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Abstract 
This paper describes a naturalistic approach to the 
development of a large-scale, functional, cognitively 
plausible model of language comprehension, and contrasts 
the approach with mainstream cognitive modeling and 
computational linguistic research. An approach to research 
is described which accepts the theoretical constraints of a 
cognitive architecture, while replacing the fine-grained 
empirical validation typical of small-scale cognitive 
modeling research with a functionalist methodology and 
gross level empirical validation more consistent with large-
scale AI and theoretical/computational linguistic research. 

Introduction   

This paper describes a naturalistic approach to the 
development of a large-scale, functional, cognitively 
plausible model of language comprehension (Ball, Heiberg 
& Silber, 2007) implemented in the ACT-R 6 cognitive 
architecture (Anderson, 2007; Anderson et al., 2004). By 
naturalistic, I mean that the model adheres to well 
established cognitive constraints on human language 
processing and does not adopt any computational 
techniques which are obviously not cognitively plausible. 
For example, the model attempts to model the real-time 
processing behavior of humans using a “mildly” 
deterministic, serial processing mechanism operating over 
a parallel, probabilistic, activation substrate. The parallel, 
probabilistic substrate activates constructions 
corresponding to the linguistic input, constrained by the 
current context, and the serial processing mechanism 
selects from among the activated constructions and 
integrates them into a coherent representation.  Overall, the 
processing mechanism is highly integrated and 
incremental, allowing whatever grammatical or semantic 
information is most relevant to be brought to bear in 
making a decision that will usually be correct at each 
choice point. The language comprehension model does not 
make use of computational techniques like a first pass part-
of-speech tagger that operates independently of a second 
pass parser. Being non-incremental, such an approach is 
not cognitively plausible.   
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By functional, I mean that the model handles a broad range 
of linguistic inputs (the broader, the better). The model is 
not limited to some specialized collection of inputs 
designed to test some isolated psycholinguistic behavior. 
For example, a system which models garden-path 
phenomena, but can’t model common-or-garden sentences, 
is not considered functional. In addition, the term 
functional applies to the addition of mechanisms, as 
needed, to model a broad range of inputs. For example, the 
modeling of wh-questions requires the addition of 
mechanisms to support the fronting of a wh-expression and 
the binding of this fronted expression with the trace of an 
implicit argument or adjunct (or alternative mechanisms 
for indicating this relationship). Likewise, the modeling of 
yes-no questions requires mechanisms to support the 
inversion of the subject with the first auxiliary (relative to 
declarative sentences). The overall functional goal is to be 
able to handle the basic grammatical patterns of English 
such that the model can be used in a real world application.  

Although this paper will not focus on the details of the 
cognitive model, listed below are some of the basic 
theoretical commitments: 

 Incremental processing of input word by word 
 Parallel, probabilistic spreading activation 

mechanism which activates alternatives at each 
choice point based on the current input and prior 
context 

 Mildly deterministic, serial processing mechanism 
which selects from among the activated 
alternatives and eagerly integrates the selected 
alternative into the evolving representation 

 Context accommodation mechanism which allows 
for the nonmonotonic modification of the 
evolving representation to accommodate the 
current input given the prior context 

 Highly context sensitive processing mechanism 
which integrates across syntactic form,  
grammatical function (yet another use of the term 
“function”), and meaning 

 Linguistic representations which encode syntactic 
form, grammatical function, and linguistically 
relevant semantic information, but which are 
distinct from corresponding non-linguistic 
conceptual representations 



A Functionalist Approach to Cognitive 
Modeling in the Large 

There is some acknowledgement within the cognitive 
modeling community that we need to be building larger-
scale models with broader cognitive capabilities. This 
acknowledgement is reflected in the frequent reference to 
Newell’s “20 questions” critique (Newell, 1973) of 
cognitive science research (cf. Anderson & Lebiere, 2003; 
Anderson, 2007; Byrne, 2007). Anderson & Lebiere (2003) 
argue that the ACT-R cognitive architecture answers 
Newell’s 20 questions critique in assessing ACT-R’s 
capabilities with respect to the Newell Test (Newell, 1990) 
for a theory of cognition. The Newell Test lists twelve 
functional criteria considered essential for a human 
cognitive architecture. Although ACT-R does not 
completely satisfy all twelve criteria, it does well enough 
to merit serious consideration as a functional architecture.  

