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Abstract

Computer-based emotion recognition is an emerging field
with envisioned applications ranging from customer satisfac-
tion evaluation to human-machine interaction. In this paper
we present a general framework for continuous emotion in-
ference based on Bayesian biometric data fusion and the cir-
cumplex model of affect. We apply this framework to the field
of assistive robotics focused on elderly and impaired people
who require a wheelchair for mobility purposes. The objec-
tive is to provide an emotion-based safety layer that comple-
ments the classical collision avoidance approaches typically
included in these systems. In many real-case applications the
calculation of the emotional valence is not feasible, and there-
fore we also present here a promising novel context-based al-
ternative currently under development.

Introduction

Humans seem most capable (probably due to self introspec-
tion) of distinguishing certain emotional states in other indi-
viduals just by glancing at them for a short period of time,
extracting behavioural, facial and other relevant cues. Com-
puters on the other hand, lack such capabilities and there-
fore need to be trained for that purpose. Due to the differ-
ence between the perceptual and analytical abilities of hu-
mans and computer, however, cues that are most suitable
for us (e.g. gestures, poses, expressions) may result sig-
nificantly less useful for a computer system. On the other
hand, some other information of a more ’numerical nature”
(e.g. electrocardiogram measurements), not that indicative
for humans, could provide a computer system with key in-
sights into the emotional state of an individual.

The work we present here is the result of our preliminary
research into continuous emotion estimation and its applica-
tion to the development of an emotion-based navigation as-
sistive layer for an intelligent wheelchair typically operated
by a physically and/or cognitively impaired elderly person
(our target user). This layer is completely user-centric and
provides a technology that the user utilises unconsciously.
Its task is to adapt the level of support that the user receives
from the wheelchair based on the physical and cognitive
capabilities of the patient, his/her driving performance, the
navigation context and the user’s biometric readings.

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Elena G. Nikolova?
2Cognitive Neuroinformatics, Bremen University
Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
nikolova@informatik.uni-bremen.de

Our work differs from those of other authors in the field in
a number of aspects. Firstly, it is concerned with real-time
estimation of emotions, and as such, it presents techniques
and mathematical models that can operate online. Secondly,
while most of the related works are concerned with user sat-
isfaction and digital entertainment, our goal is to develop
robotic systems capable of reacting and adapting their be-
haviour in real-time (e.g. modify the navigation strategy of a
mobility platform) based on the user emotions. Thirdly, due
to the nature of our application and target population, we
are restricted in the type and number of sensors we can use.
Finally, we propose the use of context-based information in
order to solve the problem of valence calculation without
using intrusive or uncomfortable sensors.

Motivation

Electrical wheelchairs, scooters and walkers are probably
the most widespread modern assistive devices used by el-
derly and disabled people in order to increase their mobil-
ity. Although collision avoidance has been recently included
in smart wheelchairs (Minguez and Montano 2004), (Man-
del, Huebner, and Vierhuff 2005), (Simpson 2005), tests
with the target population show a clear need for plasticity
in the platform’s safety layer and navigation module (An-
nicchiarico et al. 2007). As a result, researchers are looking
into shared control and shared autonomy paradigms (Bar-
rue, Cortes, and Annicchiarico 2007). The objective is to
dynamically adapt the assistance provided by the platform
to the precise level of support required by the user. Dur-
ing our initial studies, we realised that technology anxiety
and difficulty to interact with computer-based systems were
common in our target population and could prevent an in-
dividual from using or fully exploiting a clearly beneficial
technology. For instance, a person driving through a door
may perform well if the corridor is empty since he/she feels
relaxed. On the other hand, a busy corridor makes him/her
feel anxious and the cognitive and motor actions required to
drive the wheelchair through the same door may become too
demanding. Moreover, stress and anxiety can make the user
unable to give any meaningful command through the plat-
form’s graphical user interface (GUI). In this case, the emo-
tion estimation algorithm presented here would notice that
the user needs assistance and would, for instance, (depend-
ing on the user’s medical condition) present a very simplified



GUI with just a couple of clear options, or would grant full
control to the autonomous navigation system. In general,
the estimated emotional level of the user would be passed to
the shared control or share autonomy module and fused with
other data in order to decide how much autonomy is granted
to the navigation system.

