
Reasoning about actions: Non-deterministic effects, Constraints, and Qualification

Chitta Baral
Department of Computer Science

University of Texas at E1 Paso
E1 Paso, Texas 79968, U.S.A.

chitta@cs.utep.edu
915-747-6952/5030 (voice/f~x)

Abstract

In this paper we propose the language of ’state
specifications’ to uniformly specify effect of ac-
tions, executability condition of actions, and dy-
namic and static constraints. This language al-
lows us to be able to express effects of action
and constraints with same first order representa-
tion but different intuitive behavior to be speci-
fied differently. We then discuss how we can use
state specifications to extend the action descrip-
tion languages A and £0.

Introduction and Motivation
In this paper1 we consider several aspects of reason-
ing about actions: effects (direct, indirect, nondeter-
ministic) of actions, qualification and executability of
actions, constraints and their manifestations as rami-
fications and/or qualification, and propose a language
that facilitates representing and reasoning about all of
the above in a uniform manner.

We follow the notation of situation calculus (McCarthy
& Hayes 1969) and have three different sets of symbols,
called fluents, actions, and situations, respectively. For
example, in the statement "Shooting causes the turkey
to be dead if the gun was loaded", shoot is an action,
dead and loaded are fluents, the initial situation is de-
noted by so, and the situation after the shoot is per-
formed is denoted by res(shoot, so). The state corre-
sponding to a particular situation is either represented
by the set of fluents true in that situation or by the
corresponding interpretation. The particular use will
be clear by context.

Consider the action "shoot". It is impossible to per-
form this action if the agent does not have a gun. We
will refer to the condition of having a gun as an exe-
curability condition for the action "shoot". Now let us
reconsider the statement "Shooting causes the turkey
to be dead if the gun was loaded". Here, the condition

1Supported by the grants NSF-IRI-92-11-662 and NSF-
CDA 90-15-006.

of the gun being loaded is a precondition for the flu-
ent "dead" to hold in the situation obtained after per-
forming the action "shoot". In the literature related to
frame problems (Brown 1987) both type of conditions
are sometimes considered as part of the qualification
problem.

We consider two kinds of constraints: dynamic and
static. In this paper we consider dynamic constraints
to be general statements that are true about adjacent
situations. For example, the statements "the salary of
a person does not decrease by performing an action"
and "no action can make a dead person alive" are ex-
amples of dynamic constraints.

Static constraints are statements about the world that
are true in all situations. For example, the statement
that "a person can not be at two different places at the
same time" is a static constraint.

Now consider the action moveto_B. The effect of this
action is to make the fluent at_]] true. Now suppose
that before the action was executed "at_A" was true,
i.e. the agent was at the position A. Not only "at_B"
would be true after executing "moveto_B", but also the
constraint ’% person can not be at two different places
at the same time" will dictate that "at_A_" be false in
the resulting situation. We could explicitly state this as
an effect of the action "moveto_B". But there might be
several different positions in our world, and also there
might be several different actions (fly_to_B, drive_to_B,
jump_to_B etc.) which have similar interaction with
the constraint. A better approach would be state it
as a constraint (i.e. not to state it explicitly for all
those actions), and have a mechanism that can infer
ramifications of a directly specified effects caused by
the constraints. Formalizing this is referred to as the
ramification problem in the literature.

It was pointed out in (Lin & Reiter 1994) that some
constraints instead of causing ramifications, affect the
executability of an action. Moreover, sometimes these
constraints are indistinguishable (in a first order rep-
resentation) from the constraints that cause ramifica-
tions. For example, consider the action "marry_B’,
with the effect "married_to_B" and the constraint that

11

From: AAAI Technical Report SS-95-07. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

"a person can not be married to two different persons
at the same time". Now suppose "married_to_A" is
true in a particular situation S. Intuitively, we would
like the action "marry_B" to be inexecutable in situ-
ation S, rather than have a ramification of the action
"marry__B" that makes "married_to_A" false.

One of the goal of this paper is to propose a language
which distinguishes between the above two constraints.

Now let us consider the effect of actions in the absence
of any’ preconditions, executability conditions and con-
straints. Let S and S~ be states2 and let us represent
the effect of an action a by El. Let us also represent
the set of possible states that may be reached after
an action a is performed in a situation with state S by
Res(a, S). Using Winsletts’ definition (Winslett 1989):

Definition 1 S~ E Res(a, S) if

(a) S’ satisfies El, and

(b) ~]S" : ~’ satisfies E ~ and
(s" \ s) u(s\ a (s’ \ s)u(s\ s’).

