From: AAAI Technical Report SS-95-07. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

A Brief Outline of ALX3, a Multi-Agent Action Logic

Zhisheng Huang and Michael Masuch
Center for Computer Science in Organization and Management (CCSOM)
' University of Amsterdam

Oude Turfmarkt 151, 1012 GC Amsterdam, The Netherlands
email: {huang,michael}@ccsom.uva.nl

Abstract

ALX3 is a multi-agent version of ALX with
a first-order description language. ALX3 is
sound and complete, and is already proving
its practical use in the formal representation
of modern organization theory.

1 Introduction

Action logics are usually developed for the (hypothetical)
use by intelligent robots [4; 7; 17] or as a description lan-
guage of program behavior [8]. Our effort is motivated
by a different concern. We want to develop a formal
language for social science theories, especially for theo-
ries of organizations. The difference in motivation leads
to a new approach to action logic. It combines ideas
from various strands of thought, notably H.A. Simon’s
notion of bounded rationality, Kripke’s possible world se-
mantics, V.R. Pratt’s dynamic logic, Stalnaker’s notion
of minimal change, G. H. von Wright’s approach to pref-
erences, and J. Hintikka’s approach to knowledge and be-
lief. ALX3, the action logic presented in this paper, has
a first order description language with multiple agents,
and four modal operator types.! We outline the lan-
guage, and discuss some of its important properties. A
fuller presentation is given in [11]) and [12). In a com-
panion paper, ALX3’s potential for knowledge represen-
tation is extensively demonstrated in the formalization
of an important organization theory, J.D. Thompson’s
Organizalions in Action {14].

2 ALX’s Background

Most social science theories are expressed in natural lan-
guage, but natural language does not provide a formal
scaffold for checking a theory’s logical properties. As a

'ALX stands for the 2’s Action Logic. ALX1, the first
version, had a propositional description language and a
(backward-looking) update operator instead of the condi-
tional; it was a single-agent language [9]. ALX2, the inter-
mediate version, is not multi-agent.[10]
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consequence, the social sciences have acquired a reputa-
tion for “softness” — a soft way of saying that the logical
properties of their theories are often dubious. Reformu-
lating a social theory in a formal language with known
logical properties would facilitate the tasks of consis-
tency checking, disambiguation, or the examination of
other important logical properties, such as contingency
(whether or not the theory is falsifiable).

We focus on action logic as a formal language, be-
cause actions are key to the understanding of social phe-
nomena. In fact, most social scientist agree that action
theory provides the underlying framework for the social
sciences in general [2; 6; 8; 13; 16; 18). Yet actions involve
attitudes and engender change, and both phenomena are
notoriously hard to grasp in the extensional context of
first order languages [5]. This explains our attempt to
develop a new logic, rather than taking First Order Logic
off the shelf.

Herbert A. Simon’s conceptualization of bounded ra-
tionality [20] serves as a point of departure. His ap-
proach is intuitively appealing, and had great impact
on the postwar social sciences. Simon wanted to over-
come the omniscience claims of the traditional concep-
tualizations of rational action. He assumed (1) an agent
with (2) a set of behavior alternatives, (3) a set of fu-
ture states of affairs (each such state being the outcome
of a choice among the behavior alternatives), and (4) a
preference order over future states of affairs. The omni-
scient agent, endowed with ”perfect rationality”, would
know all behavior alternatives and the exact outcome of
each alternative; the agent would also have a complete
preference ordering for those outcomes. An agent with
bounded rationality, in contrast, might not know all al-
ternatives, nor need it know the exact outcome of each;
also, the agent might lack a complete preference ordering
for those outcomes.

Kripke’s possible world semantics provides a natural
setting for Simon’s conceptualization. We assume a set
of possible worlds with various relations defined over this
set (we may also call those possible worlds states). One
can see a behavior alternative as a mapping from states
to states, so each behavior alternative constitutes an ac-



cessibility relation. An accessibility relation, in turn, can
be interpreted as an opportunity for action, that is, as
an opportunity for changing the world by moving from
a given state to another state. Accessibility relations
are expressed by indexed one-place modal operators, as
in dynamic logic [8]. For example, the formula (a;) ex-
presses the fact that the agent has an action a at its
" disposal such that effecting a in the present situation
would result in the situation denoted by ¢.