On the other hand, although the ACT-R cognitive 
architecture addresses Newell’s 20 questions criticism, 
cognitive models developed within ACT-R typically 
address specific, limited, cognitive phenomena tied closely 
to simple laboratory experiments. The typical study 
involves the development of a cognitive model that 
matches the human data from some laboratory experiment, 
demonstrating that the ACT-R cognitive architecture 
provides the needed cognitive mechanisms—when 
combined with task specific knowledge—to model the 
human data. In addition, Young’s (2003) notion of 
compliancy is satisfied if the model was developed without 
excessively challenging the cognitive architecture. A few 
studies attempt to model more complex phenomena (Gray 
& Schoelles, 2003; Fu et al., 2006) and there is also some 
hope that smaller scale models can be integrated into more 
complex composite models (Gray, 2007). But cognitive 
modelers are loath to distance themselves from matching 
human experimental data and this commitment 
methodologically differentiates cognitive modeling from 
other types of computational modeling. (Cognitive 
modelers might argue that this is what makes their efforts 
scientific in the Popperian sense.) Further, within the ACT-
R community, matching human data typically means 
matching data from reaction time studies, since ACT-R 
was specifically developed to support this kind of 
modeling (Anderson & Lebiere site this as the “best” 
functional feature of ACT-R). Note that it is the cognitive 
models developed within ACT-R which actually provide 
the empirical validation of the cognitive architecture, since 
the cognitive architecture itself is not capable of modeling 
human behavior (although some steps have been taken to 
automate the learning of experimental tasks so that the 
architecture can directly model human behavior without 
the intervention of creating a cognitive model). 

Despite the functionalist claims of Anderson & Lebiere 
(2003), recent variants of the ACT-R cognitive architecture 
are (in part) motivated on “minimalist” principles by which 
the architecture is only extended if extensive empirical 

evidence is provided to motivate the extension. Further, 
functional mechanisms available in earlier variants—like 
the unbounded goal stack and multi-level activation spread 
have been removed from the architecture. The unbounded 
goal stack has not held up to minimalist arguments and is 
inconsistent with empirical results which show decayed 
memory for previous goals. While the removal of the 
unbounded goal stack is supported by empirical evidence, 
the replacement of the goal stack by a single chunk goal 
buffer appears to be more a reflection of the minimalist 
bent than it is empirically motivated. Until there is 
sufficient empirical evidence that a multiple chunk goal 
buffer is needed, the minimalist argument suggests it be 
limited to a single chunk. Ockham’s razor is hard at work. 
Not only the goal buffer, but all buffers in ACT-R are 
limited to a single chunk. Functionally, the language model 
appears to need more than single chunk buffers. To 
overcome this limitation, the language model uses multiple 
buffers linked together to create bounded buffer stacks 
(limited to 4 chunks, consistent with empirical evidence of 
short-term working memory capacity, cf. Cowan, 2001). 
Likewise, the elimination of multi-level activation spread 
is based on empirical evidence against priming from the 
word “bull” to the word “milk” via the intermediate word 
“cow”. However, limiting activation to the spread from 
slots in chunks in buffers to slots in declarative memory 
chunks, with no subsequent spread of activation from slots 
in declarative memory to other declarative memory chunks 
imposes a hard constraint on possible systems of 
representations. For example, in a system in which a “cow” 
chunk is not directly linked to a “bull” chunk, no activation 
spread is possible. In small-scale systems, this is not a 
problem, but in large-scale systems, the proliferation of 
direct links required to support activation is explosive. 
Further, chunks must have separate links for all possible 
forms of activation including semantic, syntactic, 
morphologic, phonologic, orthographic, etc., resulting in a 
proliferation of links within individual chunks and making 
it difficult to spread activation across levels (e.g., letters 
can activate syllables and words directly, but how can 
syllables activated by letters, spread activation to words 
without multiple level activation?).   

In sum, there appear to be competing motivations 
influencing the development of ACT-R. On the one hand is 
the desire to satisfy the Newell Test of functionality; and, 
on the other hand is the small-scale approach to science 
adopted within Popperian cognitive psychology and 
against which Newell’s 20 questions critique is addressed.  

