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1 Introduction
Over the years increasing sophisticated planning algo-
rithms have been developed. These have made for more
efficient planners. However, current state of the art plan-
ners still suffer from severe complexity problems, prob-
lems that can surface even in domains in which good
plans are easy to generate, like the blocks world.

Planners generally employ search to find plans, and
planning research has identified a number of different
spaces in which search can be performed. Of these, three
of the most common are (1) the forward-chaining search
space, (2) the backward-chaining search space, and (3)
the space of partially ordered plans. The forward-
chaining space is generated by applying all applicable
actions to every state starting with the initial state; the
backward-chaining space by regressing the goal condi-
tions back through actions that achieve at least one of
the subgoals; and the space of partially ordered plans by
applying a collection of plan modification operators to
an initial "dummy" plan.

Backward-chaining and partial-order planning both
have a significant advantage over forward-chaining in
that they are goal directed: they never consider ac-
tions that are not syntactically relevant to the goal.
Partial-order planning has an additional advantage over
backward-chaining in that it explores partially ordered
plans. This means that the search algorithm can detect
at every point in its search space whether or not various
actions interact, and impose an ordering between them
only if they do. Linear backward or forward chaining
planners might have to backtrack over an exponential
number of improper orderings.

However, both backward-chaining and partial-order
planners search in spaces in which knowledge of the state
of the world is incomplete. For example, computing
whether or not a literal holds at a particular point in
a partially-ordered plan is only tractable in certain re-
stricted cases [Cha87]. In the forward-chaining space, on
the other hand, for most planners, the points are com-
plete world descriptions) Hence, there is not the same
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1 This is true for planners that utilize a complete described

difficulty in determining if various conditions hold after
a sequence of forward-chained actions.

The choice between the various search spaces has
been the subject of much inquiry, with current consen-
sus seemingly converging on the space of partial plans
[BW94, MDBP92], mainly because of its goal-directness
and its ability to dynamically detect interactions be-
tween actions. However, these studies only indicate that
"blind" search in the space of partially ordered plans
is superior to "blind" search in other spaces, where by
"blind" search we mean search that uses only simple
domain independent heuristics for search control, like
counting the number of unsatisfied goal conditions.

In fact, it is clear that domain independent search
strategies in any of these planning spaces are bound to
fail. Theoretical work lENS92, By192, Sel94] indicates
that for the traditional STRIPS actions used by almost
all current planners, finding a plan is, in general, in-
tractable. This means that no domain independent plan-
ning algorithm can succeed except in very simple (and
probably artificial) domains. There may be many do-
mains where it is feasible to find plans, but where do-
main structure must be exploited to do so. This can
be verified empirically, e.g., the SNLP implementation of
Soderland et al. [SBW90] cannot generate plans to re-
configuring more than 5 blocks in the blocks world, even
though it is easy to generate good plans in this domain
[GN92].

One way of exploiting domain structure during plan-
ning is to use domain information to control search.
Hence, a more practical evaluation of the relative merits
of various planning algorithms and search spaces would
take into account how easy it is to exploit domain knowl-
edge to control search in that space. The idea of search
control is, of course, not new, e.g., it is a prominent part
of the PRODIGY system [CBE+92]. However we have
been investigating a new approach to specifying and uti-
lizing control knowledge that draws on the work of re-
searchers in program and system verification (see, e.g.,
[CG87]). Specifically, we have built a planner, TLPLAN

initial state and the STRIPS assumption. It is also true for
planners that model uncertainty as "branching" probabilistic
actions, e.g., the BURIDAN planner [KHW94]. In such plan-
ners each action maps a completely described world to a set
of worlds, each of which is assigned some probability, but
each world in this set is completely described.
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that takes as its inputs not only the standard initial and
goal state descriptions along with a specification of a set
of actions, but also a domain control strategy expressed
as a formula of a first-order temporal logic. It utilizes
this formula to control its search of the forward-chaining
search space by incrementally evaluating the formula on
the sequences of worlds generated by forward-chaining.
We have experimented with a number of domains and
have demonstrated that our method for expressing and
utilizing search control information is both natural and
very effective, sometimes amazingly effective.

Although, it is possible that our method could be
adapted to control search in other planning spaces, we
have found that the complete world descriptions gener-
ated by forward-chaining make it significantly easier to
express natural domain strategies. There are two rea-
sons for this. First, complete world descriptions support
the efficient evaluation of complex first-order formulas
via model-checking [HV91]. This allows us to determine
the truth of complex conditions, expressed as first-order
formulas, in the worlds generated by forward-chaining.
Part of our implementation is a first-order formula eval-
uator, and TLPLAN allows the user to define predicates
by first-order formulas. These predicates can in turn be
used in the temporal control formula, where they act to
detect various conditions in the sequence of worlds ex-
plored by the planner. And second, many domain strate-
gies seem to be most naturally expressed in a "forward-
direction." This makes their application to controlling
forward-chaining obvious, but their application to the
other search spaces less than obvious.