Emotions and Biometrics

Experiments in affective neuroscience research have yield
two main theories or models for understanding emotions
and their related disorders. The traditionally dominant one
is the theory of basic emotions, which posits that humans
are evolutionary endowed with a discrete and limited set of
basic emotions (Ekman 1992), (Panksepp 1998), (Tomkins
1962 1963). According to this theory, each emotion is in-
dependent of the others in its behavioural, psychological
and physiological manifestations, and each arises from ac-
tivation within unique neural pathways of the central ner-
vous system (Posner, Russel, and Peterson 2005). One of
the main criticisms towards this theory comes from its fail-
ure to explain the near ubiquitous comorbidity among mood
disorders (Posner, Russel, and Peterson 2005), and the fact
that usually emotions are not recognised as isolated discrete
mental states but as combinations of overlapping ones with-
out tangible discrete borders (Russell and Fehr 1994). The
circumplex model of affect, on the other hand, proposes a
two-dimensional approach where each emotion can be un-
derstood as a linear combination of two fundamental neuro-
physiological systems, namely arousal and valence (Russell
1980). Arousal is related to alertness, and can be seen as a
measure of activation, while valence can be understood as
a measure of how positive or negative an individual feels
about something. In that way, emotional states could be rep-
resented as a Cartesian product of these two parameters. As
Figure 1 shows, the two parameters cannot be considered
fully independent from each other (particularly in the ex-
tremes of the axis). However, as an often valid approxima-
tion, arousal and valence levels are typically calculated sep-
arately, obtaining in that way quantitative estimates of the
emotional level of an individual. The techniques and meth-
ods presented in this paper focus on the characterisation of
the arousal and valence levels of an individual, based on the
circumflex model of affect.

Emotions have been highly correlated in the psycho-
physiological literature with facial muscle activity and sym-
pathetic nervous system activity (Bradley 2000), (Lang et al.
1993), and therefore they could be estimated, in principle,
from biometric measurements. The most common biomet-
ric indicators used in the literature are shown next.

e Heart Rate (HR) and Heart Rate Variability (HRV).
This information can be extracted from electrocardiogram
(ECGQG) readings and pulse oximeters. HR and HRV are
highly correlated with arousal, and HRV can be used as an
indicator of mental load, long term stress and heart wear-
ing. Blood Pressure (BP) is typically linked with arousal
and stress.

e Galvanic Skin Response (GSR) is a popular method of
measuring the electrical resistance of the skin, which is
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Figure 1: A graphical representation of the circumplex
model of affect, based on (Russell 1980).

highly correlated with arousal.

e Respiratory frequency measured as chest expansion and
contraction, has also been related to arousal.

o Skin Temperature (ST). Stress can modify the blood dis-
tribution in the body (e.g. extremities), which can result
in local temperature variations.

e Facial muscle activity extracted from Electromyogram
(EMG) readings. Facial expressions extracted from cam-
eras.

e Speech cues extracted from microphones.

e Eye gaze and movement, extracted either from cameras or
glasses, are typically used in attention assessment experi-
ments.