Now let us consider the action of tossing a coin. Intu-
itively, the effect of this action is either "head" or "tail"
(not both) regardless of which of the fiuents were true
before the coin was tossed. But if we represent this as

E~o,, = (head A -~ tail) V (tail A -~ head)

and use Winslett’s definition or the update operator o
defined in terms of symmetric difference, then we have
the problem that if the coin was "head" before per-
forming "toss" then it stays "head" after performing
"toss" and similarly if it was "tail" before perform-
ing "toss" then it stays "tail" after performing "toss".
This has also been pointed out in (Crawford 1994;
Brewka & Hertzberg 1993; Kartha & Lifschitz 1994;
Pinto 1994; Sandewall 1992). Representing, Etos~ =
head V tail, does not help either.

Let us now consider a different action "paint" whose
effect is to paint a block "red" or "blue". But this time
the robot is supposed to be smart and minimizes its job
when it realizes that the block is already either "red "
or "blue". Here, Epain, = (red A -1 blue) V (blue A
red) is adequate when we use Winslett’s definition..

Consider the action of "spinning" a coin on a chess
board. Let us consider the fluents "black" and "white"
which mean that the coin touches a black square and
the coin touches a white square respectively. In-
tuitively, after the coin is spun the fluent "black",
"white" or both could be true in the resultant situ-
ation regardless of what was true before. But the only
way to represent Espi,,, the effect of spinning the coin,
in first order logic is through the formula
E~pi,~ = black V white, or its equivalent.

2 Here states are interpretations.

Here, we again get unintuitive result if we use
Winslett’s definition. Moreover, since E, os, and Epai,,t
are equivalent in their propositional representation,
any approach that does not specify the differences in
their intended meaning will be at least wrong with re-
spect to one of them.

When we examine our formalization we observe that
there are two aspects to it. (i) We use first order
logic/propositional logic to represent effects of actions.
(ii) We use a fixed definition of "closeness" based
symmetric difference. To distinguish between "toss"
and "paint" we have two choices: (a) to use a more ex-
pressive language to represent E~o88 and Epain~, and/or
(b) to use different definition of "closeness" for "toss"
and "paint", i.e. to use different update operators for
"toss" and "paint".

Kartha and Lifschitz (Kartha & Lifschitz 1994) and
Sandewall (Sandewall 1992) follow the second ap-
proach by allowing specification of when inertia of a
fluent (w.r.t. an action) is not preserved. (This results
in different update operators.)

In this paper we propose to use the first approach of us-
ing a more expressive language (than first order logic)
to represent e~ects of actions.

Now let us modify Definition 1 to take into account
constraints. Res(a,S) can then be defined

Definition 2 S~ E Res(a, S) if

(a’) I satisfies Ea UC,and

(b’) ~]S" : S" satisfies Ea t3 C and
(s" \ s) u (s \ s") c (s’ \ s) u

Now let us reconsider the constraints "a person can not
be at two different places at the same time", and "a
person can not be married to two different people at
the same time". These two constraints when expressed
in first order logic are equivalent (modulo renaming).
But as discussed before they have different intended
meanings, the first causes ramification while the sec-
ond adds qualification conditions. Here also instead
of using different update operators for different con-
straints we propose to use a more expressive language
to represent constraints. Moreover, the condition (a’)
suggests that we use the same language to represent ef-
fects of actions and constraints. This is one of the
main thesis of our paper.

In this paper we propose a language to express (i)
effects of actions with their preconditions, (ii) exe-
cutability conditions of actions, and (iii) constraints,
such that the drawbacks of using first order logic
(FOL) to express them (as described in this section)
avoided.

Before we go on to introduce the syntax and semantics
of the language of "state specifications" for specifying

12

effects of actions and constraints, we briefly discuss dis-
junctive logic programs. We later give the semantics of
"state specifications" through translations to disjunc-
tive logic programs.

Background: Logic Programming
Preliminaries

A disjunctive logic program is a collection of rules of
the form

Lo V... V Lk ~-- Lk+l, ¯ ¯., Lrn, not Lrn+l, ¯ ¯., not Ln
(1)

where Li’s are literals. When m -- n and Li’s are only
atoms, we refer to the program as a positive disjunctive
logic program.

