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Abstract

The paper presents experiments in learning in a multi-agent
design system. Inductive techniques are used to construct
models of other agents’ behaviors, by relating design require-
ments to design proposals. The models are used to anticipate
future design proposals and reduce the amount of interaction
needed to find solutions for parametric design problems.
 

1.  Introduction

This paper present experiments in learning in a
multi-agent design system. We approach non-rou-
tine parametric design problems by using small,
specialized, knowledge-based design agents
called Single Function Agents (SiFAs). The size
of the agents makes them very ‘competent’ in
their decisions, but imposes an overhead on the
design system due to the complexity of the task of
reaching an agreement. The number of interac-
tions between agents can be significantly reduced
if the agents learn to predict the responses from
the other agents with which they interact.

We first describe what SiFAs are and how they
solve design problems, then what the agents learn
about each other and how they use that knowl-
edge. The experimental results section will give
an overview of the benefits achieved and the dif-
ficulties encountered. 

2.  Design with Single Function Agents

Multi-agent systems are increasingly used for
design applications [Klein 1991] [Kuokka et al.
1993] [Lander & Lesser 1991] [Werkman & Bar-
one 1991]. There is also an increasing effort to
investigate the learning possibilities in such sys-
tems [NagendraPrasad et al 1995] [Sen 1995].
The computational power and flexibility of multi-

agent systems suggests attempting design prob-
lems of increasing complexity. However, it is
important to use agents to investigate the other
end of the computational spectrum – the elemen-
tary problem-solving steps and interactions which
together produce a solution for a design problem
[Douglas et al 1993] [Victor & Brown 1994]
[Dunskus et al 1995] [Grecu & Brown 1995].

Our experiments address Parametric design prob-
lems. This stage of design assumes that the con-
figuration of the design is already decided. The
design is to be completed by deciding the values
of the parameters associated with the configura-
tion, such as diameters, lengths, material choices,
colors, etc. Parametric design is often a non-rou-
tine process. Choices are made based on various
types of knowledge and from various points of
view. Arguments in favor of or against a choice
are usually the result of a reasoning process based
on considerable domain knowledge.

SiFAs are small, specialized, knowledge-based
systems that know how to deal with well delim-
ited portions of a design problem. Each agent has
a target, the entity about which it reasons. In our
case every design parameter represents a target.
Each agent performs a single function on its tar-
get. An agent knows, for example, how to select a
value for the design parameter, or how to critique
such a value. Each agent works from a given
point of view – a direction or aspect of design
which the agent tries to favor during its reasoning
(e.g., a SiFA could perform selection of a mate-
rial  from the point of view of reliability).

Among the previously enumerated dimensions
which characterize an agent, the function is the
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most important one. It defines an agent’s type,
leads to specific types of reasoning, and deter-
mines what can be learned about that agent. We
use the following agent types:

Selectors: A selector selects a value for a parame-
ter, by picking a value from a prestored or calcu-
lated representation of possible values. The values
are ordered according to some preferences. The set
of values and their order can be context-sensitive,
i.e., they can vary depending on the design
requirements.

Critics:  A critic criticizes the value of a parameter
by pointing out constraints or quality requirements
that are not met by the current value. Critics are
also context-sensitive. They point out different
reasons for criticism, depending on the require-
ments.

Praiser: A praiser praises values of parameters by
pointing out their importance from the agent’s
point of view. For the purposes of this paper, prais-
ers were considered context-insensitive. A mate-
rial is considered as having good endurance based
on general material properties, not on design spec-
ifications.

Estimators: An estimator produces an estimate of
a parameter’s value. Unlike selectors, estimators
can produce a result much faster and with insuffi-
cient information. 

Evaluators: An evaluator evaluates the value of a
parameter, producing a measure of goodness, usu-
ally represented as a percentage or as a symbol
(e.g., “good”).

SiFAs use a design board to post their proposals
and decisions. The board is also used to store the
current design state – the configuration and the
parameter values. No external scheduling is used
for agent control. Agents get activated based on
preconditions describing the availability of infor-
mation for their task and the need for the result
they are supposed to deliver.