In this paper it is argued that the key to bridging the gap 
between current small-scale cognitive modeling and the 
development of large-scale functional systems is to adopt a 
functionalist perspective at the level of cognitive models 
(as well as cognitive architecture)—without sacrificing 
cognitive plausibility. Given the complexity of the 
cognitive systems we are modeling, it may not be feasible 
to pursue low-level empirical studies—at least not until we 
have a working cognitive model built from the functional 



perspective. Once a working cognitive model is available, 
the functional mechanisms proposed in the development of 
the model can be subjected to empirical validation and 
Ockham’s razor (i.e. can a model with fewer mechanisms 
model the same complex behavior). From the functionalist 
perspective, it is premature to enforce minimalist 
assumptions in the absence of a functional model. Further, 
empirical validation of small pieces of a complex system in 
the absence of a working model are of limited value (as 
suggested by Newell’s 20 questions critique). Mechanisms 
which are sufficient in a small-scale model of a single 
cognitive phenomenon are unlikely to be sufficient in a 
large-scale functional model of complex cognitive 
behavior. Scaling up to complex cognitive phenomena 
means adding additional mechanisms and integrating these 
mechanisms in complex ways which cannot be predicted 
on the basis of small-scale models. Ockham’s razor may 
well be counter-productive in such contexts. As Roelofs 
(2005) notes, although Ockham’s razor favors the simplest 
model that covers a set of phenomena, it does not 
simultaneously favor modeling the simplest set of 
phenomena.  Further, Tenenbaum (2007) argues that it is 
important to consider the trade-off between simplicity and 
fit (in the development of models of language acquisition). 
The simplest model which covers a set of phenomenon is 
unlikely to be the best fit to the data and the best fitting 
model is unlikely to be the simplest. The preferred model 
will necessarily trade-off simplicity and fit. In addition, as 
the set of phenomena to be modeled is increased, a more 
complex model will be required to provide the same degree 
of fit. Further, increases in complexity are likely to be 
exponential, rather than linear, with increases in the 
number of objects in a model. 

What is not being proposed is an approach to cognitive 
modeling research which ignores well-established 
cognitive constraints on human behavior. While such an 
approach is acceptable in some Artificial Intelligence 
circles where the goal is to develop intelligent systems 
using advance computational techniques, regardless of the 
cognitive plausibility of those techniques, the approach 
being proposed here accepts the validity of cognitive 
constraints and integrates them into the development of 
complex cognitive mechanisms which are at once 
functional and cognitively plausible. What is proposed is a 
shift in methodology in which the conduct of small-scale 
empirical studies is delayed or marginalized until a 
working model of a complex task has been developed on 
functionalist principles. Once a functional model is in 
place, small-scale empirical validation of specific 
components of the model and the application of minimalist 
principles like Ockham’s razor become relevant and 
important. Until a functional model is in place, model 
development is guided by cognitive constraints and 
empirical validation at a gross level, without being 
constrained to match specific data sets which would likely 
derail, rather than facilitate, progress. A small-scale model 
tuned to a specific data set is unlikely to generalize to meet 
the larger functional requirements of a complex system. 

Getting the “Natural” Back Into Natural 
Language Processing 

Marr (1982, 1992) put forward a strongly functionalist 
approach to modeling “biological information processing” 
problems in arguing that we should first identify the 
computational mechanisms and constraints that are needed 
to compute the complex phenomena being studied 
(computational and algorithmic levels), before worrying 
about how these mechanisms might be implemented in the 
brain or other hardware (implementation level). As Boden 
(1992) notes in describing Marr’s position (Marr, 1992), 
“…a science of intelligence requires either ‘Type-1’ 
models based on theoretical understanding of fundamental 
(axiomatic) task-constraints or ‘Type-2’ implementations 
of intelligent performance effected by ‘the simultaneous 
action of a considerable number of processes, whose 
interaction is its own simplest description’.” Although 
Marr prefers an approach to research which focuses on the 
development of “Type-1” theories which are explicit and 
computational, he acknowledges that this is not always 
possible, and often “Type-2” theories are the best 
explication of a complex information processing problem 
that can be developed. Marr places human language 
processing in this latter category suggesting that a “Type-
1” theory corresponding to Chomsky’s notion of 
competence may not be possible, with only “Type-2” 
theories which consider the process of mapping a multi-
dimensional (mental) representation in the head of the 
speaker into a “one-dimensional form for transmission as a 
sequential utterance…to be retranslated back into a rough 
copy of the original in the head of the listener” (Marr, 
1992, p. 138), being attainable. 

