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Abstract

Imitation in robotics is seen as a powerful means to reduce
the complexity of robot programming. It allows users to in-
struct robots by simply showing them how to execute a given
task. Through imitation robots can learn from their environ-
ment and adapt to it just as human newborns do. In order to
be useful as human companions, robots must act for a pur-
pose by achieving goals and fullfiling human expectations.
But, what is the goal behind the surface of the demonstrated
behavior? How to extract, encode and reuse eventual regular-
ities observed? These questions are indispensable for the de-
velopment of cognitive agents capable of being human com-
panions in everyday life. In this paper we present ConSCIS, a
framework for robot teaching through observation and imita-
tion inspired by recent findings in cognitive sciences, biology
and neuroscience. In ConSCIS we regard imitation as the pro-
cess of manipulating high-level symbols in order to achieve
goals and intentions hidden in the observation of task. The
architecture has been tested both in simulation and on an an-
thropomorphic robot platform.

Introduction
State of the art robots show only limited capabilities of per-
ception, reasoning and action in new and unstructured envi-
ronments. A new generation of robotic agents, able to per-
ceive and act in new and unstructured environments, and to
learn from it, is needed. They should be able to pay atten-
tion to the relevant entities in their environment, to image,
predict and to effectively plan their actions, and to acquire
new skills, behaviors and knowledge through social learning
and interaction with other agents (both humans or robots).

In the field of robot teaching two major approaches have
been traditionally adopted: programming (explicitly tell the
robot each detail of what to do trough the use of a program-
ming language) and learning (let the robot figure out itself
what to do given a description of an objective). Both ap-
proaches have proved to be too weak to provide an effective
paradigm of robot teaching. Programming does not scale
well to unforeseen situation, and requires a considerable ef-
fort. Learning, on the other hand, is an ill-posed problem due
to the dimensionality of the search space the robot is faced
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with. A novel approach, which tries to overcome these limi-
tations, is emerging in the past years. It is based on the idea
that the robot could learn new behaviors by observing and
imitating the behavior of others: imitation learning.

Imitation, as a powerful mechanism of social learning, has
received a great deal of interest from researchers in the fields
of behavioral and cognitive sciences, neuroscience, artificial
intelligence and robotics. It is believed that imitation repre-
sents the manifestation of a higher-cognition and the most
complex form of animal learning. In addition, the ability
to learn by watching others (and in particular the ability to
imitate) is thought to be a precursor to the development of
appropriate social behavior, and ultimately the means to rea-
son about the thoughts, intents and desires of others. From
an engineering perspective, a mechanism that allow to imi-
tate the actions of others would provide a simple means for a
robot to acquire new skills and tasks without any additional
programming. Imitation eases the task of robot program-
ming and facilitates the transmission of complex skills. The
same ideas may be employed in the more general context of
interaction between software agents and humans.

What could an efficient implementation of imitative
mechanisms provide to robots?

• Robustness: by observing other agent’s actions, the robot
can figure out new behaviors that are likely to be useful,
so it can continuously learn new skills, or adapt if the en-
vironment changes;

• Learning: a robot can learn from other skilled agents; the
learning process is significantly speeded-up compared to
trial-and-error approaches;

In this paper we will restrict ourselves to a particular im-
itative process, namely the goal-level imitation, where fo-
cus is put on effects of actions on objects, without taking
into account their kinematic or dynamic properties. We be-
lieve that such capabilities should involve the generation
of a high-level declarative description of the world as it is
being perceived by the robot. This process requires both
bottom-up data driven processes that associate data coming
in from robot’s sensors to symbolic knowledge representa-
tion structures, and top-down processes in which high-level
symbolic information is employed to drive robot’s actions.
From a robotic point of view, the introduction of abstraction
and conceptualization into the imitation paradigm seems a



promising approach towards more sophisticated imitative ar-
chitectures.

In the following section we will try to briefly give a com-
prehensive overview of different facets of imitative behavior
from the point of view of psychology, cognitive sciences,
neuroscience and robotics, aiming to provide a unified view
of the same problem.

Related work
Psychologists have been studied imitation since the begin-
ning of the last century. However,despite a century of re-
search and a great deal of interest, the processes underlying
imitation remain largely unknown. However, it is an essen-
tial mechanism in studying the acquisition of novel skills in
agents, being they biological or artificial.

