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Abstract

In this paper we propose a system where machine and
human cooperate at every situation via a reactive emer-
gent behavior, so that the person is always in charge
of his/her own motion. Our approach relies on lo-
cally evaluating the performance of the human and the
wheelchair for each given situation. Then, both their
motion commands are weighted according to those effi-
ciencies and combined in a reactive way. This approach
benefits from the advantages of typical reactive behav-
iors to combine different sources of information in a
simple, seamless way into an emergent trajectory

Introduction

Nowadays, population is steadily ageing. This process
is provoking an increase in chronic diseases and citizens
with special needs. Unfortunately, human resources are not
enough to cover the needs of this progressively larger sec-
tor. Robotics have proven to be a valuable tool to aid peo-
ple with disabilities. More specifically, in the field of mo-
bility assistance, robotized wheelchairs and walkers have
been frequently used. However, when a wheelchair is fully
controlled by a navigation system, the recommended action
might go against the user’s wishes and cause him/her stress.
Also, it has been stated by doctors and caregivers that ex-
cessive assistance may lead to loss of residual capabilities,
as no effort is required on the user’s part. Hence, many ap-
proaches to wheelchair navigation focus on cooperation be-
tween person and machine (collaborative control). There are
many studies on the level of autonomy a robot might have
when interacting with a human and viceversa (Bruemmer et
al. 2005) (Kofman et al. 2005) (Horiguchi and Sawaragi
2005) (Aigner and McCarragher 2000). Depending on how
much autonomy the machine has, collaborative approaches
can be roughly categorized into i) safeguarded operation;
and ii) shared control. In the first case mobiles can be totally
controlled by humans, but in some cases the robot makes
some decisions when human control is not adequate (Parikh
et al. 2005) (McLachlan et al. 2005). In the second case,
control may be handled from user to machine depending on
the situation at hand. Some of these approaches (Connell
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and Viola 1990) (Simpson and Levine 1998) (Miller 1998)
(Rao et al. 2002) (Bruemmer et al. 2005)(Horiguchi and
Sawaragi 2005) rely on using a basic set of primitives like
AwvoidObstacle, FollowW all and PassDoorway to assist
the person in difficult maneuvers, either by manual selec-
tion or automatic triggering. In other cases, a subsumption
like scheme (Brooks 1986) is used, where detected events
trigger one or several behaviours which are merged into an
emergent one that is finally executed. MAID (Mobile Aid
for Elderly and Disabled people)(Prassler, Scholz, and Fior-
ini 1999), NavChair (Simpson and Levine 1998), TinMan
(Miller 1998), Smartchair (Rao et al. 2002), Wheelesley
(Yanco 1998), VAHM (Bourhis and Agostini 1998) follow
this approach for assisted navigation. The main difference
among them is how behaviours are implemented. In an ex-
treme case, the human operator might only point the target
and the machine would be in charge of motion planning and
path tracking on its own (Gomi and Griffith 1998)(Simp-
son and Levine 1997) (Crisman and Cleary 1998) (Nisbet et
al. 1995) (Bourhis and Agostini 1998) (Frese, Larsson, and
Duckett 2005). Most these systems work like a conventional
autonomous robot in the following sense: the user simply
provides a destination and the mobile is totally in charge of
getting there via a hybrid navigation scheme.

Most commented approaches to shared control rely on
swapping control from human to machine according to more
or less complex algorithms. However, control swapping pro-
vokes curvature changes and discontinuity from the mobile
point of view. Furthermore, this could be inconvenient for
the persons, who would not know when they could lose con-
trol and, hence, not feel in charge or, if it is them who decide
when to give up, not make efforts to overcome certain situ-
ations and, consequently, lose residual capabilities. Thus,
we propose a system where machine and human cooper-
ate at every situation via a reactive emergent behavior, so
that the person is always in charge of his/her own motion.
Our approach relies on locally evaluating the performance
of the human and the wheelchair for each given situation.
Then, both their motion commands are weighted according
to those efficiencies and combined in a reactive way. It can
be observed that, using this approach, the amount of con-
trol exerted by human and machine changes in time, but in a
smooth way, so that no noticeable swap is perceived by the
user. This approach benefits from the advantages of typical



reactive behaviors to combine different sources of informa-
tion in a simple, seamless way into an emergent trajectory.
This approach is commented into section 2, along with some
detected drawbacks. Section 3 presents a new method to
overcome these problems via learning and adaptation and
section 4 presents some experiments and results. Finally,
conclusions and future work are given in section 5.