Definition 3 (Gelfond 1994) The answer set of a dis-
junctive logic program II not containing not is the
smallest (in a sense of set-theoretic inclusion) subset
of Lit such that

(i) for any rule L0 V ... Y Lk ~- Lk+l,...,Lm
Lk+l,...,Lm E S, then SN {Lo,...,Lk} ~ 0

(ii) ifS contains a pair of complementary literals, then
S = Lit.

The set of answer sets of a program II that does not
contain negation as failure is denoted by a(II).

Definition 4 (Gelfond 1994) Let II be a disjunctive
logic program without variables. For any set S of lit-

Serals, let II be the logic program obtained from II by
deleting

(i) each rule that has a formula not L in its body
with L E S, and

(ii) all formulas of the form not L in the bodies of
the remaining rules.

Clearly, II s does not contain not , so that then a(IIs)

is already defined in Definition 3. If S E a(IIS), then
we say that S is an answer set of II. []

Notational Convenience
In this paper we consider a disjunctive logic program
to be of a set of rules of the form (1), where Lo,..., Lk
are a conjunction of literals. The answer sets of such
programs are defined exactly as in Definition 3 and
Definition 4, except that (i) in Definition 3 is replaced
by the following:

for any rule Lo V ... V Lk ~-- Lk+l...Lm if
Lk+l,...,Lm E S, then there exists i, 0 ~ i _< k,
such that all conjuncts in Li are in S.

State Specifications
For an action a, to specify its effect Ea, we need to
make statements about the state reached after ’a’ is
performed (we refer to this state as the updated state
w.r.t. ’a~. To integrate preconditions and executabil-
ity conditions of ’a’ we also need to consider the state

where, ’a’ is to be performed (we refer to this state as
initial state w.r.t. ’a’). While to represent static con-
straints we only need to refer to the updated states of
actions, to be able to represent dynamic constraints we
need to able to refer to both initial states and updated
states of actions.

To be able to express the truth and falsity of fluents
in the initial states and updated states of actions we
use four special operators "in", "out", "wasAn" and
"was_out". For any fluent f, the intuitive meaning
of in(f) is that f is true in the updated state. The
intuitive meaning of was_in(f) is that f is true in the
initial state. Similarly the meaning of out(f) is that the
fluent f is false in the updated state, and the meaning
of was_out(f) is that the fluent f is false in the initial
state.

A state specification is a set of rules of the form

in(bo) V ... V in(b) V out(co) V ... V out(el)
in(do),..., in(dm), out(co),..., out(an)
was_in(fo), . . ., was_in(h),
was_out(go),..., was_out(gq)

where, k, 1, m, n, p and q could be 0.

Intuitively, the rule

in(p) ~- in(q), out(s), was_in(t), was_out(u)

w.r.t an action a means that if t is true and u is false
in the initial state then if q is true and s is false in the
updated state then p must also be true in the updated
state.

Using state specifications

For every action a, we have a corresponding state speci-
fication Pa that specifies (i) the effect of a together with
the preconditions, and (ii) the executability conditions
of action a. We refer Pa as the "update specification"
of the action a.

For example, for the action "shoot", the update spec-
ification Pshoot is as follows:

out(alive) ~- was_in(loaded)
~-- was_out(has_gun) / Pshoot

Similarly, the update specifications for the actions
’toss’, ’paint’ and ’spin’ can be given as follows:

in(head) V in(tail)
out(head) ~-- in(tail)~ Pto~8
out(tail) ~-- in(head)

in(red) V in(blue) ~-- } Ppain$

in(white) V in(black)out(white) V in(white) in(black)i
out(black) V in(black) in(white)

The set of constraints C is also a state specification.
In the absence of constraints to reason about the exe-
cutability and the effects of an action a we only need to
consider its update specification Pa. But in the pres-
ence of the constraints C we need to consider the state
specification Pa U C.

The dynamic constraint "No action can make a dead
person alive" can be represented by the specification:

~-- in(alive), was_in(dead)

Semantics of State Specifications

We now define Res(a, S), the set of states that may
be reached by performing action a in a situation corre-
sponding to state S, when the effects and constraints
are given as a state specification P.