The earliest studies on imitation are that of Thorndike
(Thorndike 1898) and Piaget (Piaget 1962) who claimed that
“imitating” or “mimicking” is not an expression of higher in-
telligence. However, research recently performed by Melt-
zoff and Moore (Meltzoff and Moore 1977) showed that 2-
to 3-week-olds imitated tongue protrusion, mouth opening,
lip protrusion, as well as simple finger movements, without
having never neither seen their own faces nor been exposed
to viewing faces of other humans for any significant amount
of time. Thus, the ability to map a perceived facial gesture
to their own gestures was concluded to be innate and contra-
dicted Piaget’s ontogenetic account of imitation.
Unfortunately, imitation does not have a unique meaning,
since different similar behaviors may be characterized as im-
itation. Several taxonomies are possible which have a sig-
nificant impact on how imitation is developed in artificial
agents. Byrne and Russon provide an overview of imitative
behaviors observed in animals and humans. Several ”imita-
tive“ behaviors are analyzed and divided into low- and high-
level imitation. Low-level imitation is seen as a process of
copying an observed behavior, where primitive motion pat-
terns which compose that behavior are already in the ones
repertoire. On the other hand, the high-level imitation does
actually lead to the acquisition of a novel behavior through
imitation (Byrne and Russon 2000).

As cognitive beings, humans go beyond the surface of the
observed behavior. Persons have beliefs, desires, and inten-
tions. Research on the theory of mind investigates the de-
velopment of this framework. In humans, this ability is ac-
complished in part by viewing the other as being ”like me“
(Goldman 2001). This may help us to predict and explain
others emotions, behaviors and other mental states, and to
formulate appropriate responses based on this understand-
ing. For instance, it enables us to infer the intent or goal en-
acted by another’s behavior: an important skill for enabling
richly cooperative behavior (Breazeal 2002). Recently, it
has been postulated that imitation provides a foundation for
developing the theory of mind (Meltzoff 1999).
Advances in neuroscience postulate there may be a com-
mon neural substrate for coding action, understanding
goals/intentions, and processing theory of mind What are
the brain regions for involved in imitation? Among other
neuron types, area F5 contains a class of neurons that dis-
charge both when the monkey performs a particular hand or

Figure 1: Overview of the ConSCIS architecture

mouth actions and when the monkey observes another indi-
vidual (being its conspecific or a human) performing a sim-
ilar action. These neurons have been called mirror neurons
after this very peculiar property. These neurons are triggered
only by the observation of an agent and an object, and do
not respond to the sight of the hand miming an action, or
to the observation of an object alone. It has been hypothe-
sized that mirror neurons represent the neural substrate for
action recognition performed by others (Gallese et al. 1996;
Rizzolatti, Fogassi, and Gallese 2001). Neurons with sim-
ilar characteristics were found also in humans through
TMS (Transcranial Magnetic Stimulation) and fMRI (func-
tional Magnetic Resonance Imaging) studies in the so-called
Brocca’s area, a region considered to be devoted to speech
production. These data are being investigated as an inter-
esting evolutionary scenario: linking the origin of language
with the comprehension of hand actions (Rizzolatti and Ar-
bib 1998). Some studies links mirror neurons with experi-
ential understanding of the emotions of others and empathy
(Gallese, Keysers, and Rizzolatti 2004).

In artificial agents, the implementation of imitation mech-
anisms has been recognized to be an important milestone to-
ward a new generation of intelligent machines (Schaal 1999;
Arbib 2003; Breazeal et al. 2005) Probably the first work
regarding imitation in robotics is reported by Kuniyoshi in
(Kuniyoshi, Inaba, and Inoue 1989). In this approach, the
robot learns how to perform a new task by watching a hu-
man perform the same task. In other work with highly artic-
ulated humanoid robots, learning by demonstration has been
explored as a way to achieve efficient learning of dexterous
motor skills (Schaal, Ijspeert, and Billard 2003). The state-
action space for such robots is prohibitively large to search
for a solution in reasonable time. To address this issue, the
robot observes the human’s performance, using both object
and human movement information to estimate a control pol-
icy for the desired task. Another way to accelerate learning
is to encode the state-action space using a more compact
representation. Researchers have used biologically-inspired
representations of movement, such as movement primitives,
to encode movements in terms of goal-directed behaviors
rather than discrete joint angles (Matarić, Zordan, and Ma-
son 1998). More recent works deal with the so called goal-
level imitation and intention reading. In (Jansen and Bel-
paeme 2006), the authors propose a computational model
for learning the goal, or intent, of a demonstration using a
mode which draws inspiration from psychological models
of imitation. Agents then imitate the goals of other agents



behavior rather than their exact actions. Another important
issue in imitation is that of determining a measure of the sim-
ilarity across demonstrator and imitator motions A closely
related problem in imitation is the so called correspondence
problem, which deals with mapping action sequences of the
demonstrator and the imitator agent. This problem becomes
particularly obvious when the two agents do not share the
same embodiment and affordances (Alissandrakis, Nehaniv,
and Dautenhahn 2002).