Left unstated in Marr (1992) is the methodology by which 
models of complex cognitive systems are empirically 
validated. Within AI, it is often assumed that the primary 
empirical goal is to model input-output behavior. However, 
as argued in Ball (2006), I do not believe it is possible to 
model the input-output behavior of complex cognitive 
systems like language without serious consideration and 
computational implementation of the internals of language 
processing in humans. If we are to delve inside the “black-
box” of cognition, then we need a methodology for 
empirically validating the representations and mechanisms 
proposed for inclusion in the black box. However, as 
argued above, small-scale Popperian falsification of 
isolated hypotheses is likely to derail progress in the 
development of functional systems. For those of us who 
are interested in building large-scale models, such an 
approach is not viable (although we are happy to consider 
the small-scale experimental results of others researchers). 
Instead, we should focus on identifying empirical 
phenomena which can be validated at a gross level which 
helps to focus development in promising directions without 
side-tracking that development. 

One good example of matching a cognitive constraint at a 
gross level within NLP, is the requirement to be able to 



process language incrementally in real-time. At Marr’s 
algorithmic level where parallel and serial processing 
mechanisms are relevant, a language processing system 
should be capable of incremental, real-time language 
processing. For language processing, this means that the 
performance of the system cannot deteriorate significantly 
with the length of the input—as is demonstrably not the 
case in humans. The simplest means of achieving this is in 
a deterministic system (cf. Marcus, 1980). To the extent 
that the system is not deterministic, parallelism (or some 
other nonmonotonic mechanism) is required to overcome 
the non-determinism at the algorithmic level. In Ball 
(2007a), a language processing model based on a “mildly” 
deterministic, serial processing mechanism operating over 
a probabilistic, parallel processing substrate was described. 
A basic element of the serial processing subsystem is a 
mechanism of context accommodation wherein the current 
input is accommodated without backtracking, if need be. 
For example, in the processing of “the airspeed 
restriction”, when “airspeed” is processed it is integrated as 
the head of the nominal “the airspeed”, but when 
“restriction” is subsequently processed, “airspeed” is 
moved into a modifier function, allowing “restriction” to 
function as the head of “the airspeed restriction”. 
Interestingly, context accommodation gives the appearance 
of parallel processing within a serial processing 
mechanism (i.e. at the end of processing, it appears that 
“airspeed” was considered a modifier all along). Context 
accommodation is a cognitively plausible alternative to the 
less cognitively plausible lookahead mechanism of the 
Marcus parser (and the cognitively implausible mechanism 
of algorithmic backtracking). There is little psychological 
evidence that humans are aware of the right context of the 
current input (cf. Kim, Srinivas & Trueswell, 2002) as is 
strongly implied by a lookahead mechanism. In support of 
his lookahead mechanism, Marcus (1980) argues that 
“strict determinism” which eschews all non-determinism 
cannot be achieved without it. The context accommodation 
mechanism violates Marcus’ notion of strict determinism 
in that it allows for the modification of existing structure 
and is nonmonotonic (i.e. capable of simulating non-
determinism), but whereas exploring the feasibility of strict 
determinism for language processing may have been an 
important goal of Marcus’ research, its reliance on a 
lookahead capability appears not to be cognitively viable—
the right context of the input is simply not available to the 
human language processor (patently so in spoken 
language). Besides the context accommodation 
mechanism, the parallel, probabilistic spreading activation 
mechanism violates Marcus’ notion of strict determinism. 
However, parallel processes are well attested in human 
cognitive and perceptual processing, and are well 
motivated for handling non-determinism 
probabilistically—especially at lower levels of cognitive 
processing like word recognition and grammatical 
construction selection. At Marr’s algorithmic level, a non-
deterministic language processing system may still be 
cognitively plausible and capable of operating in real-time 

if the non-determinism can be handled using parallel, 
probabilistic processing mechanisms. The ACT-R 
cognitive architecture, which is based on 30+ years of 
cognitive psychological research, provides just this 
combination of a serial, feed-forward production system 
combined with a parallel, probabilistic spreading activation 
mechanism which provides the context for production 
selection and execution.  