Our definition of Res(a,S) when effects and con-
straints are represented by state specifications will be a
fixpoint definition similar to the fixpoint definition3 of
McCain and Turner (McCain &5 Turner), and is based
on translating state specifications to disjunctive logic
programs.4

Algorithm 1 Translating State Specifications
INPUT - s: state, P: state specification, a: action

OUTPUT- Ds,P,a : a disjunctive logic program

Step 1. Initial Database
For any fluent f if f is true in the state s then the
program contains holds(f, s)

else the program contains "~holds(f, s) ~--

Step 2. Inertia Rule

(2.1) holds(F, res(a, s)) ~-- holds(F, s), not ab(F,

(2.2)
-~holds(F, res(a, s)) *--- ~holds(F, s), not ab(F,

Step 3. Translating the update rules

Each revision rule of the type (2) in the state specifi-
cation P

is translated to the rule
(holds(bo, res(a, s)) A ab(bo, a, s))

(holds(bk, res(a, s)) A ab(bk, a,
(-~holds(co, res(a, s)) A ab(co, a, s))

SMcCain and Turner (McCain & Turner) show that the
definition of Res(a,S) in Definition 2 is equivalent
Res(a,S) {S’: S’ = {L:L E Cn((N S’) U Ea UC)}}.

4We do not use the direct semantics that can be ob-
tained by directly extending the definition of P-justified
revision in (Marek & ’rruszczyftski 1994c; Baral August
1994) due to certain un-intuitive behavior. This was
pointed out in a manuscript by Przymusinski and Turner.
Moreover, we believe that the semantics through trans-
lation to disjunctive logic programs to be more intuitive
than the direct semantics (Marek & Truszczyfiski 1994c;
Baral August 1994).

(-~holds(cl, res(a, s)) A ab(cl, a,
holds(do, res(a, s)),..., holds(dm, res(a,
~holds(eo, res(a, s)),..., ~holds(en, res(a, s)
holds(fo, s), . . . , holds(fp, s)
-~holds(go, s),..., "~holds(ga, s)

Definition 5 Let S be a state and P be a state spec-
ification corresponding to action a. Let Ds,p,a be the
translation of S and P to a disjunctive logic program
obtained by Algorithm 1.

If A is a consistent answer set of Ds,P,a then
S~ = {f: holds(f, res(a, s)) E A} C Res(a,

If Res(a, S) is an empty set we then say that a is not
executable in the situations whose state is S. []

The definition of executability of an action in a state S
in Definition 5 allows us to specify executability condi-
tions, effect of actions and constraints in a single frame-
work.

Examples

Proposition 1 Consider the action "toss’, its update
specification Ptoss and S = {h}. (For convenience we
use ’h’ for head and ’t’ for ’tail’.)

has(toss, s) {{h}, {t}} []

Proof(sketch)
Let H1 be the program obtained using Algorithm 1.
It is easy to show that H1 has the two answer sets
{holds(h, s), -~holds(t, s), holds(h, res(toss,

ab(-h, toss, s), -~holds(t, res(toss, s)), ab(t, s)} an
{holds(h, s), -~holds(t, s), holds(t, res(toss,
ab(t, toss, s), -~holds(h, res(toss, s)), ab(h, toss,

The above two answer sets corresponds to the states
{h} and {t} Hence, Res(toss, S) = {{h}, {t}}. []

Proposition 2 Consider the action "spin’, its update
specification Psvin and S = {w}. (For convenience we
use ’w’ for white and ’b’ for ’black’.)

has(toss, s) {{w}, {b}, {w, b}} []
It is easy to see that for the action ’paint’ with the ef-
fect specified by Pp~int, Res(paint, {blue}) = {{blue}},
Res(paint, {red}) = {{red}}, and Res(paint, {})
{{red}, {blue}}. (As pointed out by Przymusinski and
Turner for this example the semantics proposed by
Marek and Truszczyfiski behaves un-intuitively. For
all the other examples in this paper the semantics
given in this paper coincides with the semantics ob-
tained by directly extending the semantics of Marek
and Truszczytlski.)

Example 1 Consider the the action "shoot" in YSP
(Hanks & McDermott 1987) and the update specifica-
tion Pshoot.

Consider $1 = {has_gun, loaded, alive}, $2 =
{has_gun, alive}, and $3 = {loaded, alive}.

Res(shoot, $1) = { {has_gun, loaded}}
Res(shoot, $2) = { {has-gun, alive }
Moreover, Res(shoot, $3) = {}, implying that shoot is
not executable in a situation whose state is $3. []

Example 2 Let us consider the constraint C1 which
says "a person can not be at two different places at the
same time", the action "moveto_B", and let us assume
that our world consist of only two places, A and B

The update specification of "moveto__B", denoted by
Pmoveto-B is given by in(at_B) *---

The constraint C1 is denoted by the following state
specification

out(at_A) .-- in(at_B)
out(at_B) ~ in(at_A)

It is easy to see that Res(moveto_B,{at_A})
{{at_B}}.