ConSCIS framework for imitation learning
This work will give an overview ofConSCIS (Conceptual
Space based Cognitive Imitation System), a framework for
imitation learning.with the focus on how and what to imitate
questions. The how to imitate question involves the prob-
lem of inverse kinematics and robot control: how to reach a
certain state given your body configuration and constraints
from the robot’s actuators and from the environment. The
what to imitate question is much more intricate: how can
an agent know what it should imitate? Humans solve this
problem by inferring the intention of the demonstrator and
imitating the intention only, which is the approach followed
in the present work

In the following, we will give a brief overview of the Con-
SCIS architecture. For a detailed description, please refer
to (Chella, Dindo, and Infantino 2007). The architecture is
broadly organized into three computational areas as shown
in Fig. 1, while Fig. 2 depicts an exploded view of the ar-
chitecture and the main connections between various units.
We have followed the well-established framework of three-
layered cognitive robotic architectures described in (Chella,
Frixione, and Gaglio 2001). What is each layer responsible
of?

Subconceptual Area
This area is is concerned with low-level sensory data pro-
cessing. It contains mainly artificial vision algorithms for
robot perception. This area is phylogenetic in the sense that
it is defined beforehand by the system designer and does not
involve any learning. This area is the contact point between
the architecture and the environment and it poses attention
toward certain classes of stimuli. However, perception is not
just a matter of the proximal stimulus but also a matter of the
information extracted and inferred from the stimulus. This
information is stored in the next area.

Conceptual Area
This are is based on the “conceptual space“ model proposed
by Gärdenfors (Gärdenfors 2000). Information is organized
into geometrical conceptual structures independent of the
symbolical descriptions. This area maintains a memory of
the experience held by the system about its environment:
property of the objects it encounters (shape, color, relative
displacement, etc) and particular actions being performed
by the demonstrator. The conceptual area is fundamental in
relating symbolical representations to low-level data, prob-
lem known as symbol grounding.
In the current work we use two conceptual spaces:

Figure 2: A detailed view of the ConSCIS architecture with
main processing units and their mutual interconnections

• Perceptual space, PS, encodes common perceptual prop-
erties of the objects being observed by an agent. Our
space of perceptions is composed of two different do-
mains: shape and color. Each domain is intimately con-
nected to the sensory capabilities of the robot.

• Situation Space, SS, encodes spatial relations between
objects in a scene, as well as absolute position/orientation
of detected objects. It depicts what is called effect metrics
in the context of imitation (Alissandrakis, Nehaniv, and
Dautenhahn 2002). The conceptual spaces proposed
capture the what to imitate property in imitation based
robotic architectures

Linguistic Area
Linguistic area is based on the symbolical formalisms and
the elaborations are those of the logical calculus. Elements
of the linguistic area are symbolic terms grounded to sen-
sory data by mapping them on appropriate representations
in different layers of the conceptual area. Symbolical la-
bels of important concepts (e.g. shape and color of objects,
their relative and absolute positions, actions performed by
the user, task names) are initially obtained through human-
robot interaction, and then stored in the conceptual spaces
as the internal model of the robot’s perceptions. Learning of
concepts is gradually performed on these internal represen-
tations. The system can manipulate symbols which emerge
from the interaction between the robot and its environment,
and which have passed a series of levels (sensory, subcon-
ceptual and conceptual) using linguistic-logical-syntactical
means which characterize serial cognitive processes.

Robot Control Area
This are is concerned with the control issues of the physi-
cal robotic system. It is composed of two main modules:
navigation, in which robot trajectories are computed, and
grasping, in which a neuro-genetic algorithm computes the
most appropriate configuration of robotic fingers in order to
firmly grasp a given object (Chella et al. 2007). This area



abstracts the rest of the architecture from a particular robotic
platform. Its goal is to translate a high-level description of
a task (e.g. pick up circle-shaped object at {10cm, 20cm,
0.14rad}) into low-level control commands to be sent to the
robot’s actuators.

