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Any attempt to introduce automation into the moni-
wring of complex physical systems must start from
a robust anomaly detection capability. This task
is far from straightforward, for a single definition
of what constitutes an anomaly is difficult to come
by. In addition, to make the monitoring process
efficient, and to avoid the potential for information
overload on human operators, attention focusing
must also be addressed. When an anomaly oc~’t~,
more often than not several sensors are affected, and
the partially redundant information they provide can
be confusing, particularly in a crisis situation where
a response is needed quickly.
The focus of this paper is a new technique for at-
tention focusing. The technique involves reasoning
about the distance between two frequency distri-
butions, and is used to detect both anomalous sys-
tem parameters and "broken" causal dependencies.
These two forms of information together isolate the
locus of anomalous behavior in the system being
monitored.

1 Introduction
Mission Operations personnel at NASA have the task of de-
termining, from moment to moment, whether a space plat-
form is exhibiting behavior which is in any way anomalous,
which could disrupt the operation of the platform, and in the
worst case, could represent a loss of ability to achieve mission
goals. A traditional technique for assisting mission operators
in space platform health analysis is the establishment of alarm
thresholds for sensors, typically indexed by operating mode,
which summarize which ranges of sensor values imply the
existence of anomalies. Another established technique for
anomaly detection is the comparison of predicted values from
a simulation to actual values received in telemetry. However,
experienced mission operators reason about more than alarm
threshold crossings and discrepancies between predicted and
actual to detect anomalies: they may ask whether a sensor is
behaving differently than it has in the past, or whether a cur-
rent behavior may lead to----the particular bane ofoperators---a
rapidly developing alarm seq~.

Our approach to introducing automation into real-time sys-
tems monitoring is based on two observations: 1) mission

operators employ multiple methods for recognizing anoma-
lies, and 2) mission operators do not and should not interpret
all sensor data all of the time. We seek an approach for deter-
mining from moment to moment which of the available sensor
d~tA is most informative about the presence of anomalies oc-
curring within a system. The work reported here e~tends the
anomaly detection capability in Doyle’s SELMON monitoring
system [5, 6] by adding an attention focusing capability.

Other model-based monitoring systems include Dvorak’s
MIMIC, which performs robust discrepancy detection for con-
tinuous dynamic systems [7], and DeCoste’s DATMI, which
infers system states from incomplete sensor data [3]. This
work also complements other work within NASA on empiri-
cal and model-based methods for fault diagnosis of aerospace
platforms [1, 8, 9, 11].

2 Background: The SELMON Approach

How does a human operator or a machine observing a com-
plex physical system decide when something is going wrong7
Abnormal behavior is always defined as some kind of depar-
ture from normal behavior. Unfortunately, there appears to be
no single, crisp definition of "normal" behavior. In the tradi-
tional monitoring technique of limit sensing, normal behavior
is predefined by nominal value ranges for sensors. A funda-
mental limitation of this approach is the lack of sensitivity
to context. In the other traditional monitoring technique of
discrepancy detection, normal behavior is obtained by simu-
lating a model of the system being monitored. This approach,
while avoiding the insensitivity to Context of the limit sens-
ing approach, has its own limitations. The approach is only
as good as the system model. In addition, normal system
behavior typically changes with time, and the model must
continue to evolve. Given these limitations, it can be difficult
to distinguish genuine anomalies from errors in the model.

Noting the limitations of the existing monitoring tech-
niques, we have developed an approach to monitoring which
is designed to make the anomaly detection process more ro-
bust, to reduce the number of undetected anomalies (false
negatives). Towards this end, we introduce multiple anomaly
models, each employing a different notion of "normal" be-
havior.

2.1 Empirical Anomaly Detection Methods

In this section, we briefly describe the empirical methods
that we use to determine, from a local viewpoint, when a
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sensor is reporting anomalous behavior. These measures use
knowledge about each individual sensor, without knowledge
of any relations among sensors.