When emotion estimation is used in psychological ex-
periments or in applications such as user satisfaction anal-
ysis (Fragopanagos and Taylor 2005), (Desmet and Hekkert
2007), (Mandryk and Atkins 2006) the choice of sensors is
less constrained since the user will wear them for a rela-
tively short period of time, probably during a finite set of ses-
sions. On the other hand, continuous monitoring of signals
in an individual places clear restrictions in terms of comfort,
non-invasiveness and reliability, and therefore, certain clin-
ical devices such as blood pressure devices, EMGs or aca-
demic ones such as eye tracking glasses, cannot be consid-
ered. Other sensors such as video cameras, could also be ex-
cluded due to privacy issues. The environment sets also con-
straints on the sensors, since for instance noisy and crowded
environments would probably be inappropriate for perform-
ing reliable speech analysis. Finally, the gender and age
of the user could definitely influence the choice of sensors.
Due to the nature of our application, we concentrate on bio-
metric measurements of the “numerical type” such as HR,
HRYV, GSR, Breathing or ST, complemented with the con-
textual information that the robotic platform can provide us
with. Human-machine interaction cues can provide a mea-
surement of its emotional, physiological and cognitive state.
For instance, a person driving an electric wheelchair will of-
ten have a joystick as input device. Useful information can
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Figure 2: Example of a simplified discretisation of arousal
and valence. H=high, L=low, P=positive, N=negative.

be extracted from simple frequency analysis of the joystick’s
commands (e.g. tremor or lack of coordination), and a more
elaborated context-based processing can reveal, utilise and
even quantify more complex factors such as visual neglect,
stress due to a imminent complex task (e.g. narrow corridor
navigation), and the location of walls and obstacles.

Probabilistic Emotion Estimation Based on
Bayesian Inference

As we have seen, emotions are directly related to arousal
and valence levels, two quantities that unfortunately cannot
be directly measured. Instead, we infer them from the read-
ings of a set of biometric sensors and contextual informa-
tion. Here we present a novel probabilistic recursive algo-
rithm for estimating emotions in a continuous fashion that
we call the Probabilistic Emotion Estimation Filter. This
algorithm makes no assumptions about the type or number
of sensors. It only requires that each sensor is capable of
roughly relating its measurement history with arousal and/or
valence levels. In order to simplify the notation and since the
following analysis is applicable to both arousal and valence,
we will refer to them indistinctively as the state (z) to be
estimated, where @ € X = { arousal, valence }. Further-
more, we discretise the state, so only a finite set of different
values are considered. This is consistent with the fact that
we try to differentiate between a finite set of emotions. We
consider the set of state values & = {x1, X2, ..., X }-and
represent the state at time ¢ as a state vector of N compo-
nents, i.e. x; = {xg.} forall d = 1,2,...,N. Figure
2 illustrates this discretisation for the case of N = 4 and
& ={HN,LN,LP,HP}. Now we are in a position to re-
formulate the estimation of emotions as the calculation of
the probability vector

P(‘rt‘s]i:w "’75?:15) = {P(xd,t|s}:t7 "'78711:t)} (1)

where d = 1,2,..., N and s¢_, is the complete measurement
history of the @ — th sensor, at time ¢. In order to simplify
the notation further, we make the following definitions. Note
that the following vectors are column vectors.

Belief state vector. It represents the system’s internal
knowledge about the state based on the updated history of

the sensors’ measurements.
bel(‘xt) = P(It‘s%:tw'ws?:t)
= {P(I(Lt s%:t? ceey 5?:1‘,)} (2)

where d = 1,2, ..., N. If only the i-th sensor is considered
in the state estimation then we use the notation

bel(zy) = P(xe|s1.,) €)

Prediction state vector. If only past measurements were take
into account, the state could not be estimated but predicted

@(xt) = P(xt|s%:t—17"'75711:t—1)
= {P(xd7t|8i:t—l7"'78?%—1)} (4)

foralld = 1,2,...,N. Similarly, if only the i-th sensor is
considered in the state prediction then we use the notation

bel(wi) = Plwe|siy1) ®)

State transition probability matrix P(xi|lxi_1) = M =
[mi ;]. M isan N x N square matrix, whose elements m;_;
represent the probability of reaching the state ¢ from state j.
In this paper we assume that M is stationary, i.e. M # f(t).
A normally distributed M is depicted in Figure 3.
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Figure 3: Graphical representation of the state transition ma-
trix M where the transitions are assumed to follow a normal
distribution. In figure (b) darker areas represent higher tran-
sition probabilities. Note that the different Gaussian curves
need not to have the same parameters.