Collaborative control for continuous
cooperation

In a conventional power wheelchair, either a joystick or any
other pointing device is used to provide the direction in
which the user wants to move at each time instant. In our
work, the wheelchair also provides its own motion command
via a Potential Field Approach (PFA) (Khatib 1986), where
obstacles are handled as repulsors and the goal is an atractor.
In order to benefit from the PFA properties to easily com-
bine different goals, the user’s direction is added as another
vector in the potential field at each position. However, it is
necessary to determine how to weight the human and robot
vectors when adding them. In order to keep navigation safe
and smooth, weights are proportional to the efficiencies of
human and robot at each time instant. Efficiencies must be
locally calculated due to the purely reactive nature of the ap-
proach. Consequently, it is necessary to determine which
factors can be used to measure efficiency in a punctual way.

Control algorithm

The reactive behavior provides the rotational (v,.r) and
translational (v,r) velocities the wheelchair supplies as its
own motion velocities (v, and v¢g). Shared motion com-
mands (rotational velocity, v,g, and translational velocity,
v;5) are defined by:

Vrs = MR- VrRr + NH - UrH (1

ves =NRr-Vtr+ 0,50 - Vil (2)

where g is the efficiency of robot motion commands and
np is the efficiency of human motion commands. Both robot
commands and human output are added as weighted vectors
(Fig. 1), so that humans receive more control as a reward for
a better efficiency. The shared motion command efficiency
is defined as ng. Efficiencies range from O to 1, being 1 the
maximum efficiency. It must be noted that ng is not equal to
nr nor equal to ng. Since shared commands linearly com-
bine both robot and human ones, ng will tend to average nr
and 0.

As combination is performed at reactive level, efficien-
cies (1) should only be evaluated in terms of factors having
an immediate effect on them. Consequently, three factors
are taken into account: smoothness (7, r), directiveness ()
and safety (7)s.), each of them ranging from 0 to 1. Smooth-
ness reflects how sharp direction changes are undesirable for
driving. Safety reflects that it is better to keep away from
obstacles. Directiveness tries to reflect that moving ahead to
the goal in a straight way leads to shorter paths.

Smoothness (1) is locally evaluated as the angle be-
tween the current direction of the robot and the provided mo-
tion vector. It is meant to take into account that many robots
are non-holonomic and that it is better to change heading as
less as possible to avoid slippage and oscillations. If Cy
is a constant and «; ¢ is the angle difference between the
current direction and the command vector, 75y will be:

e = e~ Corloa] 3)

Directiveness () is locally measured in terms of the
angle conformed by the robot heading and the direction to-
wards the next partial goal provided by the global planner.
Partial goals in our experiments are obtained as presented
in (Urdiales et al. 2003). These partial goals are the ex-
tracted from the curvature of the path returned by a delib-
erative layer, so that reaching from one to the next can be
achieved by the reactive layer on its own. Given a goal, par-
tial or not, the shortest way to reach that goal is to make that
angle zero. Let Cy; be a constant and «ges; the angle be-
tween the robot heading and the direction towards the next
partial goal. Hence, 1y is calculated as:

Ny = e~ Cwlaaes—aai| 4)

The third factor, Safety (nsc), is evaluated in terms of
the distances to the closest obstacles at each instant. The
closer you get to obstacles, the more risky your trajectory is.
Assuming that Cy. is a constant and that «,;,, is the angle
difference between the current direction and the direction of
the closest obstacle, ns. will be:

Nee = 1 — e~ Cselamin—aair| (5)

Finally, efficiency is obtained through the combination of
the three former factors:

n= Nsf + Mt + Nse

(6)
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Figure 1: Local efficiency factors for human and robot

All mentioned factors are reflected in Fig. 1 for human
and robot. eq.¢, is basically used to decide who makes the
smarter move at each point, human or wheelchair, so that
they get awarded with more control, but not neglected from
the emergent behavior nevertheless: if human efficiency is



bigger, motion mostly obeys the driver, whereas if it is small,
the wheelchair tends to move on its own.

