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Abstract

Pinta is a system for segmentation and visuMization of
matomical structures obtained from serial sections recon-
;tructed from magnetic resonance imaging. The system
tpproaches the segmentation problem by assigning each
¯ "olumetric region to an anatomical structure. This is ac-
:omplished by satisfying constraints at the pixel level, slice
evel, and volumetric level. Each slice is represented by an
tttributed graph, where nodes correspond to regions and
inks correspond to the relations between regions. These
’egions are obtained by grouping pixels based on similarity
md proximity. The slice level attributed graphs are then
:oerced to form a volumetric attributed graph, where volu-
netric consistency can be verified. The main novelty of our
Lpproach is in the use of the volumetric graph to ensure
:onsistency from symbolic representations obtained from
ndividual slices. In this fashion, the system allows errors
.o be made at the slice level, yet removes them when the
,olumetric consistency cannot be verified. Once the seg-
nentation is complete, the 3D surfaces of the brain can be
:onstructed and visualized.

t Introduction

Pinta is a system designed for automatic segmentation,
dsuallzation, and description of the human brain from
nagnetic resonance images. The ultimate objective of this
;ystem is to provide a research vehicle for gaining new in-
dghts into structural changes in the brain over time and
tcross individuals. In this paper, we focus on the segmen-
.ation and visualization aspects of our system, since the
rolumetric description is the subject of our continued re-
;catch. In practice, MR images can be tuned to accentuate
:ertain anatomical structures. For example, by applying a
;pecific pulse sequence, the boundary separation between
-erebrospinai fluid (CSF), gray, and white matter can be
~aaximized. From this perspective, the segmentation pro-
:edure should label each pixel in the data volume accord-
ngly. However, there are a number of ambiguities that
:an complicate the labeling process. These ambiguities
:an arise from purely local processing and the absence of
my high level feedback. The sources for the ambiguities
nclude corruption of data by noise, performance limits-
:ion of algorithms for extracting local features, and ex-
stence of nonessential features that impede the labeling
;ask. Our approach to the segmentation process is to ex-
ploit the knowledge of the anatomical structures coupled
~ith the image characteristics and arrive at a correct la-
beling. In this sense, the segmentation is model driven,
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where the model is expressed in terms of anatomical con-
stralnts and certain knowledge about the image formation.
From an anatomic standpoint, the cerebral cortex is a sin-
gle sheet of convoluted structure [2]. And from the im-
age formation perspective, certain intensity distributions
reflect the presence of CSF and white and gray matter.
Hence, we have organized various constraints at different
levels of the computational hierarchy so that stable label-
ing can be realized.

A computational framework will have a different perfor-
mance depending upon the coarseness of low level repre-
sentations. For example, low level representations, such as
edgel or local texture, are easy to compute. However, these
low level representations complicate the reasoning task.
On the other hand, high level representations, such as re-
gions or symmetries, simplify the reasoning task, but the
algorithms to compute them are usually expensive. The
important issue is to maintain the proper balance so that
the system can generate a modest amount of hypotheses -
not all of them correct- which can be verified or rejected at
a higher level. This is an important feature of our system
that is achieved through proper region segmentation at the
slice level followed by testing for anatomical consistency at
the volumetric level.

The region based segmentation relies on clustering and
relaxation, where the clustering is performed in the feature
space. The clustering step refines the center of the mass
for each class, and the relaxation step ensures local consis-
tency. The system applies the necessary verification step to
ensure that the result of clustering is anatomically correct
(based on the knowledge of image intensity distribution in
the cortex). Each slice of the image is represented with an
attributed graph, where nodes correspond to regions and
links correspond to the relations between regions. These
attributed graphs are then coerced together to form a vol-
umetric attributed graph, where 3D consistency can be
verified. In this manner, the system tolerates erroneous
labeling at the slice level, and then removes them at higher
levels of processing.

In the next section, we review the previous work and
compare their respective features. In section 3, we discuss
the details of our approach and provide results on real
data.

2 Past work

Most of the previous research on this topic can be parti-
tioned into four categories. These include 1) interactive
systems, 2) classification based techniques,3") knowledge
based systems and 4) contour based techniques.

The classification based techniques [9] require training
data and lack the necessary structural analysis. Our ex-
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perience indicates that purely tissue based classification is
not sufficient for a robust system. This will become clear
in the examples given in the next section.

The knowledge based systems include the ruled-based
system of Rays [11] and the blackboard architecture of
Chen [3]. Raya’s system makes a strong use of connectiv-
ity information across two channels of information, namely
proton density (PD) and T2-weighted MR images. At each
pixel location, a vector is derived to represent the local
feature activities. The inference engine then uses these
feature vectors to partition the data volume across the
anatomical boundaries. Chen’s system uses CT data, in
addition to PD and T2-weighted, to generate the neces-
sary hypotheses. This system generates .a large number
of initial hypotheses that are grouped together based on a
multivariate belief function. All of the hypotheses are gen-
erated from multichannel 2D slices, and 3D information is
not utilized. The main disadvantage of these techniques
is that their low level processing is very weak; thus, the
knowledge based system has to deal with a large number
of hypotheses and maintain a large set of (non-obvious)
rules to deal with the inherent ambiguities. Furthermore,
the ruled-based techniques tend to be slow when they have
to process large amounts of data. There is a great degree
of complexity in using muJtimodal data, and it is not clear
that images from two or three modalities are needed to
infer anatomical structures.

