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Abstract

The field of design has offered the maxim that “form
follows function,” suggesting that the physical proper-
ties of an artifact should reflect our conception of its
intended use. This advice can lead us astray, however,
when looking to the brain for inspiration when devel-
oping intelligent systems. Too often, our preconceived
notions concerning functional decomposition cause us
to force strongly delineated functional roles on specific
neural subsystems. To fully leverage the lessons of nat-
ural cognitive systems, we must remain open to func-
tional architectures that might seem unnatural to us but
are revealed in the form, or structure, of the brain. To
illustrate this point, this report briefly reviews several
nontraditional functional organizations of neural sys-
tems that have been proposed for working memory.

Introduction
The extremely flexible and general cognitive performance
afforded by the human brain continues to make it the pri-
mary source of inspiration for the development of syn-
thetic intelligent systems. As our understanding of neu-
ral mechanisms has advanced, a growing number of re-
searchers have sought design insights from the functional
organization of the brain. Modern theories concerning the
structure of the human cognitive architecture have been
shaped by both bottom-up empirical investigations into the
dynamics of neural circuits and top-down functional con-
straints on the behaviors that humans produce. While both
bottom-up and top-down considerations are needed to ad-
vance our understanding of how the brain manifests cogni-
tion, there is a danger in seeking extensive guidance from
top-down information-processing analyses of cognitive pro-
cesses when trying to sort out how neural subsystems are or-
ganized. Theoreticians regularly rely on intuitions shaped by
experience with artificial information-processing systems to
hypothesize particular functional decompositions of cogni-
tive capabilities, suggesting that the problem of understand-
ing the neural basis of cognition can be reduced to local-
izing each of the proposed components or modules in the
brain and coming to understand the biological “implementa-
tion” of each. This “divide-and-conquer” approach is partic-
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ularly appealing to those seeking to design highly complex
artificial cognitive agents, and the constraints imposed by
modern computing technologies (e.g., relatively limited par-
allel processing, impoverished sensors and actuators, lack
of resources to support lengthy developmental approaches,
etc.) frequently color the architectures that are proposed.
Composing a cognitive architecture based on functional con-
cerns, and then turning to the brain to understand how archi-
tectural components might be implemented, is a tempting
approach with a long history (Marr 1982), but employing
this strategy risks distracting us from evidence for functional
architectures that differ from our preconceived notions.
In some cases, functional decompositions are suggested

by behavioral data, carefully collected using the methods of
experimental psychology. Differences in behavioral patterns
under varying conditions are used to justify the existence of
separate cognitive modules. Behavioral data is rarely con-
clusive in this regard, however, and there have been many
computational demonstrations of how simple unified neural
mechanisms can exhibit the same patterns of performance
that have been used to argue for multiple distinct modules.
In the domain of language, the apparent behavioral disso-
ciation between rule-based processing and a memory for
rule exceptions has been shown to arise naturally in neural
systems that lack separate components for rules and excep-
tions (Plaut et al. 1996). The double dissociation logic of
neuropsychological experiments, in which modularization is
inferred from behavioral differences between patients with
different focal brain lesions, has been critiqued on neuro-
computational grounds (Plaut 1995). Behavioral data sug-
gesting a hierarchical organization for skill knowledge, even
in the case of routine tasks, has been explained by a neu-
ral model that lacks a separate “goal stack” and isolated
representations of subskills (Botvinick and Plaut 2004). In
these cases, and many others, behavioral data were origi-
nally taken as strong support for particular functional de-
compositions, only to be later shown to be consistent with
neurocomputational architectures of a very different nature.
These examples should act as warnings, suggesting caution
when brain organization is viewed from the perspective of a
prior assessment of functional demands.
In summary, we risk missing important insights into the

cognitive architecture of the brain if we follow the famous
dictate of the design disciplines: form follows function. We



can be easily misled if we start with a functional understand-
ing of cognition and then search for our reasoned functional
decomposition in the form, or structure, of the brain. To the
degree that it is possible, we should allow function to follow
form, allowing our understanding of the structure of spe-
cific neural systems to guide our understanding of the func-
tional decomposition of human cognition. This can lead to
novel insights at the architectural level, which may inform
the broad design of intelligent systems.
This general point has been made many times before. It

is at the heart of Braitenberg’s “law of uphill analysis and
downhill invention” (Braitenberg 1984), and it is a cen-
tral theme of emergentist approaches to cognition, includ-
ing much of connectionism. The goal of this brief report
is to argue that allowing function to follow form when we
theorize about brain organization can produce insights into
human cognitive architecture that are practically useful for
the design of artificial systems. This argument will be illus-
trated by some computational accounts of working memory
performance. Some preliminary results are presented from a
model of prefrontal cortex that learns to use something like
“pointers,” and this is followed by a discussion of the com-
putational roles played by different brain areas in working
memory.