The proposed approach has several advantages: 1) it tends
to preserve curvature and to grant safety, as most PFA-based
algorithms; i) humans are in control all the time and they do
not perceive sharp control swaps; and iii) humans provide
deliberation and avoid local traps.

Experimentation and evaluation

In order to evaluate how adequate the proposed algorithm is
for navigation assistance, we performed some tests with vol-
unteering in-patients that already were using a wheelchair
in Fondazione Santa Lucia (FSL), a hospital specialized in
rehabilitation in Rome (Italy), during July 2007. The exper-
iments were fully described in (Urdiales et al. 2007). Vol-
unteers were characterized in terms of disabilities to have a
global idea about their capacities. As it is not easy to de-
termine this from a single index, since Functional Disabil-
ity (FD) is the result of the interaction of different individ-
ual components of compromised functions (Guralnik 1993),
several different disability scales have been used to evaluate
the state and condition of the in-patients, namely the Mini-
Mental State Examination (MMSE) (Crum et al. 1993),
Geriatric Depression Scale (GDS) (Yesavage et al. 1983),
and Barthel (Mahoney and Barthel 1965). All these indexes
were obtained by the specialists at FSL. All in-patients were
asked to move from a corridor into a room and viceversa by
crossing a door. In the first case, in-patients had to decide
when turn left to enter the room. In the second, they were
aligned with the door and could freely decide when to turn
right to face the corridor. It can be noted that the first test
requires more cognitive capabilities than the second, as it is
necessary to decide correctly when to turn.

Evaluation metrics The performances of the in-patients
were measured in terms of the local efficiencies calculated
by the shared control algorithm. However, we decided later
to use captured traces to also measure the quality of the
human-computer interaction. In our case, this factor could
only be indirectly measured from the available data. We
chose to use several metrics. First, the Intervention level,
defined as the portion of time that the user moves a joystick.
It must be noted that in our approach to shared control, a
high intervention level is desired, meaning that the system is
highly cooperative. We are also interested in knowing if per-
son and machine cooperate in a seamless way. This is evalu-
ated via a parameter named Disagreement, which represents
the difference between the human output and the robot out-
put. Since both outputs are vectors, we measure Disagree-
ment in terms of angles. A 0 Disagreement means that the
robot and the human totally agree. A high Disagreement is
expected to be related with effort and frustration. As tar-
get population may present cognitive disabilities, it is also
important to take into account Consistency, defined as the
variation of the user output when facing similar situations.
A high Consistency is expected to be related to users with
good cognitive capabilities, whereas a low one is related to
random joystick motion.

Users’ performance Experiments were performed by 36
in-patients, whose FD related indexes are presented in table
1. In average, most persons have an acceptable cognitive ca-
pability (see MMSE), even though some of them scored for
dementia (M M SE < 20). Physically, they had some dis-
abilities (Barthel < 90), which ranged from minor to se-
vere. Regarding GDS, they presented significant variations.

Table 1: Disability indexes in the test population
Index | Average | Deviation

MMSE | 2347 8.57
GDS 5.02 3.70

Barthel | 64.20 29.66

Using the proposed control strategy, all in-patients man-
aged to finish both requested trajectories. Fig. 2 shows the
paths followed by the different users in the first experiment
(move from corridor to a room). It can be observed that
paths are initially very similar, but they change significantly
when turning to cross the door, as showed in detail on the
right of the figure. This occurs because no turning point
was specified: the users were only instructed to turn left and
cross the door.