Our results are based on the application of SiFAs
to the parametric design of helical compression
springs. The experiments are limited to agents that

have the Spring Material parameter as the target.
Deciding on a Spring Material involves a large
number of criteria, such as temperature ranges,
tensile strength, hardness, and elasticity. Each of
these criteria represents a separate point of view.
The agents work together by exchanging and ana-
lyzing values depending on their function. Selec-
tors provide values, critics provide unacceptable
value sets and praisers highlight proposals.

The process of deciding a parameter involves the
following stages:

1. The selectors negotiate a common acceptable
value for the design parameter. The negotiation
consists of an exchange of proposals in decreas-
ing order of preference. Praisers can intervene
and point out the desirability of the current pro-
posal. This will alter the course of the negotia-
tion. The agent that responds to a praised
proposal has to consider more possibilities than
usual (not only the next best) to check whether
the proposed value is in an acceptable range. If
this process fails the agent counter-proposes the
highest ranking value currently available on its
list.

2. The critics post their objections to the agree-
ments reached by selectors. A critic that rejects
a parameter value will announce the entire
range of values that are not allowable under the
current conditions. The operation is computa-
tionally expensive, but it is carried out only
when a critic is not satisfied with the current
decision.

3. The selectors start a new negotiation round,
during which they avoid use of the values con-
sidered not to be acceptable by the critics.

Steps 2 and 3 are repeated until the system reaches
a solution accepted by all the agents.

The experiments used two types of negotiations
among selectors. The main difference between
them is the number of values an agent offers in a
proposal and the number of values which are ana-
lyzed when a proposal arrives from another agent.
Both strategies converge if a solution exists:



 I) Point-to-point negotiations: Each agent pro-
poses a single value at a time. When analyzing
a proposal, the agent matches it only against its
best value. A disagreement prompts the agent
to use its own value as a counter-proposal.

II) Range-to-range negotiations: Each proposal is
an ordered set of values. The receiving agent
matches this proposal against its best value
and, if not successful, against a set of next best
values.

Critics and praisers are unaffected by the negotia-
tion strategy used.

3.  Learning with Single Function Agents

The number of interactions generated to find an
acceptable parameter value is high, and may be a
serious system overhead. Our experiments used 11
agents: 2 selectors, 5 critics and 4 praisers. The
agents encode knowledge about 20 materials,
which makes the material choice difficult, due to
the various comparisons which need to be taken
into account.

Selectors learn, as they are the only ones that per-
form a search. Learning is a result of agent interac-
tions and is supposed to reduce the interactions by
anticipating responses. The process of agent A
learning about agent B includes two generic
phases:

1. Create a case from the interaction with agent B.
A case is indexed by the design requirements
which B considered in taking its decision. The
contents of a case are the responses of agent B.
Each case represents a training instance in
developing a conceptual description of B’s
behavior [Gennari et al 1990] [Michalski 1983].
The concept features are the design conditions
which led to B’s proposal, expressed as allow-
able design ranges and thresholds. The contents
of the proposal itself determines the class in
which the concept falls (e.g, the material being
objected to, if agent B is a critic). 

2. Integrate the case in the knowledge already
available about agent B. The goal is to create a
mapping of the options and/or preferences of B

under various design conditions. Each training
instance potentially enhances the intentional
description which A has developed about B’s
behavior.

Learning is used to create a model of the other
agent based on the connection between design
conditions and responses. Modeling the other
agent’s reasoning would be difficult, due to the
specialized agent knowledge and the computa-
tional costs of such approaches. Therefore, an
inductive technique is likely to be more efficient,
even if there is no guarantee of perfect accuracy.

Since the types of domains which have to be cov-
ered by the inductive learning are extremely
diverse, we have used disjunctive induction meth-
ods [Michalski et al 1986]. However, variations
were imposed depending on the agent one learns
about. The classification features are the same for
all agent types since they originate in a set of
design conditions which are the same for all
agents. However, what exactly is learned about an
agent B depends on its type:

• Praisers are the most easy to learn about. The
acquired knowledge captures the values they
praised in the current design context. The
defined classes correspond to the material types
which are used.