Another important advantage of the ACT-R cognitive 
architecture is that is provides a virtual machine (i.e. the 
cognitive architecture) which supports an executable 
algorithmic level description of solutions to complex 
cognitive problems (i.e. the cognitive model). The ACT-R 
virtual machine also provides execution time information 
which makes it possible to determine if the cognitive 
model is capable of operating in real-time at the 
algorithmic level. The execution of the language 
comprehension model—which contains several thousand 
lexical items—demonstrates that it is capable of operating 
incrementally in real-time at the algorithmic level (i.e. the 
performance of the model does not degrade with the length 
of the input). In addition, the language comprehension 
model currently operates faster than real-time on the 
implementation hardware. However, the language-
comprehension model does not yet generate 
representations of meaning comparable to humans, 
currently generating only a linguistic representation. The 
model also does not make extensive use of the parallel, 
spreading activation mechanism which is computationally 
explosive on serial hardware. 

Two examples of computational linguistic systems which 
take into consideration cognitive plausibility are the 
“Eager” parser of Shen & Joshi (2005) and the 
“supertagger” of Kim, Srinivas & Trueswell (2002). The 
Shen & Joshi parser is designed to be incremental and only 
considers the left context in making parsing decisions. 
However, this parser performs less well than a less 
cognitively plausible bi-directional parser to which it is 
compared in Shen (2006). The “supertagger” of Kim, 
Srinivas & Trueswell is concerned with modeling several 
psycholinguistic phenomena in a large-scale system based 
on a Constraint-Based Lexicalist (CBL) theory of human 
sentence processing. Operating incrementally, left-to-right, 
the trained connectionist model “selects” the sequence of 
supertags (i.e. lexically specific syntax treelets) which is 
most consistent with the input—where supertag selection is 
based on a linking hypothesis involving the mapping of the 
activated output units to the supertag which is most 
consistent with them. The theoretical mechanism by which 
the selected supertags are integrated—within the parallel 
CBL framework—is not explored. 

Most large-scale computational linguistic systems perform 
only low-level linguistic analysis of the input. As Shen 
(2006) notes, “most of the current research on statistical 
NLP is focused on shallow syntactic analysis, due to the 
difficulty of modeling deep analysis with basic statistical 
learning algorithms”. Building a language comprehension 



system based on existing computational linguistic systems 
will require extensive modification to make the systems 
more naturalistic (i.e. capable of comprehending language 
as humans do). 

Pitfalls of a Naturalistic, Functionalist 
Approach   

A primary risk of a functionalist approach to research is 
that it can become largely detached from empirical reality. 
This appears to be what has happened in generative 
grammar following the ill-advised introduction of 
functional heads (cf. Abney, 1987; for a critique, see Ball, 
2007b). Recent linguistic representations within generative 
grammar do not pass the face validity test—they are too 
complex and unwieldy, with too many levels and “hidden” 
elements, to be cognitively plausible. These complex 
representations have been motivated on functional grounds 
stemming from requirements for increasing the 
grammatical coverage to an ever wider range of linguistic 
phenomena while at the same time providing a maximally 
general theory. The primary empirical methodology 
driving generative grammar is judgements of 
grammaticality—often by the generative grammarian him 
or herself. While grammaticality judgements may be a 
reasonable (gross level) empirical method if applied 
judiciously, the cognitive implausibility of the proposed 
representations suggests the need for alternative empirical 
methods of validation.  

On the basis of grammaticality judgments on ever more 
esoteric linguistic expressions, more and more linguistic 
mechanisms and entities have been proposed within 
generative grammar for which there is no explicit evidence 
in the linguistic input. The introduction of all these implicit 
linguistic entities and mechanisms created a challenge for 
theories of language acquisition and led to a reformation of 
opinion within generative grammar with the introduction 
of the Minimalist Program (Chomsky, 1995). The 
Minimalist Program is (in part) an attempt to simplify 
generative grammar (in the pursuit of a perfect 
computational system), reducing the number of implicit 
linguistic entities. Unfortunately, although the Minimalist 
Program has been very successful in reducing linguistic 
entities and mechanisms, as Culicover & Jackendoff 
(2005) argue, it has done so at the expense of being able to 
model the broad range of linguistic phenomena covered in 
earlier generative theories. Essentially, the Minimalist 
Program has defined away all the linguistic variability that 
it no longer attempts to model, making that variability 
external to the “core grammar” that is of theoretical 
interest. The Minimalist Program has thereby renounced 
most functionalist claims in pursuit of a “perfect” system 
of core grammar. The result is a system that is functionally 
and empirically incomplete. In pursuit of explanatory 
adequacy (how language can be learned), the Minimalist 
Program has de-emphasized descriptive adequacy, pushing 
many linguistic phenomena to the uninteresting periphery. 