Imitation in ConSCIS
How can an agent know ”what” it should imitate? Hu-
mans solve this problem by inferring the intention of the
demonstrator and imitating the intention only, namely the
goal of the observed sequence of actions. This is the ap-
proach adopted in the present work: imitation will be seen
as the process of manipulating high-level symbols, grounded
to real-world data through a set of layers, in order to achieve
goals and intentions hidden in the observation of task. This
allows the robot to reuse and generalize the acquired knowl-
edge in novel and unseen circumstances.

The process of goal extraction is achieved through a set
of imitation games, which involve repetitive interactions be-
tween the demonstrator and imitator. Each imitation game is
composed of a phase of observation, followed by a phase of
imitation. During the observation phase, the robot observes
a human while performing tasks in the world. Tasks we have
considered regard meaningful displacements of objects in
front of the robot. Through subconceptual space modules
the system extracts information about important features of
the world: shape and colour of objects in the scene, their rel-
ative spatial arrangement during several stages of the task
demonstration, and sequencing of elementary actions per-
formed on objects.

Some features may be known to the robot through a priori
knowledge (which actions it can detect and perform), while
some others are learned during its lifetime. Former may be
labels of shapes, colours, or spatial relations between ob-
ject, which are assigned through human-robot interaction.
These high-level labels are grounded to the robot’s percep-
tion of the world trough the intermediate conceptual area
layer, which provides a powerful substrate for semantic in-
terpretation of symbols. For each observed task the linguis-
tic area stores a symbolical description of objects’ proper-
ties, together with an annotation of actions performed on
them.
The ability of the our architecture to recognize and represent
different objects, their relative spatial arrangement, as well
as elementary actions performed on objects, is crucial to the
capability to imitate. Its goal is to achieve corresponding
effects of arbitrary tasks seen across different observation
sessions, since our focus is on final effects of actions on ob-
jects.

During the imitation phase, the robot is faced a novel
scene and we expect it to autonomously decide what to do.
This choice could not be a mere replication of the observed
sequence of actions, since this would lead to an erroneous
outcome of the imitation game in different world configu-
rations. The robot chooses which task to imitate depending
on the strength of the perceived similarities between objects
(and their relations) in the current scene, and all previously
observed scenes. In other words, the robot must abstract
shape, colour and relative displacement properties of objects

in a task, and reuse this knowledge in a perceptually similar
scene: it must infer the intention of the user.

Categorization of objects
During task observation, the scene may be populated with
several objects which can be directly or indirectly involved
in the task. On the other hand, some objects may not carry
any useful information. In order to deal with this, we intro-
duce a categorization of objects based on their relevance in
a task.
Objects seen in the observation mode are divided into three
distinct relevance categories:

• Relevant objects: objects directly involved into the execu-
tion of an action, i.e. objects grasped and transferred, and
objects relative to which actions are executed;

• Situation objects: objects having a spatial relation with
a relevant object; they are relative only to the initial dis-
placement of objects, before any action occur;

• Context objects: other objects neither directly nor indi-
rectly involved in the task.

Recognizing which objects are carrying information
about an observed task is a crucial step towards the process
of intention inference. Its reliable detection would be possi-
ble only if we were able to observe hidden mental states of
the demonstrator during the task execution. We use a heuris-
tics which assigns each object to a relevance category on
the basis of actions performed in the task, and strength of
spatial relations between objects. The latter is stored in the
linguistic area as the sequence of observed actions, while
the former is stored in the situation space. Computation
of the strength of relations is based on the perceived dis-
tance between objects and an empirically chosen threshold.
In other words, if two objects are close enough their rela-
tion is encoded and processed in order to extract the object’s
relevance category. Furthermore, an important role in the
description of a task is given by the initial relative displace-
ment of the objects (an information stored in the situation
space), which may carry a useful information for deciding
which action to perform in a given context.

How and what does the robot imitate?
This section depicts the whole process involved in the Con-
SCIS architecture. We start from the observation phase, in
which a human teacher performs a task. The robot, through
its perceptual capabilities, is able to segment objects in-
volved from the background and extract their shape, color
and position. In addition to extracting objects and their per-
ceptual and spatial properties, the robot represent the se-
quence of actions performed on objects as well. This is done
by continuously tracking the human hand and segmenting its
motion into meaningful events.

While observing the execution of a task, the robot extracts
and stores the following information: perceptual properties
of objects, relative displacement between objects in each
step of the observation, the description of the task being
performed, and a list of all relevant, situation and context
objects.



