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Abstract 
Evolutionary and cognitive examples are used to motivate 
an approach to the brittleness problem and automated 
flexible cognition, centering on the notion of an anomaly as 
the key focus of processing. 

Introduction   
Somehow, living organisms deal with a complex world. 
This is the basis for the AI hope of smart systems worthy 
of that designation.  But we have been unsuccessful at this 
so far. Here I will argue that a closer—but 
straightforward—look at human reasoning suggests an 
implementable strategy for flexible commonsense 
reasoning.  The notion of an anomaly—something that 
deviates from expectations—is the central focus. I will 
being with motivating discussion, then examples, and a 
sketch of where further work is needed. 

Anomalies are the problem 
Why do cognitive architectures need inspiration? Simply 
put, because our efforts to design such architectures have, 
to date, been flops. Somehow we are missing a key 
ingredient; our most touted successes (think of Deep Blue) 
are idiot savants, brilliant at one thing and utterly clueless 
at everything else, even at minor variations on what they 
are good at; see (Anderson et al 2006b).  But perhaps this 
is the silver lining: our artifactual systems lack the ability 
to deal with variation, perturbation, unexpected twists. In 
fact, this has a name: the brittleness problem. Brittle 
systems break when given a twist, when forced into 
circumstances beyond what they were explicitly designed 
for, i.e., when they encounter anomalies. 
 This means our systems are far less useful than we 
would like, than we in fact need in order to deploy them 
usefully in realistic settings.  For the real world abounds in 
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the unexpected.  And dealing usefully with the unexpected 
is a hallmark of flexible human-level intelligence, whereas 
breaking in the face of the unexpected (wasting time, 
getting nowhere, brooking disaster) is the hallmark of 
current automated systems. Rational anomaly-handling 
(RAH) is then the missing ingredient, the missing link 
between all our fancy idiot-savant software and human-
level performance. 
 To forestall a misunderstanding: RAH is not a matter of 
being clever or insightful. All humans have RAH (in 
varying degrees!); essentially it amounts to not being 
idiotic—not being blind to signs that things are getting a 
bit unusual. 
 But what is hidden in this seemingly elementary 
capability? For one, the unusual (i.e., the occurrence of an 
anomaly) is detected in virtue of its deviating from the 
usual, from the everyday expected set of conditions. Thus 
RAH involves having expectations, and having the means 
to compare them to observations as to what is happening. 
We will examine this a greater length in a subsequent 
section, but what has been said so far already sets the tone 
for what is to come. 

Fumbling our way toward RAH 
Why has this been so hard? After all, brittleness is not a 
newly discovered problem.  Here are some parts of an 
explanation:  
A.  It has been very tempting, irresistibly so in many cases, 
simply to try to build in useful responses to individual 
anomalies.  For instance, the enormous—and enormously 
impressive—literature on nonmonotonic reasoning appears 
to be an attempt to address the problem of providing a 
precise formal account of the complexities of the natural 
world, by setting out in advance what is normal and what is 
anomalous in a given context, and what is normal for an 
anomalous subcontext of a normal context, etc. As an 
example: birds (normally) fly; but penguins are abnormal 
(anomalous) within the flying-bird context, that is, 
penguins don’t (normally) fly; but a propeller-outfitted one 
is abnormal with the non-flying-penguin subcontext; etc. 