In Tenenbaum’s (2007) terms, it is a simpler theory which 
is a poor fit to much of the available linguistic data.  

Culicover & Jackendoff (2005) provide an alternative 
within generative grammar called the Simpler Syntax 
which retains a strong functionalist orientation while at the 
same time challenging the proliferation of linguistic 
entities and mechanisms within the syntactic component of 
non-minimalist generative grammar. Essentially, the 
syntactic component is simplified by introducing a 
compositional semantic component with which the 
syntactic component interfaces. The syntactic component 
is no longer required to support all the grammatical 
discriminations that need to be made without recourse to 
semantic information (although semantic information is 
still isolated in a separate component). Chater & 
Christiansen (2007) contrast the simplicity of the 
Minimalist Program and the Simpler Syntax, favoring the 
latter. 

The language comprehension model discussed in this paper 
is founded on a linguistic theory (Ball, 2007b) which goes 
a step further in arguing that the functional need for a 
distinct syntactic component and purely syntactic 
representations can be disposed of in favor of linguistic 
representations and mechanisms which integrate structural, 
functional and grammatically relevant semantic 
information—although it has not yet been demonstrated 
that the model can cover the full range of linguistic 
phenomena addressed in the non-computational theory of 
Culicover and Jackendoff. As the rise of the Minimalist 
Program and the Simpler Syntax demonstrate, it is 
important to reevaluate purported functional mechanisms 
in light of theoretical and empirical advances, applying 
Ockham’s razor judiciously.  

Although it is important for a functionalist approach to be 
theoretically and empirically validated at reasonable points 
to avoid the proliferation of functional entities, it should be 
noted that the small-scale empirical method is not 
impervious to the proliferation of functional elements that 
threatens the functionalist approach. As Gray (2007) notes, 
the divide and conquer approach of experimental 
psychology has led to a proliferation of purported 
mechanisms within individual cognitive subsystems 
without due consideration of how these purported 
mechanisms can be integrated into a functional cognitive 
system. It is avoidance of this proliferation of mechanisms 
within individual subsystems that presumably motivates 
the minimalist bent within the development of ACT-R. 
Alternative cognitive modeling environments like 
COGENT (Cooper, 2002) are non-minimalist in that they 
support the exploration of multiple cognitive mechanisms 
without necessarily making a commitment to a coherent set 
of mechanisms for the architecture as a whole. It might be 
thought that COGENT would be a more “compliant” 
architecture for building functional systems. However, to 
the extent that a functional cognitive model needs to be 
coherent, COGENT functions more like a programming 
language and less like a cognitive architecture than ACT-



R. The trade-off is an important one. The coherency of 
ACT-R constrains the range of possibilities for cognitive 
models more so than COGENT. Such constraint is 
functional if it pushes model development in the direction 
of likely solutions to complex cognitive problems without 
being overly constraining. As I have argued elsewhere 
(Ball, 2006), I view the constraints provided by ACT-R as 
largely functional and I consider the current level of 
success of the language comprehension model to have been 
facilitated by the ACT-R cognitive architecture. 