Preferences — not goals — provide the basic rationale
for rational action in ALX3. Following von Wright [21], a
preference statement is understood as a statement about
situations. For example, the statements that ”I prefer or-
anges to apples” is interpreted as the fact that I prefer
the states in which I have an orange to the states in which
I have an apple.” Following von Wright again, we assume
that an agent who says that she prefers oranges to ap-
ples should prefer a situation where she has an orange
but no apple to a situation where she has an apple but
no orange. We call this principle conjunction ezpansion
principle and restrict attention to preference statements
that obey it. Preferences are expressed via two-place
modal operators; if the agent prefers the proposition ¢
to the proposition v, we write ¢P;.

Normally, the meaning of a preference statement is
context dependent, even if this is not made explicit. An
agent may say to prefer an apple to an orange — and
actually mean it — but she may prefer an orange to an
apple later — perhaps because then she already had an
apple. To capture this context dependency, we borrow
the notion of minimal change from Stalnaker’s approach
to conditionals [19]. The idea is to apply the conjunc-
tion expansion principle only to situations that are min-
imally different from the agent’s present situation - just
as different as they really need to be in order to make the
propositions true about which preferences are expressed.
We introduce a binary function, cw, to the semantics
that determines the set of ”closest” states relative to a
given state, such that the new states fulfill some speci-
fied conditions, but resembles the old state as much as
possible in all other respects. |

The syntactic equivalent of the closest world function
is the wiggled “causal arrow”. It appears in expressions
such as ¢ ~ 9 where it denotes: in all closest worlds
where ¢ holds, ¥ also holds. The causal arrow expresses
the conditional notion of a causal relation between ¢ and
¥: if ¢ were the case, ¥ would also be the case.

The last primitive operator of ALX3 is the indexed
belief operator. In a world of bounded rationality, an
agent’s beliefs do not necessarily coincide with reality,
and in order to make this distinction, we must be able to
distinguish between belief and reality; B;(#) will denote
the fact that agent i believes ¢. As the logical axioms
characterizing the belief operator show, B represents a

sense of “subjective knowledge”, not metaphysical at-

tachment, or epistemic uncertainty.
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3 Syntax and Semantics

3.1 Formal Syntax
ALX3 has the following primitive symbols:

(1) For each natural number n(> 1), a countable set of
n-place predicate letters, p;, p;, ...

(2.1) A countable set of regular variables, z,z;,y, 2, ...
(2.2) A countable set of action variables, a,ay,b, ...
(2.3) A countable set of agent variables, ¢,7;,4,... -
(3.1) A countable set of regular constants, ¢, ¢y, ¢z, ...
(3.2) A countable set of actions constants, ac, ac;, acs, ...
(3.3) A countable set of agent constants, ag, ag;, agz, ...

54) The symbols ~(negation), A(conjunction), B(belief),
(existential quantifier), P(preference), ~+(conditional),
;(sequence), U(choice), {, ),d) and )

Furthermore, ALX3 has the following syntax rules:
(Variable) ::= (Regular variable})|

{Action variable)]

(Agent variable)

::= (Regular constant)|

{Action constant)|

{Agent constant)

::== (Variable)|(Constant)

::= (Action variable)|

{Action constant)

1= (Agent variable)]

{Agent constant)

1= (Predicate)({Term), - - -, (Term}))

::= (Action term) Agent term)

{Action); (Action)i

{Action) U (Action)

= (Atom)|~(Formula)|

{Formula) A (Formula}]| -

J(Variable)(Formula)|

((Action))(Formula}|

(Formula) ~» (Formula}}

(Formula)P A gent term;(Formula.)l

B(Agent term) (Formula

{Constant)
(Term)
(Action term)
{Agent term)
(Atom)
{Action)

{Formula)

3.2 Semantics
Definition 1 (ALX3 Model)

Call M ={0,PA,AGENT,W,cw,>,R,B,I)
an ALX3 model, if
o O is a sel of objects,
e PA is a set of primitive actions,
o AGENT is a set of agents,
o W is a sel of possible worlds,

cw: WxP(W) — P(W) is a closest world function,

> AGENT — P(P(W)xP(W)) isa function that
assigns a comparison relation for preferences to each
agent, ’



¢ R:AGENT x PA — P(W x W) is a function that
assigns an accessibility relation to each agent and
each primitive action,

e B: AGENT — P(WxW) is a function that assigns
an accessibility relation for the belief operation to
each agent,

o I is a pair (Ip,Ic), where Ip is a predicate interpre-
tation function that assigns 1o each n-place predicate
letter p € PRE, and each world w € W a set of n
tuples (uy, ..., un), where each of the u,,..,u, is in

D = OUPAUAGENT, called a domain, and I¢ .

is a constant interpretation function that assigns to
each regular constants c € RCON an object d € O,
assigns 1o each action constant ac € ACON a prim-
itive action ap € PA, and assigns to each agent
constant g € AGCON an agent a; € AGENT.