Such an approach appears to set out what to conclude 
about each and every object and context, no matter how 
unexpected. Yet this is doomed to failure, if on its own. 
There is no way to know in advance what the various 
anomalous subcontexts are—the world really is too 
surprising. Somehow the knowledge as to what the various 
subcontexts are has to be found from experience, and 
cannot be set out in advance. Once learned, then to be sure 
a very useful formal account can be given (perhaps revised 
later on, as conditions or information change). But this 
leaves wide open what to do when an as yet unlearned 
anomaly rears its head. 
B.  So-called adaptive systems—genetic algorithms, neural 
networks, etc—do learn, but very slowly, and—more to the 
point—do not make decisions about what, when, or how to 
learn (largely because they have no knowledge of why to 
learn in the first place—no recognition that there is an 
anomaly to be addressed). Still, the existence of such 
systems may have lulled us into thinking that learning was 
a well-explored area. It is and it is not: machine learning, 
including the aforementioned work on adaptive systems, is 
a major area of vigorous investigation and a very great deal 
of important results are now available. But the bulk of this 
work focuses on the learning per se, and not on the 
contexts within which learning is needed. Yet the latter is 
precisely what RAH requires. 
C.  Anomalies—that is, mismatches between expectations 
and observations—can be reasonably regarded as 
contradictions in a belief base: an agent has the belief P 
since P is expected, and also -P since the latter is 
“observed” (that is to say, -P is provided by some other 
source). Both cannot be true, both cannot be rationally 
believed, so the agent must do something about the 
situation. But traditional formal approaches to 
commonsense reasoning—including nonmonotonic 
logics—are hopelessly inappropriate in such cases, i.e., 
wben applied to inconsistent belief bases they “explode” to 
produce all wffs as theorems. 
 Thus efforts to capture human-level commonsense 
reasoning, with its marvelous RAH flexibility, have not 
been successful to date. It makes sense, then, to take a 
closer look at this human capability, in the hope that we 
might ferret out some key aspects that can be borrowed and 
automated.  That is to say, perhaps artifactuality  can 
recapitulate biology—the only known supplier of RAH. 

Biology is the (only) answer (so far) 
How has biology solved this problem? How do organisms 
cope with anomalies? What anomalies are organisms faced 
with? 
 Basically, an organism has processes that provide certain 
life-preserving benefits; and anything that rubs strongly 
against the grain of these processes is potentially 
something to be reckoned with, something that must be 
dealt with or the organism dies. And indeed that often is 

what happens, the survivors being those lucky few whose 
processes are less strongly rubbed against.  
 For instance, supposed "food" that is not healthful may 
result in survival of only those few members of a species 
that either safely metabolize that item or that avoid it. Thus 
anomalies drive evolution.  
 But this is not yet RAH; no rational process, no actual 
reckoning, is given here. Rather this is slow evolution, 
parameter adjusting, trial-and-error, as in adaptive 
computation. For a species, anomalies present a kind of 
challenge to rise to, but for an organism an anomaly is 
simply the end of the line, or a routine matter-of-course; 
there is no change, no learning, at the organism level—at 
least not from such “selective pressures”. 
 Yet biology has not stopped with (Darwinian selective) 
evolution. For among the products of such evolution are 
mammals, primates, humans, creatures with RAH, agents 
that face anomalies and deal with them, that get better over 
time, and that do so in part by reasoning. What then is it 
that we do? And is it something that can be automated? Or 
does human-style RAH have no concise principles, instead 
being a mishmash product of evolution akin to a highly 
distributed neural network? In the latter case, we might 
manage to evolve our own RAH-capable algorithms but 
not know how they work, perhaps useful but not 
intellectually satisfying. Fortunately, there is evidence that 
it is the former, nor the latter, that obtains. 

What principles underlie RAH, and how can 
they be transitioned from the biological to the 

artificial? 
How does natural/biological RAH work? What is it that we 
humans do when we encounter and deal with an anomaly? 
The answer is surprisingly simple, even obvious—and also 
one that is borne out by work in cognitive psychology and 
neuroscience. It consists of five parts, which together 
define what we call the Metacognitive Loop (MCL): 

(i) We have expectations as to how things will be. 
(ii) We compare expectation to observation and 

thereby note indications that an expectation has 
been violated. 

(iii) We assess what we know that might explain 
this violation. 

(iv) We decide what response—if any—to guide 
into place. 

(v) We revise expectations as needed. 
 