Surprise
An appealing way to assess whether current behavior is

anomalous or not is via comparison to past behavior. This
is the essence of the surprise measure. It is designed to
highlight a sensor which behaves other than it has historically.
Specifically, surprise uses the historical frequency distribution
for the sensor in two ways: To determine the likelihood of
the given current value of the sensor (unusualness), and 
examine the relative likelihoods of different values of the
sensor (informativeness). It is those sensors which display
unlikely values when other values of the sensor are more
likely which get a high surprise score. Surprise is not high
if the only reason a sensor’s value is unlikely is that there are
many possible values for the sensor, all equally unlikely.

Alarm
Alarm thresholds for sensors, indexed by operating mode,

typically are established through an off-line analysis of system
design. The notion of alarm in SELMON extends the usual one
bit of information (the sensor is in alarm or it is not), and also
reports how much of the alarm range has been traversed. Thus
a sensor which has gone deep into alarm gets a higher score
than one which has just crossed over the alarm threshold.

Alarm Anticipation
The alarm anticipation measure in SELMON performs a

simple form of trend analysis to decide whether or not a sensor
is expected to be in alarm in the future. A straightforward
curve fit is used to project when the sensor will next cross an
alarm threshold, in either direction. A high score means the
sensor will soon enter almm or will remain there. A low score
means the sensor will remain in the nominal range or emerge
from alarm soon,

Value Change
A change in the value of a sensor may be indicative of an

anomaly. In order to better assess such an event, the value
change measure in SELMON compares a given value change
to historical value changes seen on that sensor. The score
reported is based on the proportion of previous value changes
which were less than the given value change. It is maximum
when the given value change is the greatest value change seen
to date on that sensor. It is minimum when no value change
has occurred in that sensor.

2.2 Model-Based Anomaly Detection Methods

Although many anomalies can be detected by applying
anomaly models to the behavior reported at individual sensors,
robust monitoring also requires reasoning about interactions
occurring in a system and detecting anomalies in behavior
reported by several sensors.

Deviation
The deviation measure is our extension of the traditional

method of discrepancy detection. As in discrepancy detec-
tion, comparisons are made between predicted and actual sen-
sor values, and differences are interpreted to be indications of

anomalies. This raw discrepancy is entered into a normaliza-
tion process identical to that used for the value change score,
and it is this representation of relative discrepancy which is
reported. The deviation score for a sensor is minimum if there
is no discrepancy and maximum if the discrepancy between
predicted and actual is the greatest seen to date on that sensor.

Deviation only requires that a simulation be available in any
form for generating sensor value predictions. However, the
remaining sensitivity and cascading alarms measures require
the ability to simulate and reason with a causal model of the
system being monitored.

Sensitivity and Cascading Alarms
Sensitivity measures the potential for a large global per-

turbation to develop from current state. Cascading alarms
measures the potential for an alarm sequence to develop from
current state. Both of these anomaly measures use an event-
driven causal simulator [2, 10] to generate predictions about
future states of the system, given current state. C~t state
is taken to be defined by both the current values of system
parameters (not all of which may be sensed) and the pending
events already resident on the simulator agenda. The mea-
sures assign scores to individual sensors according to how the
system pmmneter corresponding to a sensor participates in,
or influences, the predicted global behavior. A sensor will
have its highest sensitivity score when behavior originating at
that sensor causes all sensors causally downstream to exhibit
their maximum value change to date. A sensor will have its
highest cascading alarms score when behavior originating at
that sensor causes all sensors causally downstream to go into
an alarm state.

2.3 Previous Results

In order to assess whether SELMON increased the robustness
of the anomaly detection process, we performed the following
experiment: We compared SELMON performance to the per-
formance of the traditional limit sensing technique in selecting
critical sensor subsets specified by a Space Station Environ-
mental Control and Life Support System (ECLSS) domain
expert, sensors seen by that expert as useful in understanding
episodes of anomalous behavior in actual historical data from
ECLSS testhed operations.

The experiment asked the following specific question: How
often did SELMON place a "critical" sensor in the top half of
its sensor ordering based on the anomaly detection measures7

The performance of a random sensor selection algorithm
would be expected to be about 50%; any particular sensor
would appear in the top half of the sensor ordering about half
the time. Limit sensing detected the anomalies 76.3% of the
time. SELMON detected the anomalies 95.1% of the time.

