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Abstract 

We briefly describe recent research on the automatic identi-
fication of quasi-experimental designs, a family of methods 
used in the medical, social, and economic sciences to dis-
cover causal knowledge from observational data. These 
methods are widely used for manual discovery, but recent 
advances in knowledge representation and databases have 
made it possible to automate aspects of their use. We report 
on a prototype system for automatically identifying quasi-
experimental designs and suggest future work. 

Introduction 

Quasi-experimental designs (QEDs) specify conditions 
under which causal knowledge can be inferred from obser-
vational data. By applying a QED, an investigator can 
identify and exploit fortuitous conditions in non-
experimental data that emulate the conditions of intentional 
experiments. QEDs are widely used in medicine, social 
science, and economics, and they represent an important 
class of methods for scientific discovery.  
 However, the potential to automate this class of methods 
has never been systematically studied. Until very recently, 
identifying and exploiting QEDs has been an exclusively 
manual activity limited to a relatively small number of 
trained researchers.  
 In a recent paper, we have provided the first demonstra-
tion that QEDs can be identified algorithmically. Our sys-
tem—Automated Identification of Quasi-experiments 
(AIQ)—applies a standard Prolog theorem-prover to a 
knowledge base expressed in first-order logic that repre-
sents the schema of a given domain, prior knowledge about 
causal dependencies in that domain, and the necessary and 
sufficient conditions for QEDs. AIQ is a proof-of-concept 
that larger and more capable systems could automatically 
identify QEDs in a wide range of observational data sets, 
identifying “natural experiments” that would otherwise go 
unrecognized and unexploited. 

 

Why Discover Causal Knowledge? 

Quasi-experimental designs support inferences about 
causal knowledge. By causal knowledge, we mean the as-
sertion that manipulating one variable will make another 
vary. This dependence can be probabilistic and involve 
intervening variables, but it goes beyond mere association 
to represent the expected outcomes of specific actions. 
 Hypotheses about causality are one important class of 
scientific hypotheses. Other classes include existential hy-
potheses (e.g., there exists an element with atomic mass 
68), compositional hypotheses (atoms consist of protons, 
neutrons, and electrons), and associational hypotheses 
(smoking and cancer are correlated). Causal hypotheses are 
typically valued more highly than associational hypotheses 
because causation implies association, whereas association 
does not necessarily imply causation. 
 Inferring that A causes B requires meeting three condi-
tions: (1) establishing statistical association between the 
values of A and B; (2) establishing the direction of causal-
ity, if it exists, from A to B (e.g., based on temporal crite-
ria); and (3) eliminating the effects of all potential common 
causes of A and B.  
 Eliminating common causes is a key focus of experi-
mental and quasi-experimental designs. These designs 
typically employ control, randomization, or modeling to 
eliminate common causes. Control holds the values of po-
tential common causes constant, so they affect neither po-
tential causes (often called “treatments”) nor potential ef-
fects (“outcomes”). Randomization assigns subjects to 
treatments randomly, so that potential common causes 
cannot systematically affect outcomes. Modeling attempts 
to statistically estimate the effects of common causes so 
they can be factored out of assessments of association and 
so that any remaining association between treatment and 
outcome indicates causal dependence. 
 Control and randomization require direct manipulation 
of the conditions under which data are generated and thus 
cannot be applied to observational data. This leaves only 
modeling, an approach that has been actively pursued in 
statistics (e.g., Holland & Rubin 1988), artificial intelli-
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gence (Pearl 2000), and philosophy (Spirtes, Glymour, 
Scheines 2000). While the developments to date in model-
ing have been impressive, and new developments continue, 
the problem of causal discovery is far from solved. Prob-
lems of correct model specification, latent variables, com-
putational tractability, and high sample complexity con-
tinue to constrain real-world applications of modeling.  

Quasi-Experimental Designs 

QEDs are a family of methods for exploiting fortuitous 
situations in observational data that emulate control and 
randomization (Campbell & Stanley 1963; Shadish, Cook, 
and Campbell 2002). QEDs are templates for causal infer-
ence that increase the statistical power of inferences by 
selecting subsets of data that reduce or eliminate some 
common causes. QEDs bring back a form of control and 
randomization to the analysis of non-experimental data, 
and thus expand the range of approaches that can be ap-
plied to such data. 
 There are many examples of QEDs, including: (1) twin 
designs which control the values of some potential com-
mon causes within specified pairs of data instances; (2) 
non-equivalent control group designs which compare tem-
poral responses of treated instances to a control group of 
similar untreated instances; (3) regression discontinuity 
designs which use cases in which treatment is assigned 
entirely based on the value of a single known variable. 
 QEDs are particularly useful when experiments are 
deemed unethical (e.g., studies of smoking and cancer in 
humans), when experiments are impractical (studies of 
how increased state penalties affect drunk driving), or 
when data have already been collected for other purposes 
and researchers want an inexpensive precursor to potential 
future experiments. 

Automatic Identification 

Identifying opportunities to apply QEDs is currently a 
painstaking manual process. It requires highly specific 
knowledge of the domain, the available data, and QEDs 
themselves. Despite the wide use of QEDs, many opportu-
nities to apply these methods for causal discovery still go 
unrecognized. 
 Fortunately, recent developments in the technologies 
and applications of databases and machine learning present 
new opportunities for automating the discovery of QEDs. 
First, the increasing complexity of the relational and tem-
poral structure of databases provides the necessary scope 
for application of QEDs. Second, the increasing size of 
databases provides the ability to identify subsets of data 
with the necessary statistical power for valid causal infer-
ences. Finally, recently devised relational and temporal 
knowledge representations provide the ability to explicitly 
represent the causal knowledge necessary to drive the iden-
tification of QEDs (Jensen 2008). 

 We have developed AIQ, a prototype system that auto-
matically identifies QEDs (Jensen et al. 2008). 1 It takes 
input in the form of a standard entity-relationship diagram 
annotated with temporal extents and frequencies, as well as 
any existing domain knowledge about known causes. It 
produces output in the form of a specification of a QED, 
including a treatment variable, an outcome variable, and 
the set of records that form the units (data instances) neces-
sary to conduct a hypothesis test.  
 AIQ searches a space of potential temporal streams and 
data instances constructed from the existing tables in a 
relational database. It matches potential treatments, out-
comes, and units to the specifications of one common QED 
(the non-equivalent control group design) and outputs valid 
specifications. These instantiated designs can then be vali-
dated by human investigators and applied if valid. 

Future Work 

We are currently pursuing several lines of additional re-
search. First, we are examining all known designs to iden-
tify their necessary and sufficient conditions and determine 
how to formally represent the knowledge necessary to 
automatically identify them. Second, we are characterizing 
the conditions under which QEDs provide advantages over 
existing modeling-based methods for causal discovery. 
Third, we are pursuing a range of applications of QEDs to 
provide case studies and examples. 
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1
  Source code for AIQ is available at: 

http://kdl.cs.umass.edu/causality/index.html 


