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Abstract

When monitoring elders daily routines, it is desirable to de-
tect aberrant activity trends, as they may foreshadow a need
for medical attention. But, traditional, unsupervised pattern
classification techniques are ill-suited for this task, because
the data distributions formed by the captured patterns are tem-
poral in nature. To overcome this algorithmic deficit, we craft
a framework for analyzing and displaying additive trends in
feature data extracted from passive sensors.

Introduction

By 2030, the elderly population is expected to double. With-
out a firm, existing caregiving framework to accommodate
the influx of individuals, faculty and researchers at the Uni-
versity of Missouri Sinclair School of Nursing have adopted
an Aging in Place (AIP) style of care (Marek, Rantz and
Porter 2004). As an alternative to institutionalized, long-
term oversight, AIP revolves around the notion of indepen-
dent, at home living and the ability for elders to continuously
receive support for their growing gamut of needs. But, the
model alone is not sufficient to combat the growing financial
burden for caregiving services (Knickman and Snell 2002)
along with staving off a degenerate functional decline. In-
stead, automated, intelligent systems could be coupled with
the approach to reduce costs and improve the quality of life.

To help promote this technologically enhanced, indepen-
dent living model, the MU Sinclair School of Nursing and
Americare Systems Inc. have collaborated to create the
TigerPlace domicile complex (Rantz et al. 2005). As one of
four state-approved AIP projects, TigerPlace has spawned a
number of ongoing research ventures focused on improving
and personalizing elder care through environment monitor-
ing (Anderson et al. 2007; Luke et al. 2007; Sledge, Keller
and Alexander 2008; Wang and Skubic 2008). Out of these
endeavors, one facet of the work is focused on crafting a hy-
brid software-sensor system capable of providing caregivers
additional information about the elders’ wellbeing.

While placing a variety of sensors in an individuals
dwelling yields a wealth of activity information, a major is-
sue is rooted in how to analyze the data to locate trends that
correspond to states of wellbeing. However, before embark-
ing on data analysis, an important first step is the extraction
of features that elucidate important information embedded
within the data. Unlike the raw sensor signals, a matrix of

computed features, X = {�x1, . . . , �xn} ⊂ R
s, may contain

an arbitrary number of data dense regions that correspond to
distinct diurnal patterns. By utilizing exploratory data analy-
sis techniques (Bezdek et al. 1999), X can be organized into
c self-similar subsets, called clusters, based upon an under-
lying similarity measure. But, since the activity of the mon-
itored individuals, and thus the collected sensor data, can
vary on a daily basis, many of these methods are insufficient
for unsupervised temporal classification. To ameliorate the
data exploration process, we draw upon recent work, grow-
ing neural gas clustering (GNGC), from the realm of tempo-
ral clustering (Sledge and Keller 2008). In the subsequent
sections, we not only show that the technique can locate
emergent activity trends in the computed sensor data fea-
tures, but also provide a mechanism for viewing the learned
groups in R

s.

Feature Extraction

As a method to gain insight into any type of data, feature cal-
culation depends heavily on the quality and type of recorded
signals. To ensure that a broad spectrum of activities is pre-
served for unearthing this information, various apartments at
TigerPlace are outfitted with a suite of sensor elements de-
veloped by collaborators at the University of Virginia (Mack
et al. 2006; Alwan et al. 2003). In each of the deployed net-
works, infrared motion sensors record both quantized activ-
ity information and room location. Pneumatic strips, placed
under the bed linens, are also used to gather a variety of
bed-related data, such as restlessness, pulse and respiration.
However, unlike the binary motion sensors, the bed sensor
returns level-thresholded, physiological data. For example,
if the resident is readjusting, the sensor will initially report
low restlessness. Provided that the device continues to detect
movement, and that a sufficient amount of time has elapsed,
medium, high or very high firings are generated. As well,
respiration and pulse related data are captured, at regular
intervals; but, instead of escalating firing levels, rough es-
timates of the breaths and heart beats per minute are logged.
Though some minutiae are lost in the coarse quantization
process, and others due to communication errors, a bulk of
the essential information often remains intact or can be in-
ferred from other sensors.