These results show SELMON performing considerably bet-
ter than the traditional practice of limit sensing. They lend
credibility to our premise that the most effective monitoring
system is one which incorporates several models of anoma-
lous behavior. Our aim is to offer a more complete, robust
set of techniques for anomaly detection to make human oper-
ators more effective, or to provide the basis for an automated
monitoring capability.

The following is a specific example of the value added of
SELMON. During an episode in which the ECLSS pre-heater
failed, system pressure (which normally oscillates within 
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known range) became stable. This "abnormally normal" be-
havior is not detected by traditional monitoring methods be-
cause the system pressure remains firmly in the nominal range
where limit sensing fails to trigger. Furthermore, the fluctuat-
ing behavior of the sensor is not modeled; the predicted value
is an averaged stable value which fails to trigger discrepancy
detection. See [5, 6] for more details on these previous results
in evaln~fing the SELMON approach.

3 Attention Focusing
A robust anomaly detection capability provides the core for
monitoring, but only when this capability is combined with
attention focusing does monitoring become both robust and
efficient. Otherwise, the potential problems of information
overload and too many false positives may defeat the utility
of the monitoring system.

The attention focusing technique developed here uses two
sources of information: historical data describing nominal
system behavior, and causal information describing which
pairs of sensors are constrained to be correlated, due to the
presence of a dependency. The intuition is that the origin and
extent of an anomaly can be determined if the misbehaving
system parameters and the misbehaving causal dependencies
can be determined.

3.1 Two Additional Measures
While SELMON runs, it computes incremental frequency dis-
tributions for all sensors being monitored. These frequency
distributions can be saved as a method for capturing behav-
ior from any episode of interest. Of particular interest are
historical distributions which correspond to nominal system
behavior.

To identify aa anomalous sensor, we apply a distance mea-
sure, defined below, to the frequency distribution which rep-
resents _recent behavior to the historical frequency distribution
representing nominal behavior. We call the measure simply
distance. To identify a "broken" causal dependency, we first
apply the same distance measure to the historical frequency
distributions for the cause sensor and the effect sensor. This
reference distance is a weak representation of the correlation
that exists between the values of the two sensors due to the
causal dependency. This reference distance is then compared
to the distance between the frequency distributions based on
_recent data of the same cause sensor and effect sensor. The dif-
ference between the reference distance and the recent distance
is the measure of the "brokenness" of the causal dependency.
We call this measure causal distance.

3.2 Desired Properties of the Distance Measure
Define a distribution D as the vector di such that

and
n-I

i=0
For a sensor S, we assume that the range of values for the

sensor has been partitioned into n contiguous subranges which
exhaust this range. We construct a frequency distribution as a
vector Ds of length n, where the value of di is the frequency
with which S has displayed a value in the ith subrange.

If our aim was only to compare different frequency distri-
butions of the same sensor, we could use a distance measure
which required the number of partitions, or bins in the two
distributions to be equal, and the range of values covered by
the distributions m be the same. However, since our aim is
to be able to compare the frequency distributions of different
sensors, these conditions must be relaxed.

We define two special types of frequency distribution. Let
F be the random, or fiat distribution where Vi, di -- 1~. Let
Si be the set of"spike" distributions where d~ -- 1 and Yj
i, dj =O.

3.3 The Distance Measure

The distance measure is computed by projecting the two dis-
tributions into the two-dimensional space [f, s] in polar coor-
dinates and taking the euclidian distance between the projec-
tions.

Define the "flatness" component f(D) of a distribution as
follows:

n-I 1

This is simply the sum of the bin-by-bin differences be-
tween the given distribution and F. Note that 0 _< f (D) _< 
Also, f(S~) -, 1 as n ~ oo.

Define the "spikeness" component s(D) of a distribution
as-

n-I i d’
i=0

This is simply the centroid value calculation for the distri-
bution. The weighting factor ~b will be explained in a moment.
Once again, 0 < s(D) < 1.

Now take [f, s] to be polar coordinates [r, 0]. This maps
F to the origin and the Si to points along an arc on the unit
circle. See Figure 1.