It is introspectively clear that we do this—and do it a lot, 
every single day—and that without these five capabilities 
we would not do well at all, i.e., they are necessary parts of 
our job of being RAH agents. Whether the converse 
holds—that these five are sufficient for RAH—is perhaps 
less obvious. But at least this now puts us in a good 
position: (i)—(v) can be automated and studied, and the 



sufficiency hypothesis—let’s call it the MCL hypothesis—
tested. 
 Below I will recount some such experiments; but first I 
need to clarify some of the five parts a bit. Let me start 
with item (iv), things that can be done about an anomaly. 
Recall my warning at the beginning: cleverness has little to 
do with RAH. So the things we can do generally are not 
ones requiring heavy duty analysis or insight, yet they must 
on balance be useful. These include such actions as asking 
for help, postponing, giving up, using trial and error, 
initiating training, double-checking our observations, 
seeking corroborating evidence, and so on.  An implicit 
part of our hypothesis is that there is a relatively small 
“core” of anomaly-types and anomaly-resolutions, suited 
to virtually all domains. We currently are investigating 
ontologies of such, but work to date is highly suggestive 
that such a core exists. See (Schmill et al, 2007; Anderson 
et al, 2007). 
 Item (i) requires us to have ideas about how the world 
works, and this in turn requires some sort of learning 
capacity, as also does the “initiate training” option in (iv).  
In (ii) there is an implicit use for formal logics that behave 
“responsibly” in the presence of contradictions. 
 Thus (i)—(v) are not trivial, they come with substantial 
requirements. But they also lend themselves to algorithmic 
implementation.  The training option is particularly 
interesting, for it dramatizes the need to decide that 
learning is needed, what is to be learned, and when, and 
how, and for how long. Thus an RAH-capable system will, 
among other things, need trainable modules (neural 
networks, reinforcement learners, etc). RAH then is not a 
substitute for traditional aspects of AI so much as an 
enhancement and bringing together of them. 

A spate of RAH-capable systems 
In the past several years, my group has been hard at work 
building and testing examples of RAH-capable systems. 
These include systems that perform (robot) navigation, 
reinforcement learning, nonmonotonic reasoning, video-
arcade tank game playing, and human-computer natural-
language dialog. Each of these was built separately, for 
that particular application.  And each such system 
performed markedly better when its RAH aspects were 
employed. However, we soon realized that the same  
elements (i)—(v) were at work in some fashion or other in 
each case, and this led us to hypothesize a general-purpose 
domain-independent MCL module, akin to the human 
RAH that seems to work pretty well across the board, not 
just in two-player games, not just in preparing a meal, not 
just on the job.  Any of us would probably do well even if 
spirited away—as an involuntary immigrant—to Finland in 
the dead of the night; we’d be astonished and deeply 
worried, but we’d find a way to survive, make our 
concerns known, even in another language, and we’d 
eventually manage to get back home—or we’d become 
adapted to Finnish life. So why should an automated RAH 
be any less domain-independent?   We now take a closer 

look at some of our MCL-enhanced systems (in particular 
our natural-language system), at a more ambitious project 
we are poised to launch, and at still broader requirements 
for fully human-level RAH. 
Reinforcement learning (RL) is a well-established 
methodology that works very well in many settings, 
notably ones in which the reward structure is static or 
nearly static. But when that structure is changed suddenly 
and significantly, the performance of RL degrades severely 
and recovers excruciatingly slowly. In essence, RL 
algorithms need to ``unlearn'' what they have learned, step 
by step, since they have no way to recognize that the 
reward structure has changed, let alone assess what can be 
done about it. Yet it is clear that, given a drastic change 
that makes previous learning useless, the best policy is 
simply to throw it out and start over. 
 Using a variety of reinforcement learning algorithms (Q-
learning, SARSA, and prioritized sweeping) we 
experimented with a simple 8x8 grid world with rewards in 
cells (1, 1) and (8, 8).  The learner was trained for 10,000 
steps, then the rewards were switched and learning 
continued for another 10,000 steps.  We compared the 
performance of standard RL algorithms to MCL-enhanced 
versions of the same algorithms.  The MCL-enhanced RL 
algorithms maintained and monitored expectations about 
such things as average reward per step, value of future 
rewards, and average time to next reward.  When these 
expectations were violated, they assessed the nature of the 
violation and, using a simple decision tree, chose one of 
the available repairs.  These included: ignoring the 
problem, adjusting the learning parameter,  or throwing out 
the current action policy and starting over. 
 Performance rises sharply and levels off until step 
10,000 when the reward-switching occurs. At that point, 
performance falls dramatically and then begins to recover.  
However, the standard RL algorithms recover far more 
slowly and far less completely than the MCL-enhanced 
versions (the higher curve) of the same algorithms.  In our 
experiments we found that the greater the degree of change 
in reward (such as swapping rewards for penalties, and 
vice versa), the greater the benefits generated by MCL. See 
(Anderson et al, 2006a). 
Bolo is a multi-player tank game which takes place in a 
world that contains various terrain types (roads, swamps, 
walls, etc.), refueling bases, and pillboxes.  There are three 
types of pillbox: neutral pillboxes fire on all tanks, dead 
pillboxes pose no threat and can be captured to make them 
friendly, and friendly pillboxes fire only on other players' 
tanks.  An important strategy in Bolo is to capture 
pillboxes, make them friendly, and then use them either 
offensively or defensively. 
 Bolo can be played by humans, but it can also be played 
by programs. Such artificial Bolo players tend to play quite 
poorly and are easily fooled when unexpected 
complications arise (change of terrain, more dangerous 
pillboxes, etc). Thus Bolo provides a good challenge 
domain in which to test MCL. 