Pointers In Prefrontal Cortex
Objects in the world often have parts, and it is intuitive to
imagine that the brain’s representations of objects would
also allow for the encoding of the relationships between
parts. There are many obvious examples, ranging from writ-
ten words, which are composed of a sequence of letters, to
simple rules, which are composed of a condition for rule ap-
plication and an action to take. In computer science, there
are a number of common strategies for encoding such com-
pound objects. Simple compounds are typically encoded as
structures that have a “slot-filler” organization, with a sepa-
rate chunk of memory allocated for each “slot” and the bits
in each chunk interpreted as an appropriate “filler” value.
More complex compound data structures, such as dynam-
ically sized lists, can be constructed by interpreting some
fillers as “pointers” to other blocks of allocated memory.
Unfortunately, it is unclear that these computer science data
structures bear much resemblance to neural representations.
There does not appear to be an addressable space of dynam-
ically allocatable storage space in the brain. Instead, pools
of neurons appear to be dedicated to a specific task by virtue
of their connections within circuits. Still, a sort of slot-filler
organization might be imagined, with specific neural assem-
blies representing static slots, and the pattern of neural fir-
ing within each assembly encoding a specific value. This
view does not allow for the dynamic allocation of knowl-
edge structures, but it does allow for the basic representation
of compounds.
There is a general problem with this representational ap-

proach, however, which some researchers have called the
“slot problem.” This problem has several related aspects.
First, dedicating pools of neurons to each structure compo-
nent caps the maximum size of the full representation. Rel-
atively unbounded objects, like a sequence of letters or the

sequence of words that make up a sentence, cannot be rep-
resented without danger of running out of neural “slots” to
fill. In general, this problem can be alleviated by dedicat-
ing many more pools of neurons than would ever be needed.
But the second aspect of the slot problem cannot be solved in
this way. If each slot involves an independent collection of
neurons, then the learning of filler representations will have
to be conducted separately for each slot. Learning about a
filler in one slot will not transfer, at all, to the appearance of
that filler in another slot. For example, learning to encode
the letter “A” as the first letter of a word will not help the
neural system learn to encode “A” as the second or third let-
ter of a word, at all. Thus, if a given filler has never been
experienced in a particular slot before, it is virtually impos-
sible for the developing neural system to learn to properly
encode that filler in that slot. Some limited success can be
had by using distributed representations for fillers, allowing
unexperienced fillers to be encoded based on their similarity
to experienced fillers, but this solution still does not allow
for any transfer from seeing a filler in one slot to its appear-
ance in another. For example, learning the pronunciation of
“A” as the first letter of a word would not transfer at all to
learning how “A” should be pronounced as the third letter
of a word. Finally, even if adequate experience is available
to learn filler representations for every slot, this encoding
scheme can be highly inefficient, as it requires that each slot
include a sufficiently large number of neurons to reliably en-
code any possible filler. This duplication of resources can be
expensive if there are many possible fillers (e.g., all possible
subjects of a sentence being represented) and many slots.
Many of the proposed solutions to the slot problem have

involved unrolling compositional structures in time. Recur-
rent neural networks can learn to process slot-filler pairs
sequentially over time, integrating them into a fixed-size
vector of neural firing rates (Pollack 1990; Sibley et al.
2008). These fixed-size representations can then be pro-
cessed by other recurrent neural networks to extract com-
ponents. Other proposed time-based solutions involve oscil-
lating patterns of neural activity, with temporal synchrony
used to indicate that a particular filler representation, en-
coded over one pool of neurons, is contained in a particular
slot, encoded by a another pool of neurons. These time-
based computational accounts might lead us to conjecture
that the only way that the brain could appropriately encode
compound knowledge structures is by utilizing some special
temporal mechanism, traversing the structure slots in time
either repeatedly as the structure is maintained or only when
encoding and decoding a fixed-size neural representation of
the structure.
Another option appears, however, when we look at the