Note that we take ~b = ~. This choice of ~ guarantees
that A(SO, Sn-l) = A(F, So) = A(F, S.-1) = 1 and 
other distances in the region which is the range of A are by
inspection _< 1.

Insensitivity to the number of bins in the two distributions
and the range of values encoded in the distributions is provided
by the If, s] projection function, which abstracts away from
these properties of the distributions.

Additional details on desired properties of the distance mea-
sure and how they are satisfied by the function A may be found
in [4].

3A Results

In this section, we report on the results of applying the dis-
tribution distance measure to the task of focusing attention
in monitoring. The distribution distance measure is used m
identify misbehaving nodes (distance) and arcs (causal dis-
tance) in the causal graph of the system being monitored, or
equivalently, detect and isolate the extent of anomalies in the
system being monitored.
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Figure 1: The function A(D1,/:)2).

Figure 2: Causal Graph for the Forward Reactive Control
System (FRCS) of the Space Shuttle.

Figure 3: ’A leak fault.

Figure 4: A pressure regulator fault.

3.4.1 A Space Shuttle Propulsion Subsystem
Figure 2 shows a ca.~! graph for a portion of the Forward

Reactive Conlrol System (FRCS) of the Space Shuttle. A full
causal graph for the Reactive Control System, comprising the
Forward, Left and Right RCS, was developed with the domain
expert.

3.4.2 Attention Focusing Examples
SIK.MON was run on seven episodes describing nominal

behavior of the FRCS. The frequency distributions collected
during these runs were merged. Reference distances were
computed for sensors participating in causal dependencies.

Sm~ON was then run on 13 different fault episodes, rep-
resenting faults such as leaks, sensor failures and regulator
failures. Two of these episodes will be examined here; re-
sults were similar for all episodes. In each fault episode,
and for each sensor, the distribution distance measure was
applied to the incremental frequency distribution collected
during the episode and the historical frequency distribution
from the merged nominal episodes. These distances were a
measure of the "brokenness" of nodes in the causal graph; i.e.,
instantiations of the distance measure.

New distances were computed between the distributions
corresponding to sensors participating in causal dependencies.
The differences between the new distances and the reference
distances for the dependencies were a measure of the "bro-
kenness" of arcs in the causal graph; i.e., instantiations of the
causal distance measure.

The first episode involves a leak affecting the first and
second manifolds (jets) on the oxidizer side of the FRCS.
The pressures at these two manifolds drop to vapor pressure.
The dependency between these pressures and the pressure in

the propellant tank is severed because the valve between the
propellant tank and the manifolds is closed. Thus there are
two anomalous system paramOexs (the manifold pressures)
and two anomalous mechanisms (the agreement between the
propellant and manifold pressures when the valve is open).

The distance and causal distance measures computed for
nodes and arcs in the FRCS causal graph reflect this faulty
behavior. See Figure 3. (To visualize how the distribution
distance measure circumscribes the extent of anomalies, the
coloring of nodes and the width of axes in the figure are
correlated with the magnitudes of the associated distance and
causal distance scores). An explanation for the apparent
helium tank temperature anomaly is not available. However,
we note that this behavior was pwaent in the data for all six
lea, episodes.

The second episode involves an overpressufiz~on of the
propellant tank due to a regulator failure. Onboard software
automatically attempts to close the valves which isolate the
helium tank from the propellant tank. One of the valves sticks
and remains open.

The distance and causal distance measures isolate both
the misbehaving system parameters (propellant pressure and
valve Status indicators) and the altered relationships between
the helium and propellant tank pressures and between the pro-
pellant tank pressure and the valve status indicators. Over-
pre~urization of the propellant tank also alters the usual rela-
tion between propellant tank pressure and manifold pressures.
See Figure 4.

4 Discussion

The distance and causal distance measures based on the dis-
tribution distance measure combine two concepts: 1) empir-
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ical data alone can be an effective model of behavior, and 2)
the existence of a causal dependency between two parame-
ters implies that their values are somehow correlated. The
causal distance measure constructs a model of the correla-
tion between two causally related parameters, capturing the
general notion of constraint in an admittedly abstract manner.
Nonetheless, these models of constraint arising from causal-
ity provide surprising discriminatory power for determining
which causal dependencies (and corresponding system mech-
anisms) are misbehaving. (In the distance measure for detect-
ing misbehaving system parameters, we are simply using the
degenerate constraint of expected equality between historical
and recent behavior.)