Definition 2 (Meaning function) Let FML be as
above and let

M = (0, PA, AGENT, W, cw,>,R, B, I)

be an ALX3 model Lel furthermore v be a valuation of
variables in the domain D. Then the meaning function
[ 1%s is defined as follows:

[P(‘;i;, _‘n)]IM = {w (vi(ta),
[6 A YY) = [¢]|M al L)%
3z¢]3 = {w : (3d € D)(w € []54"/"))
(a)d)3s = {w : (3w')(R°ww' and w’ € [4]3)}
¢~ %y = {w: cw(w, [4]3) C [¥]3s}

2 v1(tn)) € Ip(p, w)}

Bl = {w: (Yu')({w, v') € By, = v’ € [¢]}0)}

The interpretation of the atomic formulas, the boolean
connectives and the existential quantifier is straightfor-
ward. The interpretation of {(a)¢ yields the set of worlds
from where the agent can access at least one ¢-world via
action a. The interpretation of ¢ ~ ¥ yields the set of
worlds in which the closest ¢-worlds are also 1-worlds.
So, ¢ ~ % is true at a world if ¢ would ceteris paribus en-
tail ¥. This is the standard counter-factual conditional
used to express a causal relation between ¢ and 3. Note
that our wiggled arrow does not require actual counter-
factuality, so ¢ may be true in the actual world. The
interpretation of ¢P;% gives a set of worlds such that
the agent will prefer at each of those worlds the closest
¢-and-not-¢-worlds to the closest ¥-and-not-¢ worlds.
This interpretation assures the “conjunction expansion”
principle established by von Wright.
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SPiylay = {w: cw(w, [$ A ~¥]31) >y cw(w, [ A 6]30)}

Definition 3 (ALX3 inference system) Let ALX3S
be the following set of axioms and rules of inference.

(BA) : all tautolagies of the first order logic .

(A1) : (a) L —~ L
(A2) : (a)(@ V 9) = (a)p V (a)y
(A3) : “{a;b)p — (a)(b)¢
(A4) : (a Ub)g — (a)p Vv (b)¢
(AU) : [a]Vzé — Vz[a)p
(ID) : Y~
(MPC) (v~ )~ (v—¢)
(cC): (Y~ AW~ @)= (b~ A
(MOD) P~ P) = (¢~ ¢)
(Cs0) (¥~ ¢) ’\)(¢ '\;!/’)] -
A x — ~A
(cv): - (¥ M¢)/\‘"(¢M“x)]-*[('/1/\x)""¢]
(Cs) (¥Ad)— (¥~ 9)
(CEP) $Pip — (¢ A~9)Pi(—¢d A9)
(N) : —(LP:id),~(¢P; L)
(TR) : (¢Pip) A (Y Pix) —~ (6Pix)
(PC): (8Piv) = =((¢ A ) ~ =(d A 9))A
(¥ A8) ~ (¥ A—9)).

(KB): Bi¢ A Bi(¢ — ¢) — By
(DB) : -B;
(4B) : B¢ —» B;B;¢
(BFB) : -VzBi¢ — BNz
(MP): | Fo& k=99
(&) : ¢ =F Vzd
(NECA) : V¢ =t [aé
(NECB): +¢=t Bié
(MONA) :- ¥ (a)p & F ¢ — ¢ =+ {a)¥
(MONC): Fémrt& Fop— ¢ >k G~ ¢’
(SUBA): ¢« ¢') =+ ((a)¢) = ((a)¢")
(SUBC): Fp=¢)& F(pe=d)=>

F (¢~ ) = (¢' ~ 9)
(SUBP): F(¢o¢)& b (3 o ¢') =

. F (¢Pi) = (¢'Piv’)

Most axioms are straightforward. As usual, we have the
tautologies (BA). Since ALX3 is a normal modal logic,
the absurdum is not true anywhere, so it is not acces-
sible (A1). The action modalities behave as usual, so
they distribute over disjunction both ways (A2) (they
also distribute over conjunction in one direction, but the
corresponding axiom is redundant). (A3) characterizes
the sequencing operator ’;’ and (A4) does the same for
the indeterminate choice of actions. (AU) establishes
the Barcan formula for universal action modalities. WE
have the Barcan formula because the underlying domain
D is the same in all possible worlds.

The next seven axioms characterize ‘the intensional
conditional. Informally speaking, they syntactically
specify the meaning of “ceteris paribus” in ALX3. They
are fairly standard, and, with the exception of (CC),
they already provide a characterization of Lewis’ system
VC, which, in turn, is an adaptation of Stalnaker’s con-
ditional logic to a system for non-unique closest worlds.