In the rest of the abstract we briefly describe the tem-
poral logic we use to express control strategies. And then
we give as an example of our approach a description of
its application to the blocks world domain. We are ex-
ploring a number of extensions of our approach, but will
not have space to discuss these in this abstract.

2 First-order Linear Temporal Logic

We use as our language for expressing strategic knowl-
edge a first-order version of linear temporal logic (LTL)
[Eme90]. The language starts with a standard first-
order language, £:, containing some collection of con-
stant, function, and predicate symbols. LTL adds to £
the following temporal modalities: O (until), [] (always),

(eventually), and (3 (next). The standard formula 
mation rules for first-order logic are augmented by the
following rules: if fl and f2 are formulas then so are
fl I.I f2, t2fl, ~fl, and Ofl. Note that the first-order and
temporal formula formation rules can be applied in any
order, so, e.g., quantifiers can scope temporal modalities
allowing quantifying into modal contexts.

Our planner takes advantage of the complete world
descriptions generated by forward chaining to evaluate
first-order formula using model checking. To allow this
to be computationally effective and at the same time not
limit ourselves to finite domains (e.g., we may want to
have access to the integers in our axiomatization), we
use bounded quantification instead of standard quantifi-
cation. In particular, instead of the quantifiers Vx or
qx, we have V[x:7] and q[x:7] , where 7 is an atomic

formula2 whose free variables include x. It is easiest to
think about bounded quantifiers semantically: V[x:7] ¢
for some formula ¢ holds iff ¢ is true for all x such that
7(x) holds, and q[x:7] ¢ holds iff ¢ is true for some 
such that 7(x) holds. We require that in any world the
set of satisfying instances of 7 be finite.

Semantically, formulas of LTL are interpreted by mod-
els of the form M = (so, sl,...), i.e., a sequence of states.
Every state si is a model (a first-order interpretation) for
the base language 1:. In addition to the standard rules
for the first-order connectives and quantifiers, we have
that for a state si in a model Mand formulas fl and f2:

¯ (M, s~) ~ fl IJ fg. iff there exists > i such that
(M, sj) ~ f2 and for all k, i _< k < j we have
(M, sk) ~ fl: fl is true until f2 is achieved?

¯ (M, si) ~ Ofl iff (M, si+l) ~ fl: fl is satisfied in
the next state.

¯ (M, si) ~ ~fl iff there exists > i such th at
(M, sj) ~ fl: fl is eventually satisfied.

¯ (M, si) ~ tnfl ifffor ally > i we have (M, sj) fl :
fl is always satisfied.

Finally, we say that the model M satisfies a formula f if
(M, so) ~ 

First-order LTL allows us to express various claims
about the sequence of states S. For example,
©Oon(A, B) asserts that in state s2 we have that A is on
B. Similarly, D~holding(C), asserts that we are never
in a state where we are holding C, and O(on(B, 
(on(B,C) IJ on(A,B))) asserts that whenever we en-
ter a state in which B is on C it remains on C until
A is on B, i.e., on(B,C) is preserved until we achieve
on(A, B). With quantification we can express even more,
e.g., V[x:clear(x)]Oclear(x) asserts that every object
that is clear in the current state remains clear in the
next state. This is an example of quantifying into a
modal context.

We are going to use LTL formulas to express search
control information, or domain strategies. Search con-
trol generally needs to take into account properties of
the goal, and we have found a need to make reference to
requirements of the goal in our LTL formulas. To accom-
plish this we augment the base language £: with a goal
modality. In particular, to the base language L: we add
the following formula formation rule: if f is a formula of
/3 then so is GOAL(f). This modality can be used when-
ever the goal is given as a list of literals to be achieved
(most planners take goals specified in this manner). Our
planner uses this list of literals as if it were a complete
world description, and evaluates the formula GOAL(f) 
evaluating f in the goal world. Of course, the goal is gen-
erally only a partial specification of the world, so in treat-
ing the goal as a complete description the goal modal-
ity takes on the semantics of "provable requirement of
the goal." For example, if the goal is the set of literals

2We also allow 7 to be an atomic formula within the scope
of a GOAL modality (see below).