If we want a continuous state estimation, we need to be
able to update the state with every new peace of sensor ev-
idence. For that purpose, we perform a Bayesian recursive
state estimation. Next we briefly state three useful proba-
bilistic identities.

The Bayes rule of conditional probability for two condi-
tions

P(bla,c)P(alc)  P(c|a,b)P(alb)

Plab.c) = =505 =" pup




By the law of total probability
P(alb) = ZP alzi, b) P (x;|b) (8)

The identity for conditional independent random variables a
and b

P(a,ble) = P(ale)P(ble) ©

As mentioned before, our objective is to estimate arousal
and valence levels, and we can do so by calculating the prob-
ability vector P(x¢|st.,, ..., sT,). We first derive the solution
for the case of n = 2,1i.e. P(x¢|s,, s%.,), which will be then
generalise for NV sensors. In the following section, unless
stated explicitly, the multiplication operation between belief
vectors is done on a per component basis, and do not refer to
dot products. First we notice that expanding the conditional
part of P(x¢|s},, s%.,) and applying (7) we obtain

P51, 51.4) = (10)

P(xt‘stlvS%’S}:tflasitfl) =

P(Si}vS%|xt’3%:1&—1’3%:t—1)P(xt‘3%:t—1a3%:1&—1)
P(sy, 8718T:-155T:—1)

Assuming conditional independence between the measure-
ments of different sensors

P(St17 Sg|$t, 8%:1;—17 8%:1;—1) =
= P(silae, s14-1) P2, 8T0-1) (D)

so (10) can be rewritten as

P(xtls1y,514) = (12)
P(SﬂxhS%:tfl)P(sglxh8%:t71)P($tIS%:t717ngtfl)
P(s%’sﬂs%:tfl?‘sitfl)

At this point, our route to calculate the belief distribution
P(z¢|st., s3.,) differs from the traditional measurement up-
date step based on P(st|z;), commonly found in probabilis-
tic robotics (Thrun, Burgard, and Fox 2005). The main rea-
son is the lack of a P(si|z;) model available relating biomet-
ric sensors and emotions. Trying to obtain one would require
medical trials that would extend beyond the time frame of
this research. It is also very possible that the validity of such
model would be confined to a particular individual and that
due to comorbidity and changing medical conditions, such
model would most likely require a very complex state vec-
tor definition and higher order Markovian relations. Also, it
is worth noticing that most biometric measurements, such as
heart rate or GSR, lack the level of uncertainty inherent to
the distance measurements performed by ultrasonic or laser
range sensors.

We propose instead, to work with P(z;|s%., ) and a state
transition matrix M. The first one requires each sensor to es-
timate the state based on its own measurement history. Since
we have a set of past measurements available, we can use
a variety of approaches, such as pattern recognition tech-
niques or fuzzy inference, in order to obtain and continu-
ously update this posterior model.

Applying the Bayes rule to P(s}|xs,si, ;) and
P(s?|xy,s2.,_1), and gathering terms, (12) becomes
P(xi|s1,,57.4) =
P(S%‘S%:tfl)P(stst%:tfl) .
P(S}, S%|S%:t—1’ Sit—l)
P(4|51,) P(2e|57.) P(2e] 51,1, 574-1)
P(x4]siy 1) P(xe]s1,1)
Since the law of total probability must be obeyed, we can

gather together all the terms that are not dependent on z; in
a normalisation constant 7, obtaining

P(ai|sh)Plaist,)
P($t|s%:t71)P(mt|s%:t71)
P(xt|s}:t717s%:t71)
, which can be rewritten in belief terms as
bel(z}) - bel(x?) —
ellay) - bel(@r) gy
bel(x}) - bel(x?)
(14)

for each component of x;. This result can be generalised as
follows

bel(x?)
P(xy|st,,...,s = bel(xy) t) bel(x
(@l oo s8) = el nH(bm2 (@)
15)

for each component of ;. The normalisation constant 1 can
be calculated applying the law of total probability