Several issues need to be examined to continue the evalua-
tion of the attention focusing technique based on the distribu-
tion distance measure and its utility in monitoring.

We need to understand the sensitivity of the technique to
how sensor value ranges are partitioned. Clearly the discrim-
inatory power of the distribution distance measure is related
to the re~lution provided by the number of bins and the bin
boundaries. The results reported here are encouraging for the
number of FRCS sensor bins were in many cases as low as
three and in no cases more than eight.

We need to understand the suitability of the technique for
systems which have many modes or configurations. We would
expect that the discriminatory power of the technique would
be compromised if the distributions describing behaviors from
different modes were merged. Thus the technique requires
_thathistorical ~d~t~_ representing nominal behavior is separable
for each mode. If there are i¯ many modes, at the very least there
is a ,tqtA nuut~ement task. A capability for tracking mode
transitions is also required. An unsupervised learning sys-
tem which can enumerate system modes from historical d~t~
and enable automated classification would solve this problem
nicely.

Not all distinct distributions are mapped to distinct points in
the projection space [f, s] by the distribution distance measure.
We need to understand this limitation; in particular we need to
understand whether or not distributions we wish to distinguish
are in fact being distinguished. The judicial introduction of
additional components (e.g., the number of local maxima in
a frequency distribution) to the distribution projection space
[f, s] may be required to enhance discriminability.

The discriminatory power of the causal distance measure
might be enhanced by retaining the flatness/spikeness distinc-
tion. For many linear functions, different input distributions
may map to value-shifted but similarly shaped output distri-
butions. In other words, the spikeness component may vary
while the flatness component may be relatively invariant. It
may be possible to distinguish the case where misbehavior
is the result of bogus values being propagated through still
correctly functioning mechanisms.

It should be possible to describe the temporal (along with
the causal/spatial) extent of anomalies by incrementally com-
paring recent sensor frequency distributions calculated from
a "moving window" of constant length with static reference
frequency distributions.

5 Towards Applications

The approach described in this paper has usability advantages
over other forms of model-based reasoning. The overhead in-

volved in constructing the causal and behavioral model of the
system is minimal. The behavioral model is derived directly
from actual data; no ofiline modeling is required. The causal
model is of the simplest form, describing only the existence of
dependencies. For the Shuttle RCS, a 198-node causal graph
was constructed in a single one and one half hour session
between the author and the domain expert.

SELMON is being applied at the NASA Johnson Space Cen-
ter as a monitoring tool for Space Shuttle Operations and
Space Station ~ons. Current application efforts include
the one for the Propulsion (PROP) flight control discipline
reported on here, and one for the Thermal (EECOM) flight
control discipline. EECOM wishes in particular to be able
to know and reason about how actual orbiter thermal per-
formance differs from predictions generated by an available
mathematical model of orbiter thermal performance. An op-
erational SELMON prototype, available starting with the re-
cent Hubble Repair mission is available for evaluation by all
flight control disciplines, only requiring that a list of sensors

.... owned" by that discipline be provided.
At the Jet Propulsion Laboratory, we are looking at the

problem of onboard downlink determination for the Pluto Fast
Flyby project, now in its early planning phase. The spacecraft
will have limited communications bandwidth and it will not be
possible to transmit all onbonrd-collected sensor d~t~ Only
eight hours of coverage from the Deep Space Network will be
available per week. The challenge is to devise a method for
constructing a suitable summary of a week’s worth of sensor
dAtA guaranteed to report on any anomalies which occurred.
The anomaly detection and attention focusing capabilities of
SELMON may be well-matched to this task.

6 Summary
We have described the properties and performance of a dis-
tance measure used to identify misbehavior at sensor loca-
tions and across mechanisms in a system being monitored.
The technique enables the locus of an anomaly to be deter-
mined. This attention focusing capability is combined with a
previously reported anomaly detection capability in a robust,
efficient and informative monitoring system, which is being
applied in mission operations at NASA¯
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