Besides a functionalist approach being at risk of becoming 
detached from empirical reality, to the extent that a 
complex cognitive system is being modeled, there is a risk 
of the complexity overwhelming development. It may be 
argued that the past failures of explicitly developed NLP 
systems have stemmed from the inability to manage this 
complexity. At the “Cognitive Approaches to NLP” AAAI 
symposium in fall 2007, Mitchell Marcus argued that 
large-scale NLP systems could not be developed without 
recourse to automated machine learning techniques. 
Indeed, most computational linguistic research aimed at 
development of large-scale systems has come to rely on the 
use of machine learning techniques. A side effect of this 
research direction is that it is more difficult to enforce 
cognitive constraints, since the machine learning 
computations are outside the direct control of the 
researcher. Further, it is not unusual for NLP systems 
created using machine learning techniques to contain 
thousands (or tens of thousands) of distinct linguistic 
categories, many of which have no mapping to commonly 
accepted linguistic categories. These systems perform 
extremely well on the corpora they were trained on. 
However, the underlying models are extremely complex 
and it looks suspiciously like they are over fitting the data 
(i.e. ignoring Tenenbaum’s trade-off between simplicity 
and fit). That the test set for such models often comes from 
the same corpus as the training set (the annotated Penn 
Treebank Wall Street Journal Corpus) does not provide an 
adequate test of the generalizability of such models. As 
Fong & Berwick (2008) demonstrate, the Bikel 
reimplementation of the Collins parser is quite sensitive to 
the input dataset, making prepositional phrase attachments 
decisions that reflect lexically specific occurrences in the 
dataset (e.g. “if the noun following the verb is ‘milk’ attach 
low, else attach high). 

The simplest rejoinder to the position put forward by 
Marcus is to develop a functionally motivated and explicit 
NLP system that proves him wrong. Easier said than done! 
Statistical systems developed using machine learning 
techniques dominate computational linguistic research 
because they outperform competing explicitly developed 
functional systems when measured on large annotated 
corpora like the Penn Treebank (Marcus, et al., 1993). 
However, there are reasons for believing that an explicitly 
developed functional system might eventually be 
developed which outperforms the best machine learning 
systems. In the first place, an explicitly developed 

functional system can take advantage of statistical 
information. Once an appropriate ontology of linguistic 
categories has been functionally identified, statistical 
techniques can be used to compute the probabilities of 
occurrence of the linguistic categories, rather than using 
brute force machine learning techniques to identify the 
categories purely on the basis of low-level distributional 
information. Instead of having categories like “on the” and 
“is a” identified on the basis of pure statistical co-
occurrence in unsupervised systems, supervised systems 
can use phrase boundaries and functional categories (e.g. 
subject, object, head, specifier, modifier) to segment and 
categorize word sequences prior to computing co-
occurrence frequencies. Statistical systems based on the 
annotated Penn Treebank corpus already make use of 
phrase boundary information, but these systems typically 
ignore the functional category information (including 
traces) provided in the annotations (Manning, 2007; 
Gabbard, Marcus & Kulick, 2006 is an exception). In 
general, the more high level functional information that 
can be incorporated into the supervised machine learning 
system, the better. The value of doing so is a more 
coherent system. Low level statistical regularities may be 
useful for low level linguistic analyses like part of speech 
tagging (and maybe even syntactic parsing), but to the 
extent that they are not functionally motivated, they are 
likely to impede the determination of higher level 
representations.   

A good way to overcome complexity is to base 
development on a sound theory (back to Marr). The failure 
of earlier functional NLP systems may be due in large part 
to the weak or inappropriate linguistic representation and 
processing theory on which they were based. Staged 
models of language processing with autonomous lexical, 
syntactic, semantic and pragmatic components were never 
practical for large-scale NLP systems. The amount of non-
determinism they engender is fatal. For a system to be 
“mildly” deterministic, it must bring as much information 
to bear as possible at each decision point. The system must 
be capable of making the correct choice for the most part, 
otherwise it will be overwhelmed. The system must not be 
based on a strong assumption of the grammaticality of the 
input, nor assume a privileged linguistic unit like the 
sentence will always occur. Yet these are all typical 
assumptions of earlier systems which are often violated by 
the linguistic input. Psycholinguistics is currently 
dominated by a number of constraint based theories of 
language processing. These theories are largely valid, 
however, they tend to ignore the overriding serial nature of 
language processing. There must be some serial selection 
and integration mechanism operating over the parallel 
substrate of constraints, lest the system be incapable of 
making decisions until the entire input has been processed. 
Carrying multiple choices forward in parallel is only 
feasible if the number of choices selected at each choice 
point is kept to a minimum, preferably one, very 
infrequently more. Otherwise, the number of choices will 
proliferate beyond reasonable bounds and performance will 



degrade with the length of the input. Parallel, constraint 
based psycholinguistic models typically focus on the 
choice point of interest, often ignoring the possibility of 
other choice points (cf. Kim, Srinivas & Trueswell, 2002) 
and delaying selection until the end of the input when all 
constraints have had their effect (typically within a 
connectionist network). Even the large-scale system of 
Kim, Srinivas and Trueswell (2002) leaves unexplained 
how the supertags get incrementally integrated. Parallel 
computational linguistic systems—which cannot assume 
away choice points—typically impose a fixed-size beam 
on the number of choices carried forward, often much 
larger than is cognitively feasible to reduce the risk of 
pruning the correct selection before the end of the input 
when all co-occurrence probabilities can be computed. 