The contour based techniques include the work of Bo-
mans [1] and Wu [13]. Bomans proposed extracting es-
sential anatomic structures with s 3D extension of the
Marr-Hildreth filter. The zero crossing filter was applied
at a single scale, which was selected empirically. The main
advantage of the techniques is that volumetric closure is
guaranteed through continuous zero crossings. They then
corrected the localization error of the zero-crossing filter
through a sequence of morphological operators. The same
result could have been obtained with scale space filtering
or edge focusing. Finally, the volumes of interest were
manually labeled, and the surfaces were rendered for visu-
alization. The main disadvantage of this technique, or any
other edge based approach, is that the boundary between
gray and white matter is often indistinct. As a result, the
correct segmentation is not ensured. Wu and Leahy [13]
presented an elegant graph theoretic approach, where con-
tour closure from local edges is enforced by optimizing the
maximum flow in an image represented by a graph. Yet,
their approach ignores the 3D information of the data set
and suffers from an excessive computational burden. Nev-
ertheless, the work is significant from the standpoint of
graph theory and a class of problems in computer vision.

3 Description of the method

In our view, segmentation is the final objective in any in-
terpretation process, and should not be confined to some
low level processes. In this context, segmentation of MRI
should partition and match 3D regions to anatomical struc-
tures. There are two major components to our system.
The first one operates on slice level information and gen-
erates an attributed graph. In this component, local con-
sistency at the pixel level, together with slice level region
consistency, is enforced to reduce the number of potential

’ hypotheses. The second component operates on the volu-
metric attributed graph and ensures 3D consistency. The
architecture of this system is shown in figure 1, where the
feedback loop ensures correct segmentation at each level
of the hierarchy.

In thi.s system, we build a symbolic description from
each slice, and let the volumetric step extract relevant at-
tributes from these symbolic descriptions. The segments-
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Figure 1: System Architecture
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Figure 2: Intra-slice Processing
lion ’technique is model driven, where the model is repre-
sented in terms of anatomical constraints. For example,
we know that ventricles are present at a certain distance
from the top of the skull. These modeling cues are used
to initiate the segmentation process from a particular slice
called the seed frame. In the seed frame, the ventricles
are detected through their intensity distribution and shape
symmetries and then tracked in adjacent slices,

3.1 Intra-slice processes
There are two parts in this subsystem. The first one groups
neighboring pixels with similar properties (low level pro-
cessin~) and builds an initial symbolic description. The
secona part searches for a particular structure and corrects
for erroneous labeling.

The initial symbolic description is a region based seg-
mentation. We use the intensity values of the pixels to

~roup nearby pixels into homogeneous patches. The justi-cation for using the intensity value is based on i) a mod-
erate amount of shading, and ii) the small number of dis-
tinguishable regions that are usually significant. A careful
analysis of MRI data, obtained in the Tl-relaxation mode,
reveals that four-class region segmentation is sufficient for
extracting the important patches from brain scans. The
architecture for the intra-slice component of the system
is shown in figure 2, and the details of each module are
summarized below.

The first step of our computational process is to create
a mask that excludes the background area. In addition,
the outer boundary of the skull is also extracted and a
proximity map is constructed that encodes the distance of
each pixel from the skull boundary. The four classes in the
region segmentation correspond to: i) cerebrospinalfluid
(CSF) or bone, which are the darkest region in MRI data;
ii) gray matter corresponding to neuronal cell bodies; iii)
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Figure 3: Global histogram
white matter corresponding to nerve fibers; and iv) others
corresponding to high contrast objects that could include
tumors.

The key to region segmentation is in estimating the av-
erage intensity of each region. This is done by analyzing
the histogram, followed by clustering. In a seed frame,
the histogram, as shown in figure 3 is approximated by

quadratic B-spline and the peaks are determined ana-
{ytically. Generally, the peaks corresponding to gray and
white matter axe distinctly visible in the histogram. How-
.~ver, the peak corresponding to the CSF can be buried in
the background if the seed frame is not selected properly.
[n our system, we choose the seed frame such that the
~entricles occupy a modest area of the image; thus, their
ntensity distribution is accentuated. The peaks are then
lsed as feature seeds for initiating the clustering.

