to



Figure 3: This is an example of therapy compliance with
a simulated user. On receiving a sensor reading from the
pressure mat at the doorway, PEAT recognized that the user
was getting the newspaper. Although the activity of getting
the newspaper has a prerequisite of using the cane, the user
had not recently touched the cane. PEAT generated a cue to
use the cane, and then the user retrieved his cane.

paused and PEAT does not need to cue the user to stop the
previous activity if termination conditions are satisfied.

Example Scenarios

Currently we have a preliminary implementation of the in-
tegrated system. The sensors and cell phone communicate
via wireless networks using a laptop base station. The prob-
abilities for the activity classifier are generated manually, al-
though they can be learned from training data (Patterson et
al. 2005). For our initial implementation, we have combined
both location observations and object observations into a
single observation stream for the activity classifier. To sim-
plify the integration of sensor readings into the event-based
software, the missing-observation sensor readings are cur-
rently ignored so the activity classifier only performs up-
dates when new sensor data is received. We have imple-
mented and tested three example scenarios.

The scenarios are based on a sample morning routine
(Figure 3). In the morning routine, there are three activities
(making tea, making cereal, and getting the newspaper), two
locations (kitchen and doorway), and several objects (cane,
mailbox, tea, mug, spoon, teapot, bowl, cereal, fridge, milk).
Some objects are shared between activities and two activities
shared the same location.

Baseline. In the baseline scenario, the user does not wear
the bracelet, and goes through a morning routine with
PEAT. Because the sensors are not available, PEAT cues
the user at scheduled times when activities are expected
to start or end. This leads to six cues to the user (one cue
each at the beginning and the end for each of three activi-
ties).

Reduced Cueing. The activity classification module facil-
itates reduced cueing. In this scenario, the sensors are en-
abled and PEAT infers which activity the user is attempt-
ing to perform. This step is non-trivial, since different
activities may share objects and locations. However ac-
tivity classification is reliable with adequate sensor data
from a restricted set of plausible activities. With a com-
petent user who does not need reminders to start or stop
activities, this approach generates no cues at all. For sit-
uations where the user stalls and needs a reminder, PEAT
still provides cues appropriately.
Consider the first part of a sample morning routine.
The Constraint Manager primes the Activity Classifier
to expect only the three activities in the morning rou-
tine. The first sensor reading indicates that the loca-
tion is the kitchen. With this evidence, the activities of
making tea and making cereal are both probable, so the
CurrentActivity is set to Ambiguous to indicate that
no activity is more than 90% probable. The Ambiguous
state is used to avoid a premature commitment to an ac-
tivity. Next, an RFID sensor reading shows that tea is is
use. The probability that the user is making tea increases,
and the probability of making cereal decreases. After a
few sensor readings, the system is confident that the user
is making tea and the CurrentActivity is changed to in-
dicate that the user is making tea. The constraint manager
checks to see if this violates any constraints. Detecting
no violated constraints, the constraint manager updates
the user’s schedule to indicate that the task of making
tea is active. The scheduled interrupt to cue the user to
start making tea is suppressed, and the user continues with
their morning routine without an interruption from an un-
necessary cue.

Therapy compliance. Using the activity prerequisite,
PEAT can also remind a user to use a mobility aid (such as
a cane) when appropriate. We tested this with an activity
(GetNewspaper) which has touching a cane as a prereq-
uisite. When PEAT observes that the user is attempting
the activity and has not recently touched the cane, PEAT
generates a cue to the user to get the cane. The user at this
stage can choose to either return and grab the cane, or con-
tinue the activity without the cane. In either case, PEAT
logs the attempted intervention and the user’s response.
This style of intervention can help the user remember in-
structions from their therapist. Moreover the user could
review the logs with a therapist to monitor progress.

Related Work

This project builds upon several pieces of related work. The
PEAT system developed from research in unified planning
and execution systems (Levinson 1995b). Previous research
has shown that RFID technology can be used to reliably rec-
ognize ADLs (Patterson et al. 2005). Previous work also
showed that significant locations can be inferred by cluster-
ing GPS signals (Liao, Fox, and Kautz 2004).

This project is most similar to previous work in the Au-
tominder project (Pollack et al. 2003). Autominder also
reasons over temporal constraints and performs intelligent



cueing, either on a PDA or on a mobile robot. However, this
work has not demonstrated how sensors can be integrated
into the scheduling process to provide more effective cue
generation.