Efficiencies are briefed in table 2. It can be observed
that, as expected, most users perform similarly in terms of
efficiencies calculated to share control because, when they
behave worse, the wheelchair provides the amount of help
necessary to keep performance adequate. It can also be ob-
served that sa fety is particularly high, due to the nature of
PFA, and that directiveness is the lowest local efficiency,
as it implies keeping in mind a clear goal and executing the
necessary commands to achieve it at all times. Regarding
the other factors, it can be observed that deviations are much
larger, as they have no effect in control sharing in our algo-
rithm. Consistency is basically correct, as users tend to agree
with themselves in most cases. However, they disagree more
often with the wheelchair, sometimes very frequently, as ev-
idenced by the disagreement parameter.

Table 2: Disability indexes in the test population

Efficiency factor | Average | Deviation
Smoothness 82.01 9.90
Safety 96.32 0.10
Directiveness 63.52 9.07
Intervention level | 88.22 26.6
Disagreement 24.58 23.3
Consistency 12.2 6.3

Divergence and disagreement If we correlate experimen-
tal data (table 2) with in-patients FD (table 2) and go down
to case level, several interesting things can be observed:

e MMSE is inversely proportional to Disagreement, mean-
ing that persons with less cognitive capacities agree more
with the chair. Obviously, Disagreement is also linked
to the time to finish the trajectory: an user with a higher
Disagreement takes longer to reach a goal.
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Figure 2: Tracks to move from corridor to room.

e Intervention level depends on Barthel: persons with bet-
ter physical capabilities tend to be more cooperative and
also present a better smoothness, even though the pro-
posed control scheme tends to equalize performances at
these levels (smoothness, directiveness and safety)

o If MMSE and Barthel are very low OR very high at the
same time, efficiencies are worse than in other cases. This
is particularly interesting because it basically means that
users with good capacities tend to fight the chair when
they realize they are not completely under control.

Adaptation to the user’s driving

In order to provide a better adaptation to the user and, hence,
reduce Disagreement, we decided to check if we could learn
how a given in-patient controlled the chair from his/her
trace. As we work at reactive level all through the experi-
ments, we decided to also capture the reactive nature of their
driving behavior, meaning that we search for a duplex of
wheelchair input readings (range sensors) and output com-
mand (joystick). This pair characterizes what the user does
at every given situation. In order to capture these pairs, we
have used CBR.

Case-Based Reasoning (CBR) is a reasoning, learning
and adaptation technique to solve problems by retrieving
and adapting past experiences (Aamodt and Plaza 1994).
CBR is mostly derived from the Theory of Dynamic Mem-
ory (Schank 1982), that introduces indexing as the key to
use experience in understanding.

A CBR system cycle to solve a new problem consists of
four steps: i) retrieve the most similar stored case or cases
to the new current case; ii) adapt its solution to the new
current case'; iii) evaluate the results of the proposed solu-
tion; iv) learn from the new experience. Fig. 3 shows the
steps in the well known 4R format. First, the input prob-
lem is characterized by means of a number of significant
parameters, which, along with the problem solution, con-
form a case. Thus, redundancy and, hence, computational

'In this case we do not use case adaptation so as not to modify
original values from patients

requirements are reduced. Definition of a correct problem
instance is of key importance in this kind of systems. The
input instance is matched against all known cases, so that
the most similar one in the casebase is retrieved. After this
stage, the retrieved case is compared with the input situation
to adapt it if necessary. Thus, better solutions can be derived
when faced against less experienced situations. Finally, the
adapted case is evaluated and stored for future use.

CBR has been used in robot navigation before, but typi-
cally for high level planning rather than to accomplish re-
active behaviors. CBR has been mostly used for behav-
ior selection and transition and selection of behavioral pa-
rameters. However, in these approaches behaviors were not
themselves developed via CBR. CBR in navigation has been
used for global path planning in static environments (Brant-
ing and Aha 1995)(Fox et al. 1998), where cases absorb the
structure of the environment. Other CBR based navigation
methods focus on non-pure reactive navigation (Likhachev,
Kaess, and Arkin 2002) (Ram and Santamaria 1993), but
they basically rely on accumulating experience over a time
window while navigating in a given environment to obtain
an emergent global goal seeking-behavior. The authors pro-
posed a purely reactive CBR based navigation approach in
(Urdiales et al. 2006) that has been modified to achieve the
goals described above.