(ID) establishes the triviality that 9 is true in all closest
¥-worlds; (MPC) relates the intensional and the mate-
rial conditional in the obvious way: so if ¢ would hold
given ¥, then, if ¢ actually does hold, ¢ must also hold.
Conjunction distributes over the “wiggled arrow” in one
way (CC). (MOD) rules out the eventuality of closest ab-
~ surd worlds; (CSO) gives an identity condition for closest

worlds, (CV) establishes a cautious monotony for the in-
tensional conditional; and (CS) relates the conjunction
to the intensional conditional. Replacing (CS) by

(6~ ¥)V(é~ )

yields Stalnaker’s original system, as the new axiom
would require the uniqueness of the closest possible
world).

The next four axioms characterize the preference re-
lation. (CEP) states the conjunction expansion princi-
ple. (IRE) confirms the irreflexivity of the P operator.
(N) establishes “normality” and (TR) transitivity. As
noted before, (TR) would go if its semantic equivalent,
(TRAN), goes, so we could have non-transitive prefer-
ences. The axiom (PC) says that if an agent ¢ prefers ¢
to 9, then both ¢ A =9 and ¥ A ~¢ are possible.

The last four axioms give a characterization of the be-
lief operator. As pointed out above, our belief operator
is designed to represent subjective knowledge. (KB) is
standard in epistemic logic, but it is often criticised, since
it requires logical omniscience with respect to the mate-
rial conditional. On the other hand, one would expect
to draw correct logical inferences when necessary, so not
having (KB) may be worse. (DB) rules out the belief in
absurdities, (4B) establishes positive self-introspection
for beliefs, and (BFB) is the Barcan formula for beliefs.
These four axioms give a standard characterization of
subjective knowledge. Together with the inference rules
(MP) and (NECB), they turn the belief operation into
a weak S4 system. As shown in [11), we could weaken
the belief operator considerably, but these weaker al-
ternatives have their own problems that would overload
ALX. (One radical alternative would be an empty belief
operator.)

The remaining expressions characterize ALX3’s infer-
ence rules. We have the modus ponens and generaliza-
tion for obvious reasons. By the same token, we have the
necessitation rule for the universal action modality: if in-
deed, ¢ is true in all worlds, then all activities will lead to
#-worlds; by the same token, we have the necessitation
rule for beliefs. (MONA) connects the meaning of the
action modality with the meaning of the material con-
ditional. We have right monotonicity for the intensional
conditional but not left monotonicity. Furthermore, logi-
cally equivalent propositions are substitutable in action-,
conditional-, and preference formulae (SUBA), (SUBC),
(SUBP). Note that we do not have monotonicity for pref-

erences. Because of this, we are able to avoid the coun- .

terintuitive deductive closure of goals that mars other
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action logics.

4 Formal Properties of ALX.3

Proposition 1 ALX3S is sound and complete, i.e., for
an arbitrary set of formulas T and an arbitrary formula
8, .

e X ES

PROOF: See [11]. ]

5 Conclusions and Summary

ALX is the first action logic modeled on the decision cy-
cle of potentially rational agents. Perhaps its most im-
portant feature is its preference operator. The preference
operator has a closest-world semantics in combination
with the conjunction expansion principle, so agents pre-
fer ¢ to ¥ if they prefer the closest ¢-and-not-1 worlds to
the closest ¢- and-not-¢ worlds. This facilitates the rep-
resentation of situation-dependent preferences, but does
not exclude the representation of stable preferences. The
preference operator is “normal” in the sense that agents
cannot have preferences with respect to absurd worlds.
This normality protects the conjunction expansion prin-
ciple against counterintuitive utilizations [3]. On the
other hand, the preference operator is not “tarskian”,
i.e., it does not distribute over disjunction [15; 1] and this
protects all intensional operators built on the preference
operator against the necessitation rule and against unde-
sired closure properties. For example, goal operators can
be defined as preferred states subject to additional qual-
ifications (e.g., the best accessible state, the best state
not believed to be inaccessible). The preference oper-
ator is transitive, but a non-transitive version is easily
generated by removing the constraint (TRAN) on the
semantic preference relation. The conditional operator
is adapted from Stalnaker’s system but allows for non-
unique closest worlds. It allows for an easy representa-
tion of the notion of “ceteris paribus”, and hence for the
standard notion of causality. This, in turn, greatly facili-
tates the representation of causal effects, side effects, and
similar non-monotonic relations that would have other-
wise to be represented by the (monotonic) material con-
ditional.