Since new sensor data are constantly collected, for each
participant, feature computation begins with the segmenta-



(a) Zoomed activity plot, of a 4-hour period, for an arbitrary day

(b) Activity plots for two consecutive days

Figure 1: Sensor density plot of the participants color-coded
room location (first row) and bed restlessness (second row),
pulse (third row) and respiration (fourth row), as a function
of time. The higher the saturation, the more sensor firings
that occurred in a particular area before the elder moved to
another; black denotes bed vacancy. To see image details,
please zoom in.

tion of the time-delimited data into 24-hour intervals. Us-
ing these daily snapshots, both motion firings and bed infor-
mation are fused together to generate activity density plots,
such as those in Fig. 1. In Fig. 1(a)-(b), the individuals
room location, for any given mo-ment, is encoded on the
first ordinate using the color scheme: blue, green, cyan,
yellow, magenta and red denote presence in the bedroom,
bathroom, closet, kitchen, living room and entryway, respec-
tively. Density information is then coa-lesced by varying the
saturation of the colors based upon the aggregated motion
firings; the more vivid the hue, the more sensor hits. Simi-
larly, the remaining three ordinates display bed restlessness,
pulse and respiration firing densities in blue, green and red.
For each of these three axes, black is used for periods of
inactivity and is an indication of bed vacancy.

Creating density images, like those in Fig. 1(b), serve a
dual purpose: it not only helps to visualize trends over long
time spans, but also aids in filtering out erroneous data. Fur-
thermore, pertinent features, such as the total time spent in
bed or the number of nightly bathroom visits, become eas-
ily discernible. Other attributes can also be reaped from the
activity graphs, and a complete list is given in Table 1. In
total, 32 different characteristics are currently measured for
each 24-hour period; others, such as visitor information and
time spent out of the apartment, are being explored for future
inclusion.

Feature Extraction

As new feature vectors are appended to X, the possibility
exists for new data dense regions to form or even amalga-
mate over time. Due to these transient changes in topology,
conventional pattern recognition techniques, such as clus-
tering, are unsuitable for this task as they rely on a specified
class count, c, while the classification results are localized
in time. Although an estimate of the number of coherent
groups, cest, can be obtained using tendency assessment ap-
proaches (Bezdek et al. 1999; Bezdek and Hathaway 2002;

Table 1: Current set of daily computed features
Feature Type Measured Quantity

Motion

Number of nightly bathroom visits, time
woke up/went to bed, number of times out

of bed in the morning/night, time out of
bed during those trips, number of daily

bathroom visits, time spent in each room
number of room changed, aggregated

motion firings (8 areas)

Restlessness Total time in bed, total amount of nap time,
aggregated restlessness firings (4 levels)

Pulse Aggregated pulse firings (2 levels)

Respitation Aggregated breath firings (2 levels)

Havens et al. 2008; Sledge et al. 2008), and the classifica-
tion method re-executed, it is desirable to not only glean cest

automatically but also reuse previous clustering results. To
realize these algorithmic desires, Sledge and Keller (2008)
proposed growing neural gas clustering, which is capable of
capturing temporal distributions formed by additive datasets.

Clustering Preliminaries

During traditional, exploratory data analysis, clustering al-
gorithms attempt to optimize the spatial location of a proto-
type set, V = {�v1, ..., �vc} ⊂ R

s, w.r.t. the set of unlabeled
objects, X. Once the �vj’s have captured a compact repre-
sentation of the clusters’ structure, a membership partition,
U = [uj,i](c×n), is returned, which succinctly describes the
commitment of every point to each of the c groups. For
classical (hard) clustering, a vector is required to have full
commitment, or membership, to a single cluster. However,
in fuzzy clustering, a datum can belong to any number of
groups, provided that the sum of the memberships, in each
cluster, adds up to one. Possibilistic algorithms further build
upon the idea of shared belongingness by relaxing the fuzzy
summation constraint; this allows for a vector’s summed
commitment to be greater than one. Since the c-partitions
of X can be either soft or hard, the nested sets of all non-
degenerate c-partitions are represented as:

Mpcn =
{
U ∈ R

c×n

∣∣∣∣ uj,i ∈ [0, 1],∀j, i;
∑n

i=1 uj,i ≤ n,
∀j; maxj uj,i > 0,∀i

}

Mfcn =
{
U ∈ Mpcn

∣∣∣∣ uj,i ∈ [0, 1],∀j, i;
∑n

i=1 uj,i < n,
∀j;

∑c
j=1 uj,i = 1,∀i

}

Mhcn =
{
U ∈ Mfcn

∣∣∣∣ uj,i ∈ {0, 1},∀j, i;
∑n

i=1 uj,i < n,
∀j;

∑c
j=1 uj,i = 1,∀i

}
where Mpcn, Mfcn, and Mhcn are possibilistic, fuzzy and
hard, respectively (Bezdek et al. 1999).

Temporal Clustering

Unlike the popular c-means family of methods, which use a
least squares optimization approach to update the positions
of the prototypes, GNGC draws upon concepts from a num-
ber of different fields to locate cluster centroids. Foremost,



learning vector quantization is used to encode each mani-
fold, M ⊆ R

s, of signals using a finite set of reference
vectors, W = {�w1, ...} ⊂ R

s. To accommodate the inclu-
sion of new feature vectors, the size of W is allowed to grow
as a function of the number of added data points. A hybrid
growing neural gas (Fritzke 1994) and adaptive resonant the-
ory (Carpenter and Grossberg 2003) scheme is then utilized
to update the best-matching �wk, and its connected neighbors
on a dynamic lattice structure, for each input stimulus. Since
there are no explicit constraints on the lattices topological
arrangement, new connections can be forged between arbi-
trary, non-connected �wk’s, based on the induced magnitude
response of each �wk’s receptive fields. In addition, obsolete
connections are allowed to die out, due to an ‘aging’ factor.
Provided that there is a constant stream of data, the �wk’s are
continuously updated.

By exploiting this behavior, the number of clusters, at
a given time instant, can be determined by isolating non-
connected lattices and finding the number of unique graph
paths. Combining this with computational geometry con-
cepts, such as convex hull computation and point-in-polygon
tests, cluster centers can be determined by: �vj =

∑k
i=1 �xj

i/k

where �xj
i is the i-th object contained inside the j-th convex

polytope, Pj ∈ R
s, and k is the total number of points inside

Pj . If, however, there is not a sufficient amount of references
to create a convex polytope, e.g. the number of �wk’s in the
j-th graph, Gj , is less than s + 1, then the centroid is found
to be: �vj =

∑k
i=1 �wj

i /k, where k is the number of neuronal
references, or �wk’s, in Gj .

Since GNGC is not constrained to using a specific proto-
typical shape, such as a point, hyerplane, hypershell, etc., the
shape of each cluster can be determined through a series of
tests, provided Pj can be found. Utilizing this information,
possibilistic, (1), or fuzzy, (2), membership values can then
be assigned to each datum in X, subject to the constraints
outlined in Mpcn and Mfcn:

uj,i =
(
1 +

(
d2

j,i/ηj

)1/m−1
)−1

,∀j, i (1)

uj,i =

(
c∑

q=1

(dj,i/dq,j)
2/m−1

)−1

,∀j, i (2)

where dj,i is the distance from �xi to the j-th prototype, �vj ,
m ≥ 1 a degree of fuzzification and ηj the distance at which
the membership of a point becomes 0.5. For hypershellu-
lar clusters, once the centroid of the cluster is found, U is
formed using (1) or (2) with radial distance measure:

d2
j,i =

((||�xi − �vj ||Aj
− 1

)2 ||�xi − �vj ||2
) /

||�xi − �vj ||2Aj

where Aj is a positive, definite, symmetric matrix account-
ing for the eccentricity and orientation of the hypershell
(Bezdek et al. 1999). The elements of Aj , for this equa-
tion, are approximated by finding the Löwner hyperellip-
soid, of the convex polytope, using the Khachiyan algorithm
(Khachiyan and Todd 1993). Likewise, points in hyper-
planar structures are assigned membership using (1) or (2),
where:

(a) Synthetic data, X ⊂ R
3, with learned �wk’s, denoted

using filled green spheres, and colored convex hulls

(b) Corresponding neuronal
dissimilarity image for (a)

(c) NerDI with normalized
polytope volume information

Figure 2: GNGC results showing four clusters, along the
main diagonal of (b) and (c), and the spatial similarities be-
tween the learned distributions, using gray-scale values. In
(b) and (c), the purple cluster is near the green cluster, some-
what close to the blue planar cluster, and far from the red
spherical cluster. In (c), the purple cluster has the smallest
convex polytope volume. To see image details, please zoom
in.

d2
j,i = ||�xi − �vj ||2Aj

−
2∑

k=1

〈�xi − �vj ,�bj,k〉2Aj

is the orthogonal distance from �xi to the j-th variety, in R
s,

and Aj is an arbitrarily defined positive, definite, symmetric
weight matrix (Bezdek et al. 1999). In this equation, �bj,k is
estimated by finding the eigenvectors of the neuronal refer-
ences that model the linear variety. Finally, for point-cloud
clusters, dj,i is found as the distance between �xi and the j-th
point centroid; this cluster type is the default case when Pj

cannot be computed.

High Dimensional Visualization

When working with low dimensional data, say X ⊂ R
3,

it is easy to display intermittent GNGC results, such as
those in Fig. 2(a). However, if the dimensionality of the
dataset grows beyond R

3, capturing the same spatial in-
formation and visualizing the learned distributions is prob-
lematic. To rectify this issue, several conventions were
borrowed from the visual assessment of [cluster] tendency
(VAT) algorithm (Bezdek and Hathaway 2002). In VAT, a
matrix, R = [rj,i]n×n, of normalized, pair-wise dissimilar-
ity values, are ordered using a modified variant of Prim’s



algorithm for finding a minimal spanning tree (MST). After
the sorting process, if the matrix is displayed as an intensity
image then cluster structure is indicated by the presence of
dark blocks along the main diagonal.

By modifying the VAT approach, to instead use informa-
tion obtained from GNGC, we can create images like those
in Figs. 2(b) and 2(c). These plots, which we call neuronal
dissimilarity images (NerDI), are generated by first comput-
ing the normalized, pair-wise dissimilarity of the neurons in
each isolated graph. Utilizing Prim’s modified MST process,
the dissimilarities are rearranged, for each G, which aids
in looking for dense, intra-cluster distributions of neurons.
Each of these sub-matrices are then colored and placed along
the main diagonal of the NerDI. Inter-cluster spatial relation-
ships are also incorporated in the image by finding the min-
imal distance between the neurons in each G; these values
are then normalized so that white denotes the largest dis-
tance between two clusters, in R

s. Finally, volume or clus-
terness (Keller and Sledge 2007) information can be added,
as a third dimension, to provide additional insight about the
approximated manifolds.

Temporal Activity Analysis

With the ability to iteratively add new neuronal reference
vectors, and an incremental style of learning, GNGC is par-
ticularly attractive for temporal analysis. As such, we tested
its effectiveness in locating both gradually changing and
sud-den, fluctuating activity changes through a series of case
studies using data collected by the TigerPlace sensor net-
work system. To aid in annotating the exposed trends, we
made use of medical records and assessments of the partic-
ipants’ wellbeing collected by registered nurses and social
workers during clinical interviews.