Basically, each time a new input instance is detected, our
CBR captures a new case, coupling this instance with the
user’s joystick output and using the local efficiencies (di-
rectiveness, smoothness and safety) to rank how good the
case is. The input instance describes the relative position
of obstacles with respect to the wheelchair and the goal. In
our case, these distances are split into bins corresponding to
danger/near/medium/far/no influence relative distances be-
tween chair and obstacles in order to keep a bounded num-
ber of cases learnt, as proposed by the authors in (Urdiales et
al. 2006). Then, a clustering algorithm was used to turn this
case set into a casebase. This clustering process had several
goals. First, it avoids too large casebases, as similar cases
are averaged into a prototype. Second, cases associated to
similar sensor readings but different joystick outputs tend to
provoke oscillations. These cases,too, are averaged into the
same prototype. Finally, the clustering process filters punc-
tual cases due to errors and remove them from the casebase.

In standalone mode, an input vector (sensor readings plus
goal) is fed to the CBR server. The CBR server access the
casebase and looks for the most similar case available and
returns it to the client. This case includes also the joystick
readings, which is what the emulator assumes that the user
would have done in the input situation. In order to deter-
mine the likeness between cases, we used a Tanimoto dis-
tance (Deichsel and Trampisch 1985). The main difference
between this type of distance and an Euclidean one is that it
weights the global shape of the instance rather than isolated
similarities alone. Hence, matching laser readings present-
ing low distances are related to similar surrounding geome-
tries because the global shape of the case is weighted.

After the specifics of a given in-patient have been cap-
tured into a casebase, the CBR system can be used to re-
place the PFA, so that the wheelchair drives like the user
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Figure 3: Proposed collaborative control scheme.

and, hence, Disagreement is reduced. It is interesting to note
that different users generate different casebases and, hence,
different ways of driving. In our experiments, we duplicate
how the user drives with collaborative control, because users
might not be capable of driving on their own. However,
other experiments may be based on traces captured from per-
sons driving on their own.

Fig. 3 presents the proposed collaborative control scheme
after CBR learning is included in the architecture. It can
be observed that the emerging motor commands are still
the linear combination of human and wheelchair commands,
which are directly coupled with the sensory input (either hu-
man or mechanical) in a purely reactive way. These com-
mands are weighted by their average efficiencies, so that low
human efficiencies imply higher help from the machine. The
main difference when we include CBR learning is that cases
related to specific situations are stored in terms of what an
specific person would do given that situation. Reflexes are
implicit in people, so the casebase basically stores how the
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Figure 4: Emulated patient (a) and real patient (b) efficiency.
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person drives the wheelchair. Through use, the casebase out-
puts grow more and more similar to the person’s commands.
However, if a person drives the wheelchair badly, those cases
would also be learnt by the chair. In order to avoid this, we
learn cases after they are modulated by either the PFA algo-
rithm or an efficient human command, coming from the PFA
block or an already existing case, respectively. Whenever an
input situation is detected, the system asks the CBR for the
closest case available. If there is none, we use a mix of PFA
and human commands as output and learn the correspond-
ing case. If there is any, we use a combination of human and
CBR commands as output and, if necessary, learn this com-
bination as well, so that control tends to be progressively
more tuned with the person’s guidance.

In this work, as learning was done a posteriori, we did
not implement a safeguard system to avoid learning non-
efficient cases when new human commands are worse than
the ones already stored in the casebase. However, this could
be achieved by simply comparing the efficiencies of the in-
put human command and the CBR one: if the first one is
significantly worse than the second, we use it for the linear
combination but do not update the casebase.

Next section presents some of the results of the proposing
technique.