prefrontal cortex (PFC) of the brain. The PFC is thought
to play an important role in working memory (Goldman-
Rakic 1987). Neurons in this brain region have been found
to actively maintain high firing rates in the absence of
stimuli, encoding relevant bits of information during de-
lay periods. Many different kinds of information appear
to be actively maintained in the PFC, including spatial lo-
cations (Funahashi, Bruce, and Golman-Rakic 1989), re-
cently viewed objects (Cohen et al. 1994; Miller and Des-



imone 1994), action rules (Wallis, Anderson, and Miller
2001), and even verbal information (Demb et al. 1995).
Unusually dense recurrent connections in PFC are thought
to support active maintenance of high firing rates through
mutual excitation (Camperi and Wang 1998). Interest-
ingly, there is anatomical evidence of a “slot-filler” struc-
ture in the PFC. Collections of recurrent excitatory con-
nections appear to be limited to isolated stripe-like collec-
tions of neurons, producing pools of neurons whose firing
rates can be independently maintained (Levitt et al. 1993;
Pucak et al. 1996). Loop-like projections from the PFC
through the basal ganglia, the striatum, and the thalamus are
thought to provide a mechanism via which these stripe-like
neural pools can be independently updated (Frank, Loughry,
and O’Reilly 2001).
Given this “slot-filler” anatomical structure in PFC, with-

out any apparent temporal binding method, it is natural to
wonder how the PFC resolves the slot problem. One possi-
ble answer to this question arises from the observation that
the neural “loops” from PFC through the basal ganglia are
somewhat asymmetric, with neural stripes in more anterior
parts of PFC affecting portions of the striatum that control
the updating of more posterior stripes in PFC, but not vice
versa. With this pattern of connectivity, the pattern of fir-
ing rates in more anterior stripes could encode the identity
of specific more posterior stripes, rather than a “filler” pat-
tern, directly. In this way, the anterior PFC stripes might be
seen as encoding a kind of “pointer” to more posterior PFC
stripes. Thus, the slot problem could be addressed by hav-
ing a relatively small number of more posterior PFC stripes
learn to encode each possible “filler” value, avoiding the
need for the properties of “filler” values to be learned sepa-
rately for every possible “slot” location. More anterior PFC
stripes could learn to encode “slots” for structured knowl-
edge, referencing the more posterior PFC stripe that cur-
rently contains the corresponding “filler” value. This kind
of “indirection” could resolve the slot problem without re-
course to a special temporal mechanism.
Building on previous models of PFC (Hazy, Frank, and

O’Reilly 2006), we have begun to implement a computa-
tional cognitive neuroscience model of the interactions be-
tween anterior PFC stripes and more posterior PFC stripes
during simple working memory tasks. Like the mod-
els that it extends, this model is implemented using the
Leabra framework (O’Reilly and Munakata 2000), which
uses firing-rate neurons and biologically plausible mech-
anisms for synaptic plasticity, including a reinforcement
learning mechanism embodied by the brain’s dopamine sys-
tem. The model includes the observed asymmetric connec-
tions between more anterior PFC stripes and more poste-
rior PFC stripes, but it is otherwise largely unconstrained in
what information is encoded in the neural pools that make
up each stripe. Standard neural learning mechanisms shape
the stripe representations as the model is trained on a sim-
ple paired-associate working memory task where the same
set of cues are always used, corresponding to “slots,” but the
cues are associated with different “filler” values on differ-
ent trials. Preliminary results indicate that networks without
the anatomically motivated asymmetry between anterior and

posterior PFC stripes can generalize fairly well on this task,
but generalization fails dramatically when specific “fillers”
never appear in specific “slots” during training. This kind
of generalization is successful, however, when more ante-
rior PFC stripes are allowed to learn to act as “pointers” to
more posterior PFC stripes. Thus, the slot problem is largely
solved by introducing a bit of anatomical hierarchy.
Any computational architecture for synthetic cognitive

agents will surely need methods for representing compound
structured knowledge in a manner that also supports flexible
learning and generalization. Based on previous explorations
with connectionist models, it would be tempting to insist that
any biologically inspired architecture should include a fun-
damental mechanism for unrolling structures in time. An
examination of the functional anatomy of PFC suggests an
alternative approach, however. Similarly, computational in-
tuitionsmight stress the great utility of “pointers” in artificial
systems, suggesting that these should be a fundamental ele-
ment of any cognitive architecture. Initial results from our
ongoingmodeling efforts, however, suggest that pointer-like
functionality might be learned, emerging from an interac-
tion between experience and simple anatomical constraints
rather than being hard-wired and fixed.