Other research has also studied integrated sensing and
cueing. Mihailidis and colleagues (Mihailidis, Carmichael,
and Boger 2004; Boger et al. 2005) are studying how to pro-
vide effective automatic cue generation for bathroom ADLs,
in particular for hand-washing. Their system senses the user
with a vision system built into the bathroom. The system
provides audible cues and monitors the user’s behavior to
infer both the user’s progress in the task and the user’s cur-
rent cognitive state. This work focuses on building a very
detailed model for one specific ADL, in comparison to the
approach in this paper of providing more limited assistance
over many daily activities in many locations.

Work on the House n project (Tapia, Intille, and Larson
2004) studies how sensing technology can accurately detect
which activity the user is performing. This work has evalu-
ated the effectiveness of several sensors in the home. They
have discovered issues including limitations of RFID and
the effectiveness of location sensors for activity classifica-
tion. PEAT is capable of using multiple type of sensors and
should work with whichever sensors are available and most
effective.

Discussion
Our exploration of the integrated sensing and cueing is on-
going, and there are several possible extensions for this
work. One is to use automatic activity classification to fa-
cilitate a fine-grained activity specification without requiring
additional interaction on the part of the user. Individual steps
in an activity (such as adding milk to the tea) could be au-
tomatically learned and activities can be interleaved without
requiring additional cues. Another extension is to modify
cue generation based on a user’s location and current activ-
ity (in a movie theater or driving). Another valuable func-
tion is to remember the last location where an object was
sensed, which could be used to help a user find their cane or
their car. Finally, by extending the activity constraints with
preconditions and postconditions, PEAT can form plans by
chaining together activities with matching preconditions and
postconditions.

Although adding sensors to PEAT provides several ben-
efits, there are potential pitfalls. One is that the increased
nondeterminacy of sensor-contingent cueing could lower the
user’s trust in PEAT’s reliability. Lowered trust could also
occur if sensor errors lead to incorrect cues to the user. We
believe these issues can be managed by conservative cue-
ing and reliable sensors. Although we are generating ac-
tivity models for the activity classifier manually, learning
the models from training data is effective (Patterson et al.
2005). There could be challenges in personalizing the ac-
tivity models for individual users which may require gath-
ering some training data for each user. There are still many
open issues in generating effective cues over a range of ac-
tivities. The most appropriate cue could vary depending on
the user’s current state, which could be subject to both intra-
and inter-day variations. There is also the potential for the

deterioration of an individual’s capabilities from illness pro-
gression or increased prosthetic reliance. Finally, there are
privacy issues that can arise if the information about a user’s
activities is not managed effectively. Currently all this infor-
mation is stored locally on the cell phone and is under the
user’s control.

In the real world, sensors may be less reliable and be-
haviors may be less predictable than observed in the lab.
However, the failures need not be debilitating to the system.
When the system fails to detect an activity or to resolve a
constraint, PEAT will fall back to prompting the user for in-
formation. Using the set of probable activities in the user’s
schedule, PEAT can request confirmation when the user ap-
pears to be performing an unusual activity. While testing
in the real world is required to address these concerns di-
rectly, this approach holds promise for more complex sce-
narios than the one currently implemented.

Planning with sensors provides several additional oppor-
tunities for improving the system’s capabilities. PEAT uses a
reactive planning approach for constraint management. The
implementation is being extended with contingent behaviors
that are triggered by sensor observations. This approach
allows the activity descriptions to be easily amended by a
user or caregiver. Formal semantics for these extensions are
based in work on the PLEXIL system (Verma et al. 2006).
Another opportunity is to incorporate uncertainty explicitly
in the state representation for better decision making (Boger
et al. 2005). A richer representation of uncertainty in the
state allows for more noisy sensors to be incorporated at the
cost of more complex planning.

Conclusions

We have described how a reminder system can incorporate
sensors to improve performance. The system infrastructure
is flexible, adjusting to incorporate the available sensors but
functioning even when sensors are not available. The ad-
dition of sensors and activity classification can improve the
cues generated by the reminder system and extend the sys-
tem’s functionality through the introduction of cues for ther-
apy compliance. The integration of the component technolo-
gies demonstrates the feasibility of this approach. Although
further work is required to demonstrate effectiveness in large
deployments, we believe this approach can substantially im-
prove the quality of life for many users.
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