SNote that, since we only test k strictly less than j, as is
standard, any state si that satisfies f2 satisfies fl O f2 for any
fl.
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{on(A, B), on(B, C)} then GOAL(on(A, B) A on(B, 
will evaluate to true, GOAL(clear(A)) will evaluate to
false--although clear(A) does not contradict the goal it
is not a necessary/provable requirement of the goal.

3 Using LTL to Express Search Control

Information

Any LTL formula specifies a property of a sequence
of states. In planning, we are dealing with sequences
of executable actions, but to each such sequence there
corresponds a sequence of worlds: the worlds we pass
through as we execute the actions. These sequences act
as models for the language £:. Hence, we can check
the truth of an LTL formula given a plan, by check-
ing its truth in the sequence of worlds visited by that
plan using standard model checking techniques (see, e.g.,
[CG87]).4 Hence, if we have a domain strategy for the
goal {on(B, A), on(C, B)} like "if we achieve on(B, A)
then preserve it until on(C,B) is achieved", we could
express this information as an LTL formula and check
its truth against candidate plans.

In order to use our LTL formula to control search we
have developed an algorithm for incrementally evaluat-
ing an LTL formula. Specifically, our planner labels each
world generated in our search of the forward-chaining
space with an LTL formula f, with the initial world be-
ing labeled with the original LTL control formula. When
we expand a world w we progress its formula f through
w generating a new formula f+. This new formula be-
comes the label of all of w’s successor worlds (the worlds
generated by applying all applicable actions to w). 
formula f and its progression f+ computed by our pro-
gression algorithms (which we will not present due to
space limitations) are related by the following theorem:

Theorem 3.1 Let M = (so, sl,...) be any LTL model,
and let si be the i-th state in the sequence of states M.
Then, we have for any LTL formula f, (M, si) ~ f 
and only if(M, 8i_~1) ~ f’{-.

If f progresses to FALSE, (i.e., f+ is FALSE), then this
theorem shows that no sequences of worlds emanating
from w can satisfy our LTL formula. Hence, we can
mark w as a dead-end in the search space and prune all
of its successors.

4 Empirical Results from the Blocks

World

We demonstrate our approach using the blocks world.
In our case we use four operators in our axiomatiza-
tion (Table 1). If we run our planner with the vacuous
search control formula DTRUE, which admits every se-
quence of worlds and thus provides no search control,
we obtain the performance given in Figure 1 using blind

4LTL formulas actually require an infinite sequence of
worlds as their model. In the context of standard planning
languages, where a plan consists of a finite sequence of ac-
tions, we can terminate every finite sequence of actions with
an infinitely replicated "idle" action. This corresponds to in-
finitely replicating the final world in the sequence of worlds
visited by the plan.

depth-first search that checks for cycles. Each data point
represents 5 randomly generated blocks world problems,
where the initial state and the goal state were indepen-
dently randomly generated. The graph shows a plot
of the average time taken to solve all 5 problems (in
CPU seconds on a SUN-1000). The same problems were
also run using the SNLP and PRODIGY4.0 systems. The
graph demonstrates that these planners hit a computa-
tional wall at or before 6 blocks. Furthermore, within
the time bounds imposed only blind depth-first search
in the forward-chaining space was able to solve all of the
problems. The SNLP system failed to solve 4 of 6 block
problems, while the PRODIGY system failed to solve 2 of
the 6 block problems. The times shown in the graph in-
clude the times taken by the failed runs. The PRODIGY
system was the only system that was run with domain
dependent search control (i.e., it used a collection of con-
trol rules specific to the blocks world), and this shows up
in its performance. In fact, of the 4 six block problems it
was able to solve, it was able to solve them quite quickly.
But its failure on the other two (compare with our re-
sults for controlled TLPLAN below) indicates that its
search space is not as easy to control. Note that for the
blocks world with a holding predicate there are only 866
points in the forward-chaining space (i.e., 866 different
configurations of the world) for 5 blocks, 7057 points for
6 blocks and 65990 for 7 blocks. TLPLAN can exhaus-
tively search the 6 blocks space in about 20 minutes of
CPU time, but the search spaces explored by SNLP and
PRODIGY, are much larger.