An important property of ALX is the virtual absence
of interaction between modal operators. This property
may raise eyebrows in philosophical circles, but we de-
signed ALX as a flexible knowledge-representation tool,
and such a tool should, in our view, not preémpt the
structure of domains to be represented.

As a flexible tool, ALX3 allows for the definition
of various additional intensional operators, such as the
alethic modalities, goal operators, intention-operators,



and for the characterization of other action-related no-
tions, such as ability, effect, side effect, intended effect,
etc (12).

As demonstrated in a companion paper [14], ALX3
serves already as a versatile tool of knowledge represen-
tation. However, there are some desiderata left to be
~ satisfied. ALX3 has no explicit notion of time in its se-
mantics, and this complicates a direct representation of
events. For example, we cannot define a “do”-operator,
and hence no actions that are not deliberate. Second,
we think that the notion of closest worlds needs closer
inspection. The constraints on the closest world func-
tion are relatively weak; stronger constraints may be re-
quired, in particular if one wants to combine the notion
of action with the notion of the closest world. Third,
and related, one may want to strengthen ALX so that
it allows for a calculation of causal outcomes. Such a
calculation would be an answer to the frame problem,
but it requires a more specific notion of possible worlds.

References

(1] van Benthem, J., Essays in Logical Semantics, (D.
Reidel Publishing Company, 1986).

(2] Blumer, H., Symbolic Interactionism: Perspective
and Methods, (Englewood Cliffs, NJ, Prentice-Hall,
1969).

[3] Chisholm, R., and Sosa, E., Intrinsic preferability
and the problem of supererogation, Synthese 16
(1966),_ 321-331. :

[4] Cohen, P. R. and Levesque, H. J., Intention is choice
with commitment. Artificial Intelligence 42 (1990)
213-261.

(5] Gamut, L.T.F., Logic, Language, and Meaning,
(The University of Chicago Press, 1991).

[6) Giddens, A., Central Problems in Social Theory:
Action, Structures, and Contradiction in Social
Analysis, (Berkeley, CA, University of California
Press, 1979).

[7] Ginsberg, M. L., and Smith, D. E., Reasoning about
action I: a possible worlds approach, in: M. Gins-
berg, ed., Readings in Non-monotonic Reasoning,
(Morgan Kaufman, Los Altos, 1987).

[8] Harel, D.. Dynamic logic, in: D. Gabbay and F.
Guenthner, eds., Handbook of Philosophical Logic,
Vol.II, (D. Reidel Publishing Company, 1984) 497-
604.

[9) Huang, Z., Masuch, M., and Pélos, L., ALX, an ac-

tion logic for agents with bounded rationality, Ar-.

tificial Intelligence (forthcoming).

110

[10) Huang, Z., Masuch, M., and Pélos, L., ALX2, a
quantifier ALX logic, CCSOM Working Paper 93-
99. .

[11] Huang, Z., Logics for Agents with Bounded Ratio-
nality, ILLC Dissertation series 1994-10, University
of Amsterdam, (1994).

(12] Huang, Z., and Masuch, M., ALX3, a Multi-agent
Action Logic, CCSOM Technical Report 94-102.

(18] Luhmann, N., The Differentiation of Society, (New
York, Columbia University Press, 1982).

[14) Masuch, M., and Huang, Z., A Logical Deconstruc-
tion: Formalizing J.D. Thompson’s Organizations
in Action in a Multi-agent Action Logic, CCSOM
Working Paper 94-120.

[15] Marx, M, Algebraic Relativization and Arrow Logic,
ILLC Dissertation series 1995-3, University of Am-
sterdam, 1995.

[16] Parsons, T., The Structure of Social Action, (Glen-
coe, IL, Free Press, 1937).

[17] Rao, A. S. and Georgeff, M. P., Modeling rational
agents within a BDI- architecture, in: J. Allen, R.
Fikes, and E. Sandewall, eds., Proceedings of the
Second International Conference on Principles of
Knowledge Represéntation and Reasoning, Morgan
Kaufmann Publishers, San Mateo, CA, (1991) 473-
484.

[18) Schutz, A., The Phenomenology of the Social
World, (Evanston, IL, Northwestern University
Press, 1967).

[19] Stalnaker, R., A theory of conditionals, in: Studies
in Logical Theory, American Philosophical Quar-
terly 2 (1968) 98-122

[20] Simon, H: A., A behavioral model of rational choice,
Quarterly Journal of Economics 69 (1955) 99-118.

[21) von Wright, G. H., The Logic of Preference, (Edin-
burgh, 1963).