Z bel(zy) =1

T €L

13)

P(xt‘s%:tvsit) =

P(xt|s}:t78%:t) = bel(‘rt) =

thus obtaining
-1

B N bel(xi)\ —
=2 (Ul (beuxé))'bel(“)) o

T €E

Now we need to find the expressions for the different beliefs
involved in (14). Applying the law of total probability to
bel(x;) and assuming the state transition to be a first-order
Markov process

bel(zy) = P(xilst1,874-1) =
N
Zp(xth?d,t—l) (Td,e- 1|51t 17511: 1) (A7)

for each component of the vector bel(x:).  Since
P(x¢|z4+—1) represents the d — th column of matrix M (i.e.
the state transition probability vector from the d — th state
to any other state), we finally obtain

@(xt) = P($t|3%:t—17 8?:1;—1) =M -bel(w;—1) (18)

where here - represents the matrix-vector product. Operating
in a similar manner we obtain

@(xz) = P(l't|sli:t71)
N .
= ZP(It|1‘d7f,—1)P(xd,t—1|S7i:t—1) (19)

— M -bel(at ) (20)



Finally, Table 1 presents the recursive algorithm that im-
plements the Probabilistic Emotion Estimation Filter for an
arbitrary number of biometric sensors.

Emotion_Estimation Filter[bel(z;_1), bel(z}_;)]

bel(zy) = M - bel(xzs_1)
for all ¢ do
Obtain bel (x)
bel(wf) = M - bel(x_y)
endfor
ubel(zy) = [1, (%m) - Del ()

n= (theg ubel(xy)
bel(xy) = n - ubel(xy)

A e o

=
Nt
|
A

*®

Return [bel(z;)]

Table 1: Recursive implementation of the Probabilistic
Emotion Estimation Filter.

Calculation of bel(z?)

The posterior probability of each of the components of
bel(xi) = P(x4|st.,) represents the probability of the state
vector based only on the updated set of measurements of the
i —th sensor. In other words, what /ine 3 of Table 1 requests
from each sensor is its belief about the current state vector
for arousal or valence. In general, one can safely assume
that newer measurements provide much more information
than older ones, and therefore, we could make the following
approximation

bel(l‘;) = P(‘Tt|57lt) = P(‘rt|sifn:t) (21)

For reasonable values of n, this probability can be empir-
ically approximated using suitable training data collected
from a particular individual. We could increase n several or-
ders of magnitude without incurring into much bigger com-
putational load, by noticing that since old measurements are
less relevant in the estimation of the state than recent ones,
it would be reasonable to provide measurement averages
rather than single values. Therefore, dividing the interval
[t — n : t] into k subintervals (k < n), we could approxi-
mate bel(z?) by

bel(xy) = P(x]sy.) = P(xelpi) (22)

For instance, if the first interval contains 7 elements then
pt = average(st..), where r < n. Notice, that in gen-
eral the number of measurements averaged on each interval
could be proportional to how far in time their measurements
are, hence increasing the resolution around recent measure-
ments. Figure 4 presents an example of this multiresolution
interval decomposition. This approach presents the advan-
tage that P(z¢|p}.;) can be learned for each individual sub-
ject using for instance time series prediction architectures
such as ANFIS (Jang 1993). For a detailed description of
different time series prediction techniques and relevant ma-
chine learning algorithms see for instance (Chatfield 2003)

and (Witten and Frank 2005). As a final comment, we want
to note that although some sensors cannot infer by them-
selves arousal or valence (e.g. the room temperature sensor
J cannot infer bel(x7])), their readings may clearly influence
the estimation bel (%) of sensor i (e.g. the GSR sensor 7). In
this cases, sensor j should not be included in the filter, but
should be included in the calculation of bel(x] ).
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Figure 4: Approximation of bel(x}) based on a multires-
olution interval decomposition of the measurements taken
in the last 60 mins. Clearly, old values influence less, as
shows the fact that for the first 30 min. of the interval,
only three averages of 10 mins. each are considered (kq
to k3). If we get for instance 10 samples per second, then
n =60 - 60 - 10 = 36000, while k = 53.