The clustering technique is a variation oI K-means
:lustering procedure, which is a well known technique.
~natomically, we know that gray and white matter share
~n edse. Therefore, the cluster centers are verified by
;earchmg the gray-level co-occurence matrices. This pro-
:ess of seed estimation and verification is performed only
~n the seed frame, and the same seeds are then used in
;very consecutive slice. Clustering is essentially in the fea-
.ure space and ignores any spatial constraints in the image
lomain. The next step of the computational process is to
tse the cluster centers to enforce local consistency in the
mase space. We use a probabilistic relaxation model to
mplement this step of the process. This is an iterative
cheme, where local properties are propagated and noise
s removed by enforcing consistency. The initial labeling,
0i, is based on the proximity of each pixel, i, to.one of
he four clusters¯ In the following formulation, vectors are
epresented by upper case characters. Let

1. kl, through k4 denote the labeling of the four classes,

2. p,(k~) be the probability of assigning pixel i to class
kj

3. qi(kj) be the compatibility of pixel i with class kj.
The compatibility is a measure of local support for the
center pixel. If the local gradient is small, then the
compatibility is defined as the local mean probability
around the eight nearest neighbors, that is:

1
q~(kj) = ~ ~ p,(k,) 0)

]Elocal( i)

Otherwise, the compatibility is defined as the local
mean probability along the directional derivative. In
this fashion, smoothing is enforced only in the inte-
rior of the region. The gradient threshold is computed
directly from the distance between the centers of clus-
ters.

[’he relaxation algorithm can now be defined as a labeling
hat minimizes the following global criterion.

Minimize C --- - ~ P, * Q, (2)
ill

4

subject to constraints pi(kj) > 0 and ~-~pi(kj) = 1

i=l

The constraint minimization problem can now be solve
with the gradient projection method. The solution to the
above problem is given by

p?+2 = p~ + cry(d3 (4)

where a is the step size, ~P is the projection operator de-
fined over the space of active constraints and d is the fea-
sible direction. At the completion of the above computa-
tional process, each pixel is labeled as a member of one
of the four different categories. However, we are also in-
terested in extracting regions that are perceptually signif-
icant; for example, ventrides that are displayed by large
symmetrical black regions along the Z axis. In the cerebral
cortex, symmetries are mirrored geometric transformations
from the left to the right side of the brain.

In summary, the intra-slice component utilizes intensity
features to hypothesize regions. Two examples of slice level
processing are shown in figures 4. Note that some of the
membrane tissues are also labeled as white matter at the
slice level labeling; however, these errors will be corrected
at the higher level process.

(b)

Figure 4: Slice level grouping

3.2 Inter-slice subsystem
At the completion of the previous stage, the content of each
slice is symbolically represented as an attributed graph.
The nodes and links in the ~raph correspond to regions
and relationships between regions, respectively. The inter-
slice process goes beyond the evidence in a given slice
and attempts to resolve ambiguities that can be corrected
through volumetric analysis. For example, we have al-
ready indicated that the white matter is a singly convo-
luted structure. This anatomical constraint translates into
3D connectivity among all regions that are labeled as white
matter in each slice. Thus, any erroneously labeled region
can be removed using a simple binary constraint. Fur-
thermore, gray matter should share a boundary with the
white matter¯ Therefore, any isolated gray matter can be
removed from the list of active hypotheses. An example of
volumetric consistency, corresponding to examples shown
in figure 4, is shown in figure 5. Another example of intra-
slice and inter-slice processing is shown in figure 6, where
part of the white matter has changed its characteristic due
to an apparent stroke.

3.3 Visualization from serial sections
Visualization has been the subject of much research. The
simplest way to compute 3D surfaces is by triangulation

233



(a) (b)

Figure 5: Volumetric level grouping

(a) (b)

Figure 6: Slice level and volumetric level grouping for the
stroked patient

between adjacent pairs of contours. This is adequate
for surfaces that are almost convex. Yet, triangulation
becomes ambiguous when the surface topology changes
rapidly. An alternative is to find the intersection of a sur-
face with each volume element in the data. An example of
this approach is the dividing cubes method [6]. Our system
uses dividing cubes, with the modification that the sur-
face is selected using volumetric segmentation information
rather than thresholding. Surfaces representing segmented
data are shown in Figures 7 and 8. Figure 7 shows a top
and a bottom view of the white matter in a 256x256x60
data set of a healthy brain. Figure 8 is obtained from a
data set from a patient suffering from a stroke.

(a) (b)

Figure 7: Surface reconstruction and rendering from two
views: (a) white matter; (b) two isosurfaces corresponding
to white matter and ventricle.

4 Conclusion

In this paper, we have presented a computational scheme
for segmentation of magnetic resonance images. Our corn-

(a) (b)

Figure 8: Surface reconstruction and rendering from two
views of the stroked cortex: (a) white matter and stroked
area; (b) impact of the stroke.

putational model decomposes the solution into slice and
volumetric level processing. In the intra-slice step, the ma-
jor assumption is that the each slice can be decomposed
into four classes, and in the inter-slice step, the main as-
sumption is that the ambiguities can be resolved with bi-
nary constraints. Our current research focuses on the de-
scription of these complex superstructures and how they
relate to one another.
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