Case Study - Participant I

Over the course of multiple iterations, the current feature
set, outlined in the second section, has evolved from a much
earlier subset of characteristics. For each generation of at-
tributes, the quality benchmark has been both the recogni-
tion of trends in stored data along with any future patterns
that may arise. To help probe for these tendencies, activ-
ity density plots and physiological graphs, such as those in
Fig. 3(a)-(d), are used. Viewing the first two plots in Fig. 3,
a number of conspicuous patterns emerge: 1) a large, abnor-
mal spike in bed restlessness, which occurred after an ER
visit, 2) a slightly decreasing, multimodal distribution after
the spike, 3) and an overall decrease in motion firings over
time, possibly from the elder spending more time out of the
apartment. Though there is some correlation between the
large restlessness peak and the pulse and respiration data in
Fig. 3(c)-(d), these two plots did not play a major role in this
example.

At the conception of the feature extraction process, it was
uncertain what type of activity clusters would egress from
the physiological data. By conducting a series of studies
(Sledge, Keller and Alexander 2008), we found that the cur-
rent features, listed in Table 1, highlighted several activity
trends that were not present in previous sets. To visualize the

(a) Original feature set,
Xo ⊂ R

8 ↓ R
3

(b) Current feature set,
Xc ⊂ R

32 ↓ R
3

Figure 4: Plots of the first three principle components
from the feature data for Participant I from 10/10/2005 to
01/29/2007. For both plots, each of the points corresponds
to a single 24-hour period. In (b), the current features, Xc,
are those listed in Table 1. To see image details, please zoom
in.

differences, principle component analysis (PCA) was used,
which produced the projection plots shown in Fig. 4. View-
ing the first image, Fig. 4(a), we discovered that many of the
daily attributes clumped together in a single region. With
only a scarce number of outliers, denoting days during the
large restlessness peak, it was apparent that these original
features were insufficient in emphasizing all of the visually
perceptible trends from Fig. 3(a)-(b). But, upon projecting
the current feature set, Xc, into R

3, we found that a num-
ber of data dense regions formed. One of these clusters, the
elongated blue cluster, shown in Fig. 4(b), formed in the be-
ginning and was indicative of the elder’s “normal” baseline.
A second cluster, the wispy strand of red points, denoted
heavily abnormal behavior, which was a culmination of both
the large restlessness spike and the period of bed inactivity,
yet motion activity, that ensuingly occurred. Similarly, a
third activity cluster, highlighted in green, captured the de-
crease in motion firings from Fig. 3(a). This new cluster
became the dominant baseline, for a time, until near the end
of the recorded data. At this point, the amber distribution
arose, which coincided with hospice caregivers entering and
leaving the apartment.

Given the vast improvement for locating a variety of ac-
tivity trends, we first fed the additive, PCA-reduced features,
Xc ⊂ R

32 ↓ R
3, a day at a time, to the GNGC algo-

rithm. Over multiple iterations, as exhibited in Fig. 5(a)-(d),
GNGC updated the spatial location of the reference vectors
and found that 3 clusters, shown in Fig. 5(d), emerged. Un-
fortunately, the amber distribution, in Fig. 4(b), eluded de-
tection due to the small number of data points and its sparse
nature.

Though these results are consistent with our expectations,
given that information is lost in the reduction process, they
do not highlight the true abilities of temporal clustering. To
fully measure the algorithms capabilities, the non-projected
data, Xc ⊂ R

32, was iteratively introduced to GNGC. Once
the algorithm stabilized, for each batch of new features, a
series of NerDI plots, in Fig. 6(a)-(d), were generated. Com-
paring these clustering results with those in Fig. 5, it is ev-



(a) Plot of motion data (b) Plot of bed restlessness data (c) Plot of bed pulse data (d) Plot of bed respiration data

Figure 3: Plots of the aggregated, raw sensor data, in hourly units, for Participant I from 10/10/2005 to 01/29/2007. In (a), the
hourly-aggregated firings for eight different areas: bathroom (green), bed (dark blue), bedroom (red), closet (gold), entryway
(purple), kitchen (magenta), living room (blue) and shower (cyan), are shown. In (b), the hourly-summed low (blue), medium
(green), high (yellow) and very high (red) restlessness are plotted as a function of time. Similarly, (c) displays the number of
normal (blue) and bradycardiac (green) firings, while (d) shows the number of eupnic (blue) and apneic (green) sensor hits. To
see image details, please zoom in.