Valence Calculation for Wheelchair Control
Applications

Evidently, the calculation of bel(x!) depends on what are we
trying to estimate and the type of the sensor we are using. A
number of approaches relating arousal with biometric mea-
surements such as HR, respiration or GSR, have been pro-
posed cf. (McQuiggan, Lee, and Lester 2006), (Anttonen
and Surakka 2005), (Herbelin et al. 2004), (Mandryk and
Atkins 2006), and therefore we will not elaborate further on
it. There is however, one difference worth mentioning be-
tween these works and our approach. It is well known that
HR measurements are very much influenced by the level
of physical activity of the individual. Although for obvi-
ous reasons this effect is significantly reduced in the case of
wheelchair driving, our calculation of bel(x ) takes into
account arm movements by means of an accelerometer lo-
cated on the wrist.

The estimation of valence, is altogether a completely
different matter. Inferring the subjective consideration of
something being pleasant or not based on a set of biometric
measurements has proved to be a very complex task. Its
calculation cannot be neglected since as Figure 1 shows,
similar arousal levels are indicator of contradictory emo-
tional states such as happy or upset, elated or stressed, ex-
cited or nervous. Most of the works found in the literature
related to valence estimation are based on either question-



naires, speech processing cf. (Jones and Jonsson 2005), (Ci-
chosz and Slot 2005), (Vidrascu and Devillers 2007), or fa-
cial expression extraction from EMG sensors cf. (Mandryk
and Atkins 2006). Clearly, none of these approaches are
valid in the case-scenario of wheelchair control by elderly
and/or impaired users, as the valence has to be estimated
on-line, the patient is not continuously (or at all) communi-
cating verbally with the wheelchair, and EMG sensors are
certainly intrusive for daily use. Since under these condi-
tions we are in no position to obtain reasonable values for
valence, we propose a modified version of the circumplex
model of affect that uses what we call a Context Based Va-
lence (CBV). The CBV can be seen as a simplified version of
the valence, whose value is based on the context of the task
being performed. In our case, the task is driving an electrical
wheelchair to perform activities of daily living and it is sub-
divided into a set of subtasks such as negotiating an obstacle,
navigating through a door, following some signs, etc. The
context is the environment surrounding the wheelchair, its
configuration and obstacles, the medical history of the user
(e.g. is he/she cognitively capable of localising him/herself
outdoors) and his/her current driving performance. We pro-
pose to extract this information (except the medical history)
from the range sensors that are typically mounted on au-
tonomous and semiautonomous wheelchairs. Our experi-
mental wheelchair Rolland (Mandel, Huebner, and Vierhuff
2005) has two laser scanners, one on the front and one on
back, which are used for collision avoidance, semi- and au-
tonomous navigation. Furthermore, wall segmentation is
performed online, based on the raw measurements of these
sensors. The current framework can also compute Voronoi
diagrams either from local sensor-based grid maps or from a
pre-existing global grid map derived from a CAD blueprint.
Doors of a predefined size can be also detected based on the
segmented data and the Voronoi diagram (Mandel, Huebner,
and Vierhuff 2005). We are currently working on extend-
ing this framework to enable the recognition of contextual
information that could help estimating the valence of the
driver. Figure 5 shows local evidence grids obtained in real-
time while driving Rolland, which clearly show contextual
information. Figure 5a for instance presents a relatively nar-
row L-shaped corridor, whose sharp turn may be cognitively
challenging to navigate for many elderly people with cer-
tain impairments. Moreover, even though the security layer
of Rolland will drive fairly straight the corridor (even if the
driver tries to collide against a wall), there are psychological
factors (e.g. claustrophobia) that could still arise negative
emotion in the user.