Despite the size of the search space, it is easy to come
up with strategies in the blocks world. A basic one is
that towers in the blocks world can be build from the
bottom up. That is, if we have built a good base we
need never disassemble that base to achieve the goal.
We can write a first-order formula that defines when a
block x is on top of a good tower, i.e., a good base that
need not be disassembled.

goodtower ---- clear(x) A goodtowerbelow(x)
goodtowerbelow(x) --

(ontable( ) ^ GOAL(3[y:o.( 
V3[y:on( , y)] GOAL(ontable( )) ^ GOAL(clear(y))

^ V[z:GOAL(o ( , Z)] Z = 
A V[Z:GOAL(O (Z, y)] Z = X)

A goodtowerbelow(y)

A block x satisfies the predicate goodtower(x) if it is 
top of a tower, i.e., it is clear, and it and the tower below
it are good, i.e., the tower below does not violate any goal
conditions. The various tests for the violation of a goal
condition are given in the definition of goodtowerbelow.
If x is on the table, the goal can not require that it be on
another block y. On the other hand, if x is on another
block y, then x should not be required to be on the table,
nor should y be required to be clear, any block that is
required to be below x should be y, any block that is
required to be on y should be x, and finally the tower
below y cannot violate any goal conditions.

Our planner can take as input a first-order definition
for a predicate like the above (written in Lisp syntax)
and it can evaluate the truth of this defined predicate in



[[ Operator
pickup(z)
putdown(z)
8tack(z, y)
unstack( z, y)

Preconditions and Deletes

ontable(z), clear(z), handempty.
holding(z).
holding(z), clear(y).
on(z, y), clear(z), handempty.

Adds

holding(z).
ontable(z), clear(z), handempty.
on(z, y), clear(z), handempty.
holding(z), clear(y).
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Figure h Blind Search in the Blocks World

the current world for any block. Using this we can write
the following LTL control formula

[] (V[z:clear(z)] goodtower(z) (I)
Ogoodtowerabove(z)).

This formula says that whenever we have a good tower,
in the the next state this tower must be preserved.
Goodtowerabove is defined in a manner symmetric to
goodtogorbolow. In particular, it is falsified if we are
holding z or if we stack another block y on x that vi-
olates a goal condition. Thus, the planner can prune
those successor worlds that fail these conditions.

What about towers that are not good towers? Clearly
they violate some goal condition. So there is no point
in stacking more blocks on top of them as eventually we
must disassemble them. So at the same time as pre-
serving good towers we can define a bad tower predicate
as

badtower(x) -- clear(z) A-~goodtower(z).

And we can augment our control strategy to prevent

growing bad towers.

17 (V[z:clear( z ) goodtower(z) (2)
Ogoodtowerabove(z)

A badtower(z) O(~3[y:on(y, z)] ))

This control formula allows only blocks on top of bad
towers to be picked up. This is what we want, as such

tower must be disassembled. However, a single block on
the table that is not intended to be on the table is also a
bad tower. In this case we do not want such blocks to be
picked up except when the block they are intended to be
on is on top of a good tower (i.e., when their final position
is ready). Without this additional control the planner
will continually attempt to pick up such blocks only to
find that it must return them to the table. This causes
a number of one-step backtracks as the planner detects
a state cycle in the forward-chaining space. Although
it does not affect the quality of the plan we construct
(as we backtrack from these steps) it does slow down
the planner. Hence our final control for the blocks world
becomes

[] (V[x:clear(z)] (3)
goodtower(x) => Ogoodtowerabove(z)
A badtower(z) =~ O(-~3[y:on(y, z)])
A (ontable(z) A 3[y:GOAL(on y))] -,goodtower(y))

O(-~holding(z))).

The performance our our planner with these three dif-
ferent control formulas is shown in Figure 2. As in Fig-
ure 1 each data point represents the average time to solve
5 randomly generated blocks world problems of various
sizes. We observe that our final control formula for the
blocks world allows our planner to find plans that are
most a factor of 2 longer than the optimal using back-
track free depth-first search taking time quadratic in the
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Figure 2: Controlled Search in the Blocks World

number of blocks. If it uses breadth-first search it can
find an optimal plan, but this task is NP-Hard [GN92].

5 Conclusions

We have experimented with a number of other domains
including the blocks world with limited space on the ta-
ble, the flat tyre domain, and the PRODIGY scheduling
domain. In all of these domains we have found that it
is easy to outperform planners like SNLP and PRODIGY
using very simple and obvious control strategies. It is
more difficult to write complete strategies, i.e., strate-
gies that yield plans in polynomial time, although this
was possible in a number of these domains also. Some
important points are

1. Just as we can axiomatize "static" knowledge about
domains like qx.holding(x) ~ -~handempty, we have
and can axiomatize "dynamic" strategic knowledge.

2. This strategic knowledge can be expressed in a
declarative representation and utilized to guide
problem solving. The declarative nature of this rep-
resentation is one of the ways our approaches differs
from classical state-based heuristics.

3. Forward chaining search seems to be a very natural
fit with most forms of strategic knowledge, and in
conjunction with this kind of knowledge it can be
used to construct very efficient planners for various
domains.
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