Experiments and results

In this section we present some results on the use of CBR
to learn a given person’s driving specifics. As commented,
these experiments are performed with data captured from
real patients driving a laser equipped Meyra wheelchair in
Fondazione Santa Lucia (Rome) in July, 2007, but it is inter-
esting to point out once more that learning was done a poste-
riori, so there are no results on the convergence of the whole
system to each in-patient yet. These experiments, though,
will be done in a near future. It is interesting to note that
users were asked to do 6 paths, three from corridor to room
and three from room to corridor.

First, we capture a given real user trace to move out of a
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room. In order to do that, we chose a random trajectory of
that in-patient to fill a casebase. Afterwards, we used that
casebase to emulate a similar trajectory, departing from a
slightly different location. The resulting trajectory was then
compared with another real path, different from the trajec-
tory we use to fill the casebase. Fig. 5.a shows simultane-
ously a real path (blue) used to capture a patient case base
and the emulated path (red) that would result, given the same
departure and arrival points, for the same in-patient. It can
be observed that both paths are very similar, despite minor
differences. In fact, the average deviation is 7.02 cm in an
11 meters long route. These differences correspond to non
systemic driving behaviours that result in non repetitive ac-
tion/reaction pairs not captured by the CBR. If the casebase
is trained with a large enough number of trajectories, these
errors might be reduced, but, still, some differences would

appear.

In order to prove that emulated patients and real patients
behave similarly, Fig. 4 presents the efficiencies of real pa-
tients versus emulated ones (76.03% versus 74.39 %). It
can be noted that they are quite similar as expected, even in
terms of directiveness, which is where more differences are.
Larger differences are detected at the beginning of the path,
most likely due to initial person insecurity when starting to
drive. Efficiency in emulated patients is more homogeneous
than the real patients’ one, though, as errors are filtered out
of the casebase.

If we analyze the second, more complex test -moving
through a corridor and, at some point, deciding when to turn
to enter a room and move inside-, results are similar than in
the previous case. Fig. 6.a shows simultaneously the path of
the patient emulator (red) and the real patient one (blue). In
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this case, the maximum deviation between the real path and
the emulation one is 16.5 cm, and average deviation is 7.02
cm. As before, this deviation is considered small for an 11
meters long trajectory.

Experiments commented above are suitable to analyze re-
sults once they have been obtained, but in order to work on-
line, it would be necessary to have a casebase ready when-
ever the robot is moving. If this requires data acquisition
each time a new trajectory is performed, the system is not
that useful. However, the reactive nature of the proposed
algorithm allows generation of totally new trajectories from
data acquired from older, different ones. This is possible be-
cause CBR acquires punctual information: the tendency of
an user to choose a direction, given a configuration of obsta-
cles around, is more or less the same if he/she plans to turn
at the end of a corridor or not. To check this, we emulated
a non-existing trajectory (Fig. 7.a) using data from previous
experiments. As we have data on corridor navigation and
door crossing, this final experiment consists of making the
emulated patient leave a room, turn, head for the corridor in
a straight way for about 8 meters and then enter into another,
different room. The entire trajectory is about 14 meters long,
3 to navigate in/out of each room and 8 in the corridor. Only
initial and departure points are provided to the emulator, as
usual, but the casebase is learnt both from a room entering
and room exiting trajectory from the same patient, because
in the first case there were no turns right and in the second
there were no turns left.

Fig. 7.b shows the result of this test. Fig. 7.c shows the
efficiency of the emulated patient in this emulation. This
efficiency is similar to the patient ones in the real experi-
ments: Average efficiency is 75.83 % and typical deviation
12.10 %. As in the previous sections, deviation is lower than
in the real patient, as expected.

This final experiment supports that after learning from a
few trajectories, we would have a casebase tuned to a per-
son’s driving, which is adapted through experience to his/her
specifics. Cases would eventually replace the PFA algorithm
so that there would be less divergency between the person’s
decisions and the wheelchair motion commands. This is go-
ing to be tested in the next experiments in Santa Lucia.