Figure 7: VAT reordered NerDI from Fig. 6(d). Here, the
Gj’s in the upper, left corner of the NerDI correspond to
the abnormal (red) distribution in Fig. 4(b). The next group
of Gj’s captured some of the far-removed outlier points.
Finally, the red, tan and yellow colored Gj’s correspond
to the blue, green and amber distributions, respectively, in
Fig. 4(b). To see image details, please zoom in.

ident that a number of previously undetected activity distri-
butions were captured. Reordering the spatial similarities of
the NerDI plot in Fig. 6(d), to produce Fig. 7, and projecting
the connected neurons down to R

3 we found that all of the
highlighted distributions outlined in Fig. 4(b) were success-
fully learned. However, some of the activity trends, such
as the colored blocks with only a small number of neuronal
references, are products of over-clustering. While detecting
these outlying feature points is paramount, we are currently
investigating ways rely on membership values to flag iso-
lated, aberrant days; by doing so, a number of �wk’s that only
model singletons could be freed and used in learning more
complex distributions.

Case Study - Participant II

In contrast to trends found in the previous study, those in
Fig. 8(a)-(d) are less pronounced. Delving through medical
records, we found that the elder had a total knee replace-
ment a few months after the sensor data collection began.
Comparing the event with the plots, we see that, in the be-
ginning, there are a large number of bed restlessness sensor
firings, due to the resident constantly readjusting. However,
as expected, the levels slowly died down. After the surgery,
there is also a surge in bradycardiac (1-30 BPM) pulse fir-

(a) Current feature set,
Xc ⊂ R

32 ↓ R
3

(b) VAT image of the blue dis-
tribution in (a)

Figure 9: Plots of feature data for Participant II from
11/11/2005 to 05/18/2008. In (b), the two dense regions in
the blue cluster are highlighted. Beyond the vectors in the
red and green boxes, the remaining data points have a mini-
mal cluster structure. This may imply that the resident’s ac-
tivities change over time. To see image details, please zoom
in.

ings, in Fig. 8(c), that decreases much later in the data col-
lection process. This initial increase in bradycardia is un-
expected, as the individual’s heart rate is likely to increase
episodically, after the surgery, due to increased pain from
bed movement. Viewing Fig. 8(d), a decaying trend is also
apparent while the decrease of eupnic and apneic sensor fir-
ings coincides with the drop in low pulse firings.

Turning now to the feature set in Fig. 9(a), we see that
there are three major activity distributions present in the
data: a long, thin strand of red-highlighted points, a large
blue cluster, and a sparse group of green data. Much like
the red distribution in Fig. 4(b), the one in Fig. 9(a) corre-
sponds to the days where there was little, to no, restlessness,
pulse or respiration data and only motion firings; this may
indicate that the elder is sleeping on a couch or in a reclin-
ing chair. Beyond the red cluster, the sparse green and am-
ber distributions are indicative of aberrant days. Similarly,
the outstretched blue distribution is related to the individu-
als baseline; however, contained inside this single cluster are
actually two groups that form over time. The first, which
is located in the lower half of the distribution, is associ-



(a) Xc ⊂ R
32 ↓ R

3

from 10/10/2005 to 01/18/2006
(b) Xc ⊂ R

32 ↓ R
3

from 10/10/2005 to 06/17/2006
(c) Xc ⊂ R

32 ↓ R
3

from 10/10/2005 to 11/14/2006
(d) Xc ⊂ R

32 ↓ R
3

from 10/10/2005 to 01/29/2007

Figure 5: Temporal plots of the GNGC clustering results, for Participant I, with 40, 60, and 80 neuronal references, respectively.
As more data is added to Xc, such as in (b), (c) and (d), the �wk’s, shown using filled green spheres, adapt their location and
neighborhood connectivity to better model the data. To see image details, please zoom in.