By means of a performance function based on the number
of collisions avoided by the wheelchair, joystick commands,
time spent, etc., we can categorise a set of environments that
the user finds particularly challenging. For instance, when a
person that has had difficult times driving through a narrow
L-shaped corridor is confronted with a similar configuration,
a neutral valence will be initially inferred. However, as soon
as his arousal levels increase over certain level we will as-
sume a negative valence. The context of Figure 5b, i.e. out-
doors navigation, could be somehow opposite. Many elderly
with impairments find the short time they spend outdoors en-

(a) L-shaped corridor with Voronoi dia- (b) Outdoors naviga-
gram superimposed tion
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(c) Approaching an open door

Figure 5: Four different contexts for valence inference,
based on the evidence grids generated online by Rolland.
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Figure 6: Biometric recordings (HR and GSR) during an ex-
periment where the user encountered unexpectedly the end
of the corridor as shown in Figure 5d .

joyable, and therefore an initial positive valence is assigned
to this context, even for positive arousal levels. The medical
history of the user is part of the contextual information. If
the driver has, for instance, localisation problems at cogni-
tive level, or suffers from agoraphobia, an outdoor experi-
ence could be very challenging, and therefore high arousal
levels would assign negative values to the valence. Another
example is presented in Figure 5c, where the driver is ap-
proaching an open door. In this context, the challenging part
is to pass through the door and therefore, high arousal lev-
els in the approaching phase and poor performance function
will be associated with low valence. On the other hand, after
the maneuver is finished, the valence will be reset to neutral
and only very high levels of arousal will force a reconsid-
eration. It is important to understand that the nature, shape
and values associated with each context have to be learned
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Figure 7: Results of the probabilistic arousal estimation
based on the biometrics from the dead-end corridor scenario.
In this analysis the arousal has been discretised as shown in
Figure 2. (a) and (b) are rough estimations obtain via simpli-
fied fuzzy inference. (c) Despite that and the coarse discreti-
sation of the arousal, the algorithm successfully localises in
time the stress event.

from experience for each particular user. Furthermore, if a
map of the area navigated is available, sections that system-

atically present a challenge to the user can be marked and
CBYV estimations could be done automatically.

Preliminary Results

In order to illustrate the application of the algorithm shown
in Table 1 to the recursive estimation of arousal, and the
idea of context-based valence extraction, we present an ex-
tract of an experiment where a non-impaired subject is driv-
ing Rolland. At certain point while driving fast, the sub-
ject encountered an unexpected dead-end in a corridor (see
Figure 5d). In Figure 6 we show the HR and GSR mea-
surements during a three minutes interval around the dead-
end corridor event (shortly before minute 2). Figure 7a
and 7b present individual sensor beliefs, which are used
by the recursive probabilistic emotion filter for inferring the
driver’s arousal (Figure 7c). The individual sensors beliefs
{bel(z =arousal? )}, {bel(x =arousal& )} used in this
example corresponds to a very simplified fuzzy inference
models where only the latest measurement is used. Despite
the rough estimation of arousal provided by the inference
system, the coarsely discretized (N = 4) state vector ¢ and
the use of the generic state transition matrix M shown in
Figure 3b, the algorithm clearly localises in time the stress
point of the user. A fine tuning of the transition matrix for
each user would produce a smoother filter response. The
CBYV approach makes sure that similar emotion responses to
dead-end corridors would flag such locations in a way that
negative valence would be inferred in case of high arousal
levels.

Conclusions and Future Work

This paper presented a novel probabilistic framework for
multisensory emotion estimation, introduced the context-
based valence calculation, and illustrated its application in
the field of assistive robotics. The preliminary results with
non-impaired subjects were promising, even with coarse
state discretisation and transition matrices. The next step is
to gather experimental data from the target population (im-
paired elderly people) and use it to develop algorithms for
identifying biometric particularities of individual subjects,
and applying them to refine bel(x!). Context recognition,
based on evidence grids, is currently under development.
For the experiments with elderly people, we are testing our
first prototype of a non-invasive wireless multisensor device
(3.5 x 3.5 x 1.5 cm), which measures room and skin tem-
perature, GSR and acceleration.
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