Recognition of important properties then allows the robot
to assign a label to each object, which will be used to con-
ceptualize its knowledge about the world. Perceptual prop-
erties of each object (i.e. its shape and color parameters) are
stored in the perceptual space, while the relative displace-
ment between objects, as well as their absolute position in
the world is stored in the situation space. If it is the first time
the robot sees an object, it asks the user about its properties
and adjust its beliefs about concepts in the world. In other
words, it performs the clustering of the conceptual spaces.
These features are then represented as high-level symbols in
the linguistic area.

Given a scene in the imitation phase, the sequence of ac-
tions to execute by the robot (if any) is selected on the basis
of similarity between the configuration and visual proper-
ties of the current scene and all observed scenes. Hence, it
may be seen as a process of pattern matching: the robot
searches an observed scene which best matches with the
given scene. In other words, the problem may be reduced
to the process of associating objects in the workspace to
the objects seen during task observation, in such a way that
the execution of the same sequence of elementary actions
(reach/grasp or transfer/release) on the current objects will
achieve the corresponding effects. Each possible match is
given a score which is based on assigning weights to iden-
tical shape, colour and initial relative displacement proper-
ties between objects in the observation and imitation phases.
The most promising matching (i.e. the one with the highest
score) is then selected for the execution. In case of several
competing matches across several observations, the most re-
cent one is preferred. A detailed description of the ConSCIS
matching algorithm is provided in (Chella, Dindo, and In-
fantino 2008).

Actions that have been observed in the observation with
the highest match are then adjusted to the current config-
uration of objects. This is done by traversing the top-down
path in the architecture, from the linguistic area to the lowest
level layer which controls the robot’s actuators. The abso-
lute positions in the world reference system are computed
through the situation space, and then sent to robot control
module for the execution. This module computes the path to
be followed, and synthesizes a grasp for a given object.

Experiments
The system has been tested both in simulation and on a
arm/hand robotic platform. Tests we have performed are
concerned with the problem of teaching the robot several
tasks of composing workspace objects.
As a toy example, suppose the robot observes the two tasks
performed by a human user in two different sessions repre-
sented in the figure 3. Each observation is processed and a
linguistic description is created for each task. During the im-
itation phase the robot must choose which known observa-
tion matches the best with the current scene, by associating
objects from the imitation phase to the objects in the obser-
vation phase. This is done by the matching process in such a
way that the execution of the observed task, grounded to the
novel objects, yields to similar effects.

Figure 3: Observation and processing of a human perform-
ing a task

Figure 4: What should the robot imitate?

An example of the scene in which the robot should per-
form the imitation is shown in Fig. 4. The matching pro-
cess finds the first observation more relevant to the task at
hand. Thanks to the conceptual area the robot can simu-
late beforehand the execution of the action. Based on the ,
and information stored in the situation space, the robot com-
putes the set of actions to perform, which are then sent to the
robot control module in order to compute the trajectory the
robot should follow. The grasping module computes the best
grasp for the given object. The sequence of actions executed
by the robot are shown in Fig. 5.

Conclusions
In this paper we have introduced a cognitive system for im-
itation learning. The architecture focuses on ”how“ and
”what“ to imitate questions, and is broadly organized into
three computational areas: subconceptual, conceptual and
linguistic, together with a module for robot control and ob-
ject grasping. We see imitation as the process of manipulat-
ing high-level symbols in order to achieve goals and inten-
tions hidden in the observation of task. This allows to reuse
and generalise the stored knowledge in novel and unseen cir-
cumstances.

The architecture integrates several aspects of imitation,
such as perception and extraction of the relevant features
of the demonstrated behavior, learning of novel behaviors,
knowledge representation, action generation and execution
of motor commands. This differs from previous approaches
where focus is put on a particular act of an imitative behav-
ior. Another novelty is represented by the introduction of
conceptual and linguistic processing areas which allow to



(a) Initial situation (b) Reaching and grasping

(c) Transferring (d) Final situation

Figure 5: Successful execution of the imitation task on the
robotic system

represent task data through high-level symbols, grounded to
real-world data trough an intermediate conceptual layer.

Current work is oriented toward integrating aspects of per-
spective taking and mental state inference and prediction in
the ConSCIS framework. If robots can learn and infer the in-
tentions of other agents, they can use this knowledge to pre-
dict and anticipate other agents’ behaviors in a cooperative
setting. This approach is intimately related to the ”theory
of mind“, and involves several hard problems dealing with
mental states of others. The ultimate goal (or a dream?) is
to develop a robotic system which can autonomously learn
behaviors through observation and imitation, acquire a lan-
guage through its own experience, and engage in complex
interaction with humans.
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