 Our MCL-enhanced Bolo player is controlled by a 
simple Hierarchical Task Network (HTN) planner with 
primitive actions that ground out in controllers.  It 
maintains a variety of expectations, the primary one being 
that the tank it controls will not be destroyed. Over time it 
learns from its mistakes, first discovering that its 
performance is poor, and then using a form of trial-and 
error to find a way to improve. See (Schmill et al, 2008). 
Natural language—and especially natural language 
human-computer dialog—is arguably the most difficult 
application we have explored to date. Natural language is 
complex and ambiguous, and therefore, communication 
always contains an element of uncertainty. To manage this 
uncertainty, human dialog partners continually monitor the 
conversation, their own comprehension, and the apparent 
comprehension of their interlocutor. Human partners elicit 
and provide feedback as the conversation continues, and 
make conversational adjustments as necessary. We contend 
that the ability to engage in this meta-dialog is the source 
of much of the flexibility displayed by humans when they 
engage in conversation; see (Perlis et al, 1998).  We have 
demonstrated that enhancing existing dialog systems with a 
version of MCL that allows for meta-dialogic exchanges 
improves performance. 
 For instance, in one specific case tested, a user of the 
natural-language train-control simulation TRAINS-96 
(Ferguson et al, 1996) tells the system to ``Send the Boston 
train to New York.''  If there is more than one train in 
Boston, the system may well choose the wrong one to 
send---the user may have in mind the train that runs 
regularly to and from Boston and so might respond: ``No, 
send the Boston train to New York!'' Whereas the original 
TRAINS-96 dialog system responds to this apparently 
contradictory sequence of commands (Send, Don't send, 
Send) by once again sending the very same train, our 
MCL-enhanced version of TRAINS notes the anomaly 
(i.e., the contradiction in commands) and, by assessing the 
problem, identifies a possible explanation in its choice of 
referent for ``the Boston train''.  The enhanced system then 
chooses a different train the second time around, or if there 
are no other trains in Boston, it will ask the user to specify 
the train by name. The details of the implementation, as 
well as a specific account of the reasoning required for 
each of these steps, can be found in (Traum et al, 1999). 
 Our current dialog system, ALFRED, uses the MCL 
approach to resolve a broad class of dialog anomalies. The 
system establishes and monitors a set of dialog 
expectations related to time, content and feedback.  For 
example, in a toy-train domain, if the user says ``Send the 
Metro to Boston'', ALFRED notices that it doesn't know 
the word `Metro' (a failure of the expectation that it will 
find input words in its dictionary).  Alfred's first response 
is to try to determine what it can about the unknown word.  
Since Alfred knows about the command ``send'' and its 
possible arguments, it is able to determine that ``Metro'' is 
a train. If it cannot determine from this which train the user 
is referring to, it will request specific help from the user, 
saying: ``Which train is `Metro'?'' Once the user tells the 

system that `Metro' is another word for `Metroliner', it is 
able to correctly implement the user's request. See (Josyula 
2005). 