Conclusions and future work

Assistive navigation will remain as a fertile ground for basic
research in the years to come as it not only implies the devel-
opment of new sensors, new hardware and software but also
a deep investigation on the clinical, rehabilitation and ethi-
cal issues of the problem. As there are so many researchers
from different areas working in the field, standarization and
proper evaluation metrics will be of key importance for test-
ing and replicability.

In this paper we have presented a review of most com-
mon metrics in the field, as briefed in table 2. The presented
metrics range from user’s condition medical evaluation to
personal questionnaires, including the most common param-
eters used by engineers to measure performance in new nav-
igation assistance algorithms and Human Computer Inter-
face. Consequently, this review is expected to be useful for
doctors and caregivers, engineers and end users all alike.

Acknowledgments

Authors would like to acknowledge support from the EC
funded project SHARE-it: Supported Human Autonomy for
Recovery and Enhancement of cognitive and motor abili-
ties using information technologies (FP6-IST-045088). The
views expressed in this paper are not necessarily those of the
SHARE-it consortium. The authors would like to thank Fon-
dazione Santa Lucia and all doctors and volunteers for their
kind cooperation and Sauer Medica for providing the power
wheelchair to build CARMEN.

References

Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
foundational issues, methodological variations, and system
approaches. AI Communications 7(1):39 — 59.

Aigner, P, and McCarragher, B. J. 2000. Modeling and
constraining human interactions in shared control utilizing
a discrete event framework. IEEE Transactions on Sys-
tems, Man and Cybernetics - Part A: Systems and Humans
30(3):369-379.

Bourhis, G., and Agostini, Y. 1998. The vahm robotized
wheelchair: System architecture and human-machine inter-
action. Journal of Intelligent Robotic Systems 22(1):39-50.



Branting, L. K., and Aha, D. W. 1995. Stratified case-based
reasoning: Reusing hierarchical problem solving episodes.
In Proc. of the 14th Int. Joint Conf. on Artificial Intelli-
gence, 384 — 390.

Brooks, R. A. 1986. A robust layered control system for
a mobile robot. IEEE Journal of Robotics and Automation
2(1):14-23.

Bruemmer, D. J.; Few, D. A.; Boring, R. L.; Marble, J. L.;
Walton, M. C.; and Nielsen, C. W. 2005. Shared under-
standing for collaborative control. IEEE Transactions on
Systems, Man and Cybernetics - Part A: Systems and Hu-
mans 25(4):494-504.

Connell, J. H., and Viola, P. 1990. Cooperative control
of a semi-autonomous mobile robot. In Proc. of the IEEE
Conference on Robotics and Automation, 1118-1121.

Crisman, J., and Cleary, M. 1998. Progress on the deictic
controlled whellchair. Springer-Verlag. 137-149.

Crum, R.; Anthony, J.; Bassett, S.; and Folstein, M. 1993.
Population-based norms for the mini-mental state examina-
tion by age and educational level. Journal of the American
Medical Association 269(18):2386-239.

Deichsel, G., and Trampisch, H. J. 1985. Clusteranalyse
und diskriminanzanalyse. Gustav Fischer, Verlag 30(7).

Fox, D.; Burgard, W.; Thrun, S.; and Cremers, A. 1998. A
hybrid collision avoidance method for mobile robots. Proc.
of IEEE Int. Conf. on Robotics and Automation 1238—-1243.

Frese, U.; Larsson, P.; and Duckett, T. 2005. A multi-
grid algorithm for simultaneous localization and mapping.
IEEE Transactions on Robotics 21(2):1-12.

Gomi, T., and Griffith, A. 1998. Developing Intelligent
Wheelchairs for the Handicapped. Springer-Verlag. 150—
178.

Horiguchi, Y., and Sawaragi, T. 2005. Effects of probing
to adapt machine autonomy in shared control systems. In
Proc. International Conference on Systems, Man and Cy-
bernetics, volume 1, 317-323.

J. M. Guralnik, E. M. S. 1993. Physical disability in older
americans. Journal of Gerontology (48):3-10.

Khatib, O. 1986. Real-time obstacle avoidance for manipu-
lators and mobile robots. International Journal of Robotics
Research 5(1):90-98.