In an integrated system it is possible to ask what is driving 
the interpretation of the current input and encode that 
information into the system. Is it the previous word which 
forms an idiom with the current word? Is it the part of 
speech of the previous word which combines with the part 
of speech of the current word to form a phrasal unit? Is it 
the preceding phrasal unit which combines functionally 
with the phrasal unit of the current word to form some 
higher level functional category? Utilities can be assigned 
to the different possibilities and the assigned utilities can 
be tested out on a range of different inputs to see if the 
system performs the appropriate integration in different 
contexts. If not, the system can be adjusted, adding 
functional categories as needed to support the grammatical 
distinctions that determine appropriate structures. For 
example, the word “the”, a determiner, is a strong 
grammatical predictor of a nominal. To model this, allow 
“the” to project a nominal construction, setting up the 
expectation for the head of the nominal to follow. On the 
other hand, the word “the” is a poor grammatical predictor 
of a sentence. Unlike left-corner parsers which typically 
have “the” project a sentence for algorithmic reasons, wait 
for stronger grammatical evidence for a sentence (or 
clause). If the word “red” follows “the”, in the context of 
“the” and the projected nominal, “red” is a strong predictor 
of a nominal head modifier. Allow the adjective “red” to 
project a nomimal head with “red” functioning as a 
modifier of the head and predicting the occurrence of the 
head. If the word “is” follows, “is” is a strong predictor of 
a clause. Allow “is” to project a clause with a prediction 
for the subject to precede the auxiliary “is” and a clausal 
head to follow. Since the nominal “the red” has been 
projected, allow “the red” to function as the subject, even 
though a head has not been integrated into the nominal. 
Note that the words “the red” are sufficient to cause human 
subjects to look for red objects in a visual scene in Visual 
World Paradigm experiments (e.g. Tanenhaus et al., 
1995)—providing strong evidence for the incremental and 
integrated nature of language comprehension.  Further, if 
there is only one red object, “the red” suffices to pick it out 
and the expression is perfectly intelligible, although 
lacking a head (and it is certainly a nominal despite the 
lack of a head noun). If the word “nice” follows “is”, in the 

context of “is” and the projected clause, allow the adjective 
“nice” to function as the clausal head. Let the lexical items 
and grammatical cues in the input drive the creation of a 
linguistic representation (cf. Bates & MacWhinney, 1987). 
When processing a simple noun like “ball”, in the absence 
of a determiner, allow “ball” to project a nominal in which 
it functions as the head. Both a determiner and a noun (in 
the absence of a determiner) are good predictors of a 
nominal, but they perform different functions within the 
nominal (i.e., specifier vs. head). Both an auxiliary verb 
and a regular verb (in the absence of an auxiliary verb) are 
good predictors of a clause. Allow the grammatical cues in 
the input and a functional ontology to determine which 
higher level categories get projected. This is the basic 
approach being followed in the language model 
development. 

Conclusion 

A naturalistic, functional approach to the modeling of 
language comprehension has much to recommend it. 
Adhering to cognitive constraints on language processing 
moves development in directions which are more likely to 
be successful at modeling human language processing 
capabilities than competing approaches. Modeling a 
complex cognitive system has the potential to overcome 
the functional shortcomings of small-scale cognitive 
modeling research in addressing Newell’s 20 questions 
critique. However, from the perspective of cognitive 
modeling, the approach may appear to be insufficiently 
grounded in empirical validation, and from the perspective 
of computational linguistics, the approach may appear to 
be computationally naïve and unlikely to succeed. What is 
needed is a demonstration that the approach is capable of 
delivering a functional system that is cognitively plausible. 
Lacking that demonstration, one can only conjecture about 
the feasibility of the methodology proposed in this paper. 
However, a model of language comprehension is under 
development which may eventually provide that 
demonstration (Ball, Heiberg & Silber, 2007).  
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