A fuller test of the RAH hypothesis 
The above examples of MCL at work are well and good. 
But the larger promise of the method is that of a single 
domain-independent MCL rather than specially designed 
ones for each application; see (Anderson et al, 2007a,b; 
Schmill et al, 2007). Toward that end, we are about to  
embark on a more ambitious project, in which an upgraded 
MCL will simultaneously be applied to three distinct 
domains: NLP, virtual reconnaissance robots sending 
secure messages in a virtual “AfghanWorld”, and physical 
robots exploring a physical mock-up of the Martian 
surface. There are then three broad kinds of agents here: an 
upgraded ALFRED for the NLP system, AfghanWorld 
security-sensitive robots, and Mars-World exploration 
robots. A human will communicate with ALFRED in 
English, and ALFED will—when appropriate—translate 
and forward commands to the various robots and also 
receive and tranlate into English robotic replies. Each 
agent type will be enhanced with the very same MCL code, 
in a deliberate attempt to assess MCL’s adequacy to highly 
distinct agents and tasks. 

And still fuller 
Even if the above three-pronged study above is wildly 
successful, much more remains to be done.   Fully general 
RAH should be also able to become host-and-domain 
specific over time, like the involuntary immigrant. But for 
this to occur, an agent will need substantial infrastructure. 
For instance, as already stated, it will need a range of 
trainable modules as well as appropriate training 
algorithms for them.  It will also need a well-organized 
memory so that it can assess its adaptations over long time-
periods, as well as progress on short-term tasks. With these 
and other additions, MCL might “fuse” with its “body” 
(system) and become one unified agent, akin to a baby’s 
brain getting familiar with the baby’s body.  But our 
discussion so far has glossed over a major issue that will 
form a central part of this next phase of work: inference. 
 It may have occurred to the reader that, despite much 
mention early on of rationality and reasoning, little has 
been said here about how inference fits into our vision, 
other than the need for some version of reasoning that 
treats contradictions “responsibly”. In fact, we have just 
such a formalism (active logic) and a reasoning engine 
based on it. Active logic addresses two key needs here: it 
not only recognizes (direct) contradictions, but it also has a 
real-time (i.e., evolving in real time) notion of what time it 
is Now – as inference goes on. Interestingly, the latter is 
key to the former: anomalies often make themselves 
known in the form Expect(P) and Observe(-P) at a 
particular time t, and this affords the logic engine the 



option of inferring at time t+1 that such an anomaly has 
occurred and is to be treated as such.  
 Both active logic and more traditional logics (even 
nonmonotonic ones) usually represent these as P and –P: 
one tends to believe that things will be as expected, and 
one also tends to believe ones senses. Belief revision treats 
the former as already part of a given logical theory, and the 
latter as a newcomer to be factored smoothly into the 
former by means of judicious excisions to preserve 
consistency.  
 But often one simply does not know whether to trust the 
newcomer observation over the existing expectation: 
further input might be required to make that call, and also 
it might not be important to adjudicate between them at all 
if they are not critical to one’s concerns. Hence the need to 
a logic that notices such a contradiction (at time t) and that 
is wary enough (at times subsequent to t)  not to foolishly 
trust both contradictands (unlike monotonic logics), but 
able that is then able to reason about (assess)  their 
importance, and if needed then guide one or more possible 
resolutions into place. See (Anderson et al, 2004).   
 Thus active logic is central to the theme here. 
Nevertheless, most of our work on MCL to date has 
employed active logic mostly as a conceptual motivation, 
but not built in as an actual inference engine. Our next 
planned phase of development will include an active-logic 
engine as part and parcel of MCL, especially in the assess 
stage. 

Conclusion 
We have presented an approach to the brittleness problem 
motivated by considerations from biology and psychology. 
Several examples of implementations based on this idea 
were discussed, and directions for next steps were 
suggested. If this line of investigation holds to its promise, 
automated flexible cognition may be closer than we think. 
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