Now let us consider the constraint C2 which says that
"a person can not be married to two different persons
at the same time", the action "marry._B’, and let us
assume that our world consist of only two marriageable
persons, A and B.

The update specification of "marry_B’, denoted by
PrnarrV-B is given by in(married_to_B) ~--

The constraint C2 is denoted by the following state
specification

*- in(married_to_B), in(married_to_A)

It is easy to see that
Res(marry_B, {married_to_A}) = {}, implying that
the action marry_B is not executable in a situation
whose state is {married_to_A}. []

Extending ,A and Z:0
The language ,4 was introduced by Gelfond and Lifs-
chitz in (Gelfond & Lifschitz 1992), to express actions
and their effects. It was later extended to Z:0 (Baral,
Gelfond, & Provetti 1994) to include actual situations
and to .A7¢ (Kartha & Lifschitz 1994) to include static
constraints.

In ,4, Z:0 and .ATe, effects of actions were specified
through propositions of the form

A causes F if /°1,..., Pro,-~Pm+l,...,-~Pn, and

A causes ~F if P1,..., Pro, ~Pm+l,..., ~P,,

When using update specifications to express effects and
preconditions of actions, propositions of the above form
are translated to rules of the form

in(F) ~-- was_in(P1),..., was_in(Pro),
was_out(Pro+l),..., was_out(Pn and

out(F) ~-- was_in(P1),..., was_in(Pro),
was_out (P,~+ I), . . . , was_out(Pn

respectively, and included in the update specification
of A.

The languages ,4 and £0 can be extended by having
effects and preconditions of actions being represented
by updated specifications. Moreover, the translations
of .A (Lifschitz & Turner 1994) and/20 to disjunctive
logic programs can be easily adapted to the proposed
extensions by following Algorithm 1 to translate the
update specifications of actions.

In ,zig static constraints5 are represented as first order
theories. Our proposal is to represent constraints using
state specifications. To translate a domain description
description in the resulting language to a disjunctive
logic program we use Algorithm 1 w.r.t, every ac-
tion a and the corresponding state specification Pa UC,
where, Pa is the update specification of a, and C is the
constraint.

Conclusion
Marek and Truszczyriski (Marek & Truszczyfiski
1994c) introduce the language of "revision programs"
and use it to represent complex effects of actions, such
as the action of "reorganizing" a department whose ef-
fect is given as "If John is in the department then Peter
must not be there", with a non-classical interpretation
of "If ... then ..." implying that "John is preferred
over Peter". In (Baral August 1994), Baral shows how
to translate "revision programs" to extended logic pro-
grams and introduces was_in and was_out, in the body
of rules. Marek and Truszczyfiski also extend (Marek
& Truszczyfiski 1994c) revision programs to allow dis-
junctions in the head of rules.

In this paper we build on the efforts in (Marek
Truszczyfiski 1994c; 1994b; Baral ~ Gelfond 1994) and
introduce the language of state specifications. We show
that this language is not only able to represent com-
plex effects, but also, non-deterministic effects of ac-
tions, executability conditions of actions, preconditions
of different effect of actions, and dynamic and static
constraints. Moreover, it allows distinct representa-
tions of different non-deterministic effects, and differ-
ent constraints that have same representation in first
order theory (See the discussion on "paint" and "spin",
and "marry" and "move" in the introduction.). We
then show how to incorporate state specifications to
action description languages like .A and /:0, and how
to implement state specifications through a translation
to disjunctive logic programs7.

5.A~ does not allow representation of dynamic
constraints.

Revision programs are state specifications, with the fol-
lowing restrictions: (a) No was_in and was_out, (b) No dis-
junctions in the head of rules, and (c) No rules with empty
heads.

rCurrently, there exists some systems that can compute
the answer sets of disjunctive logic programs.