Kofman, J.; Wu, X.; Luu, T. J.; and Verma, S. 2005.
Teleoperation of a robot manipulator using a vision-based
human-robot interface. IEEE Transactions on Industrial
Electronics 52(5):1206-1219.

Likhachev, M.; Kaess, M.; and Arkin, R. 2002. Learn-
ing behavioral parameterization using spatiotemporal case-
based reasoning. Proceedings. ICRA '02. IEEE Interna-

tional Conference on Robotics and Automation 2:1282 —
1289.

Mahoney, E, and Barthel, D. 1965. Functional evalua-
tion: the barthel index. Maryland State Medical Journal
(14):56-61.

McLachlan, S.; Arblaster, J.; Liu, D. K.; Valls, J.; and
Chenoweth, L. 2005. A multi-stage shared control

method for an intelligent mobility assistant. In Proc. of the
2005 IEEE 9th International Conference on Rehabilitation
Robotics, 426-429.

Miller, D. 1998. Assistive robotics: an overview. Springer-
Verlag. 126-136.

Nisbet, P.; Craig, J.; Odor, P; and Aitken, S. 1995.
smart’ wheelchairs for mobility training. Technol. Dis-
ability 5:49-62.

Parikh, S. P;; Grassi, V.; Kumar, V.; and Okamoto, J. 2005.
Usability study of a control framework for an intelligent
wheelchair. In Proc. of the 2005 IEEE International Con-
ference on Robotics and Automation, 4745-4750.

Prassler, E.; Scholz, J.; and Fiorini, P. 1999. Navigating
a robotic wheelchair in a railway station during rush hour.
Int. Journal on Robotics Research 18(7):760-772.

Ram, A., and Santamaria, J. C. 1993. A multistrategy
case-based and reinforcement learning approach to self-
improving reactive control systems for autonomous robotic
navigation. Proc. of the 2nd Int. Workshop on Multistrategy
Learning 129 — 150.

Rao, R. S.; Conn, K.; Jung, S. H.; Katupitiya, J.; Kientz,
T.; Kumar, V.; Ostrowski, J.; Patel, S.; and Taylor, C. J.
2002. Human robot interaction: Applications to smart
wheelchairs. In Proc. IEEE International Conference on
Robotics and Automation.

Schank, R. 1982. Dynamic memory. New York: Cam-
bridge University Press.

Simpson, R., and Levine, S. 1997. Development and eval-
uation of voice control for a smart wheelchair. In Proc.
Annu. RESNA Conf., 417-419.

Simpson, R., and Levine, S. P. 1998. NavChair: An Assis-
tive Wheelchair Navigation System with Automatic Adap-
tation. Springer-Verlag. 235-255.

Urdiales, C.; Bandera, A.; Pérez, E. J.; Poncela, A.; and
Sandoval, F. 2003. Hierarchical planning in a mobile robot
for map learning and navigation. Physica Verlag. 2165—
188.

Urdiales, C.; Perez, E.; J.Vazquez-Salceda; M.Sanchez-
Marre; and Sandoval, . 2006. A purely reactive navi-
gation scheme for dynamic environments using case-based
reasoning. Autonomous Robots 39(5):67-78.

Urdiales, C.; Poncela, A.; Sanchez-Tato, I.; and Sandoval,
F. 2007. Efficiency based reactive shared control for col-
laborative human/robot navigation. In Proc. of the IEEE
Conference on Intell. Robots and Systems (IROS’07).

Yanco, H. A. 1998. Wheelesley: A robotic wheelchair sys-
tem: indoor navigation and user interface, assistive tech-
nology and artificial intelligence. Applications in Robotics,
User Interfaces and Natural Language Processing 256—
268.

Yesavage, J.; Brink, T.; Rose, T.; Lum, O.; Huang, V;
Adey, M.; and Leirer, V. 1983. Development and validation
of a geriatric depression screening scale: A preliminary re-
port. Journal of Psychiatric Research 17:37-49.