(a) NerDI of Xc ⊂ R
32

from 10/10/2005 to 01/18/2006
(b) NerDI of Xc ⊂ R

32

from 10/10/2005 to 06/17/2006
(c) NerDI of Xc ⊂ R

32

from 10/10/2005 to 11/14/2006
(d) NerDI of Xc ⊂ R

32

from 10/10/2005 to 01/29/2007

Figure 6: Temporal plots of the GNGC clustering results, for Participant I, with 50, 100, 150, and 175 neuronal references,
respectively. As with Fig. 5, when more data is appended, GNGC updates the global neuronal topology to account for the
emerging distributions. In (a)-(d), pockets of related neurons, predominantly in the red colored block, indicate that there might
be multiple activity trends in the baseline cluster from Fig. 4(b). To see image details, please zoom in.

(a) Plot of motion data (b) Plot of bed restlessness data (c) Plot of bed pulse data (d) Plot of bed respiration data

Figure 8: Plots of the aggregated, raw sensor data, in hourly units, for Participant II from 11/11/2005 to 05/18/2008. In (a), the
hourly-aggregated firings for eight different areas: bathroom (green), bed (dark blue), bedroom (red), closet (gold), entryway
(purple), kitchen (magenta), living room (blue) and shower (cyan), are shown. In (b), the hourly-summed low (blue), medium
(green), high (yellow) and very high (red) restlessness are plotted as a function of time. Similarly, (c) displays the number of
normal (blue) and bradycardiac (green) firings, while (d) shows the number of eupnic (blue) and apneic (green) sensor hits. To
see image details, please zoom in.



(a) NerDI of Xc ⊂ R
32

from 11/11/2005 to 06/28/2006
(b) NerDI of Xc ⊂ R

32

from 11/11/2005 to 02/13/2007
(c) NerDI of Xc ⊂ R

32

from 11/11/2005 to 10/01/2007
(d) NerDI of Xc ⊂ R

32

from 11/11/2005 to 05/18/2008

Figure 10: Temporal plots of the GNGC clustering results, for Participant II, with 50, 100, 150, and 200 neuronal references,
respectively. As with Fig. 6, groups of related neurons, in each of the colored blocks in (a)-(d), highlight different activity
trends within each cluster. To see image details, please zoom in.

ated with the high restlessness, pulse and respiration firings,
while the second formed near the upper half after the firing
levels dropped. To see if these temporal clusters are also
closely related in R

32, we produced the VAT image, shown
in Fig. 9(b). By concentrating only on the data in the blue
distribution, two dark blocks, highlighted in red and green,
formed in the VAT image and exposed the aforementioned
inter-cluster structure.

Given the potential loss in cluster structure when using
PCA, we presented the non-projected dataset, Xc ⊂ R

32 to
GNGC, one datum at a time. After the entire dataset had
been presented, and the neuronal references stabilized, the
algorithm reported that 13 clusters, shown in Fig. 10(d), ma-
terialized. Though we originally surmised that only four
major distributions existed in the data, a number of iso-
lated points drove up the cluster count. As with the previ-
ous case study, the large number of non-connected graphs
was attributed to over-clustering. Somewhat disconcerting,
however, was the failure to segment the blue distribution, in
Fig. 9(a), into two separate clusters. While the two dark
blocks, in the red dissimilarity matrix of Fig. 10(d), do
capture the shift in both pulse and respiration firings, ad-
ditional bed-related features or temporal information could
help in separating these distributions. Techniques employed
by Havens et al. (2008) or Sledge et al. (2008) would also
prove useful for segmenting regions of dissimilar neurons.

Case Study - Participant III

Like the last two case studies, the data plots outlined in
Fig. 11, show a number of different activity patterns. Con-
sidering the bed restlessness data, in Fig. 11(a), we see that
there are two prominent trends: a multimodal distribution
of firings over time and an increase in firings near the end
of the currently logged data. A similar multimodal distribu-
tion is also present in the pulse and motion data, along with
a period of a low number of firings in all four data plots.
As well, in Fig. 11(b), there appears to be a lack of kitchen
sensor firings for a period of around 5 months. While this
blackout of firings may have been due to a faulty motion
sensor, there are now safeguards in place to minimize data
collection downtime.