Decomposing Working Memory
Contemporary theories of human memory have frequently
aligned specific brain systems with behavioral distinc-
tions concerning kinds of memory performance. Some
researchers would assign working memory to the PFC,
“declarative” or “episodic” memory to the hippocampus
in the medial temporal lobes, and “procedural” or “skill”
memory to more posterior regions of neocortex, for exam-
ple (Squire 1987). As we design cognitive architectures for
artificial agents, it is tempting to partition memory into cat-
egories of this kind and assign separate architectural com-
ponents, or modules, to each kind of memory. This strategy
would then send us to particular brain regions to uncover bi-
ological insights into how each module is best implemented.
There are a growing number of reasons to be suspicious of

such simple assignments of behaviorally-delineated mem-
ory types to specific brain regions, however. It is increas-
ingly clear, for example, that PFC plays an important role
in episodic memory encoding and retrieval. Conversely, the
hippocampus can be central to performance on some work-
ing memory tasks. Examining the structure of the brain may
very well suggest a different functional decomposition of
memory systems.
There is unusually strong lateral inhibition in key regions

in the hippocampus, such as the dentate gyrus, produc-
ing patterns of neural firing that are exceptionally sparse.
Computational analyses of such sparse neural representa-
tions suggest that they would support poor generalization
to novel situations, but would have other useful properties,
such as the ability to be learned quickly without produc-
ing unwanted interference (McClelland, McNaughton, and
O’Reilly 1995). Thus, the hippocampus might be particu-
larly good at maintaining quickly formed, perhaps even one-
shot, memory traces that are very specific in nature. Gen-
eral cortical association areas, in comparison, might be par-



ticularly good at maintaining general knowledge, acquired
slowly over repeated experiences. PFC, with its particularly
dense pattern of recurrent excitation, might be particularly
good at actively maintaining a memory trace as a pattern of
neural firing. This “tripartite organization” scheme — sep-
arating computational contributions between hippocampus,
PFC, and other cortical areas — is central to many Leabra-
based accounts of brain function (O’Reilly and Munakata
2000). With this sort of functional decomposition of mem-
ory systems, all of these brain regions might be simulta-
neously involved in a typical memory task. For example,
a common working memory task, such as remembering a
phone number, might be simultaneously supported by an ac-
tive pattern of neural firing in the stripes of PFC, by a quickly
generated and highly specific memory trace in hippocampus,
and by the familiarity of certain number subsequences (e.g.,
“123”) appearing in the phone number, as embedded in the
synaptic connections of posterior cortex. Thus, under this
view, no one brain region is responsible for working mem-
ory, per se (O’Reilly, Braver, and Cohen 1999).
If this functional decomposition of memory systems is at

least somewhat accurate, it would be misleading to focus
on specific brain regions when seeking biological inspiration
for the design of, say, a workingmemory system, or a declar-
ative memory system, or a procedural memory system, or
the like, for an artificial agent. Indeed, this neurocomputa-
tional view might suggest a fundamentally different memory
architecture for synthetic agents — one in which different
modules cooperate across a variety of memory tasks.

Conclusion

This brief article argues that great care should be taken when
looking to the brain for inspiration for the design of artifi-
cial cognitive architectures. Specifically, there is a danger
in composing a functional decomposition of cognitive ca-
pabilities based only on computational or behavioral con-
siderations, turning to the brain only to uncover insights
into the implementation of pre-specified modules. Exam-
ining the gross structure— the form— of the brain can lead
to novel insights into the general functional architecture of
human cognition. In this paper, this point is illustrated in
the context of pointer-like representations that are thought
to emerge in prefrontal cortex and in the context of general
memory system organization. These examples encourage us
to allow function to follow form as we design biologically
inspired cognitive architectures.
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