In the full papers we discuss how to add evaluable pred-
icates and variables to the bodies of the rules of state
specifications. We also discuss how to express some-
thing using state specifications. More specifically, us-
ing the algorithm in (Kosheleva & Kreinovich 1992)
we can syntactically translate a first-order theory to a
logic program and then using (Marek & Truszczyfiski
1994a) we can construct the corresponding state spec-
ification. Also, it should be noted that ’State Speci-
fications’ do not behave like first order theories. For
example,
(i) the specification {~ in(a)} has different effect then
the specification {out(a)}, and (ii) the specification
{in(a) V in(b)} has different effect then the specifica-
tion {in(a) V in(b) ~--,in(a) V out(a) ~--}. Specifying
something using ’state specifications’ is then as easy or
hard as using disjunctive logic programs.

Recently, McCain and Turner(McCain & Turner) pro-
pose using inference rules for representing constraints
so as to distinguish between constraints that cause
ramification, and that add to the qualification. Unlike
their approach we are able to express both dynamic
and static constraints, and non-deterministic effects in
a single language. Moreover, one of the fundamental
thesis of our approach is that effects, and executability
conditions of actions be expressed in the same language
as the constraints.

One of our main future goal is to study impact of using
state specifications with other action theories. In par-
ticular we would like to formalize effects of concurrent
actions when the effects are given as state specifica-
tions.

Acknowledgement

I would like to thank Hudson Turner for his comments
on an earlier draft of the paper.

References
Baral, C., and Gelfond, M. 1994. Reasoning about
effects of concurrent actions. In Fronhofer, B., ed.,
Theoretical Approaches to Dynamic Worlds.
Baral, C.; Gelfond, M.; and Provetti, A. 1994. Rep-
resenting Actions I: Laws, Observations and Hypoth-
esis. Technical report, Dept of Computer Science,
University of Texas at E1 Paso.

Baral, C. 1994. Rule based updates on simple knowl-
edge bases. In Proc. of AAAI94, Seattle, 136-141.

Brewka, G., and Hertzberg, J. 1993. How to do things
with worlds: on formalizing actions and plans. Jour-
nal of Logic and Computation 3(5):517-532.
Brown, F., ed. 1987. Proceedings of the 1987
worskshop on The Frame Problem in AL Morgan
Kaufmann, CA, USA.

8 A version of it is accessible through

http://cs.utep.edu/chitta/chitta.html

Crawford, J. 1994. Three issues in action. In Pre-
sented in the workshop on Non-monotonic reasoning.

Gelfond, M., and Lifschitz, V. 1992. Representing
actions in extended logic programs. In Joint Interna-
tional Conference and Symposium on Logic Program-
ming., 559-573.

Gelfond, M. 1994. Logic programming and reasoning
with incomplete information. Annals of Mathematics
and Artificial Intelligence. To appear.

Hanks, S., and McDermott, D. 1987. Nonmonotonic
logic and temporal projection. Artificial Intelligence
33(3):379-412.

Kartha, G., and Lifschitz, V. 1994. Actions with
indirect effects (preliminary report). In KR 94, 341-
350.
Kosheleva, K., and Kreinovich, K. 1992. Any the-
ory expressible in first order logic extended by tran-
sitive closure can be represented by a logic program.
manuscript.

Lifschitz, V., and Turner, H. 1994. From disjunctive
programs to abduction. In preparation.

Lin, F., and Reiter, R. 1994. State constraints revis-
ited. Journal of Logic and computation, special issue
on action and processes (to appear).
Marek, W., and Truszczyfiski, M. 1994a. Revision
programming, manuscript.
Marek, W., and Truszczyfiski, M. 1994b. Revision
programming, database updates and integrity con-
straints. In To appear in 5th International conference
in Database theory, Prague.

Marek, W., and Truszczyfiski, M. 1994c. Revision
specifications by means of programs, manuscript.

McCain, M., and Turner, M. A causal theory of ram-
ifications and qualifications.
McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence.
In Meltzer, B., and Michie, D., eds., Machine Intel-
ligence, volume 4. Edinburgh: Edinburgh University
Press. 463-502.
Pinto, J. 1994. Temporal Reasoning in the Situation
Calculus. Ph.D. Dissertation, University of Toronto,
Department of Computer Science. KRR-TR-94-1.

Sandewall, E. 1992. Features and fluents: A sys-
tematic approach to the representation of knowledge
about dynamical systems. Technical report, Institu-
tionen for datavetenskap, Universitetet och Tekniska
hogskolan i Linkoping, Sweeden.
Winslett, M. 1989. Reasoning about action using a
possible models approach. In Proc. of 7th national
conference on AL 89-93.

15