Despite the visually perceptible trends in the raw sensor

Figure 12: Plots of the first three principle components
of the feature data for Participant III from 08/03/2006 to
05/18/2008. To see image details, please zoom in.

data, a majority of the activity patterns were found by sifting
through the PCA-reduced features and activity density plots,
in Fig. 13. In both, a common theme was the large amount
of time that the resident spent in bed, per day. This trend is
not only present in the baseline (blue) cluster, in Fig. 12, but
also the high restlessness (green) distribution. The few days
that did not follow suit typically had high levels of activity,
such as the amber region in Fig. 12, or were days when there
was a low number of sensor firings, which clumped together
to form the red distribution in Fig. 12.

Despite the extremes in activity levels, the features were
introduced, a day at a time, to the GNGC algorithm. After
the neuronal references stabilized, in each of the NerDI plots
shown in Fig. 14, we projected the �wk’s down to R

3 and de-
termined that the algorithm was successful in locating both
the predominant distributions and the outlier points. Inter-
estingly, some of the over-clustering issues, that plagued re-
sults in the earlier case studies, were automatically corrected
during run-time.

Current & Future Research

With the ability to discover forming distributions, GNGC is
an integral part of the adaptive, intelligent software-sensor
system currently under construction. To aid in assessing eu-
demonia from the exposed trends, we plan on coalescing the
cluster partitions with a fuzzy classifier. Unlike previous re-
search in elder environment monitoring (Barnes et al. 1998;



(a) Plot of motion data (b) Plot of bed restlessness data (c) Plot of bed pulse data (d) Plot of bed respiration data

Figure 11: Plots of the aggregated, raw sensor data, in hourly units, for Participant III from 08/03/2006 to 05/18/2008. In (a), the
hourly-aggregated firings for eight different areas: bathroom (green), bed (dark blue), bedroom (red), closet (gold), entryway
(purple), kitchen (magenta), living room (blue) and shower (cyan), are shown. In (b), the hourly-summed low (blue), medium
(green), high (yellow) and very high (red) restlessness are plotted as a function of time. Similarly, (c) displays the number of
normal (blue) and bradycardiac (green) firings, while (d) shows the number of eupnic (blue) and apneic (green) sensor hits. To
see image details, please zoom in.

Brown et al. 2006; Ogawa et al. 2002), the completed sys-
tem will be able to detect baseline changes and ascribe lin-
guistic descriptions to each day. Furthermore, it will only
require a minimal amount of human intervention and data
interpretation, making it rather attractive for simultaneously
tracking the wellbeing of multiple individuals.

Although the features we have listed are useful for un-
earthing a number of activity distributions, additional ones
may help differentiate between trends. Given that the motion
attributes dominate the current feature set, in terms of the
total number of motion characteristics, both bed respiration
and pulse features are prime candidates for inclusion. In
addition, by incorporating high-level information, like the
number of visitors in a given period and time spent out of
the apartment, the system may, one day, be able to detect
the early onset of maladies such as depression, Alzheimer’s
disease, and so forth. Participant specific features may also
play a role in future iterations of the system.

Beyond crafting the hybrid software system, we are
also exploring methods such as multi-universe clustering
(Wiswedel and Berthold 2007) for analyzing trends across
multiple participants. Provided that there is a correlation,
this infor-mation could help establish a baseline for incom-
ing participants and predict future events for both new and
existing residents.

While still in its infancy, growing neural gas clustering
has been largely successful in locating emerging manifolds
in both synthetic and real-world data. But, despite the tem-
poral clustering designation, GNGC does not currently make
use of any time-related information. To address this issue,
we are currently experimenting with ways to fuse this ad-
ditional quantity in both the algorithm and the visualiza-
tions (Sledge, Keller and Havens 2009). As well, we are
presently developing other temporal clustering and classi-
fication methods that can natively handle temporal labels
(Sledge and Keller 2009).
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