• For critics the knowledge includes the entire set
of values determined as being unacceptable.
Classes correspond to individual materials, as
in the praisers’ case.

• For a selector the learned information repre-
sents a partial preference list. Classes are
defined by sets of preferences. The lists are
incomplete for two reasons. Preferences are
revealed during negotiation. As an agreement is
reached the rest of the preferences remain unre-
vealed. On the other hand, during the negotia-
tion some preferences might not be expressed if
the proposing agent anticipates that they will
not be accepted.

The knowledge acquired has different degrees of
completeness. An agent A learns a fixed behavior



about the praisers and critics with which it inter-
acts. That means that under the same conditions,
the critics and selectors will act in the same way.
This is not true for the selectors with which A
interacts. Even though the list of preferences of a
selector remains the same each time a set of design
conditions repeats itself, the perception of these
preferences from the outside may be different.
Therefore, a case describing a behavior pattern of
selector S can ‘migrate’ from one class to another
as new information is learned about that case in
subsequent negotiation sessions.

The result of learning is used by selectors when
making proposals, in order to try to anticipate their
acceptance. The anticipation process is carried out
only if there is knowledge available about the
behavior of all the selectors involved under the
current circumstances. If the agent’s proposal is
unlikely to be accepted the agent prepares a new
proposal. The agent posts its proposal if it believes
the value will be accepted or if it runs out of
knowledge about the other selector(s). 

The prediction process may lead to the failure to
reach an agreement, due to the fact that a selector
has only partial knowledge about the other selec-
tor’s preferences. After failure, the negotiation is
reinitiated and the selectors do not use the learned
knowledge about each other, to prevent overlook-
ing some of each other’s choices. Knowledge
learned about critics is used to filter any invalid
proposals or counter-proposals, before posting
them. Finally, knowledge about praisers will help
anticipate which agent will have to reconsider its
proposal in a conflict.

4.  Experimental results and conclusions

The experiments used 20 materials considered rep-
resentative for helical compression springs. The
design problems included design constraints that
affect each selector and critic. The experiments
measured the reduction in interactions and ana-
lyzed what the agents learned. An “interaction” is
a selector’s proposal, a critic’s objection, or a
praiser’s praise.

The first type of analysis used a sequence of 22
generated design problems. One problem was con-
sidered a reference problem, while each of the
other 21 problems introduced a change in the con-
ditions affecting the reasoning of one selector or
one critic, compared to the preceding problem.
Three changes were considered for each agent of
the 7 selectors and critics. Each run through the set
of 21 problems is called an experiment and the set
of changes was constant for each experiment, even
though their ordering was different.

At first the changes in the design problems were
made in random order and the system had to run
several times through the sequence of problems.
Each experiment was run with and without learn-
ing. Table 1 summarizes the average results for the
set of experiments:

The slow initial decrease in the number of interac-
tions is because the selectors don’t use predictions
if they have no information about the behavior of
the other selector in a new situation. The initial
decrease in the interactions is due mainly to the
information learned about the critics.

The same analysis was repeated by first schedul-
ing the changes in the design conditions affecting
selectors, and then making the other changes in
random order. The results are shown in Table 2.
The numbers in parentheses in the table represent
the interactions due to selectors.

The major improvement can be seen towards the
end of this run. Selectors learning about selectors

TABLE 1. Decrease of interactions in point-to-point 
negotiations (random problem ordering)

Type of 
analysis

Average number of interactions 
(rounded to closest integer) after

6 
expts.

12 
expts.

17 
expts.

22 
expts.

without 
learning

34 36 33 34

with 
learning

31 29 23 19



happened mostly during the first 6 design prob-

lems and without any changes in the behavior of
critics and praisers, as their requirements did not
change during that time. Consequently, interac-
tions in the next 5 design problems were reduced
mostly due to shorter negotiations between selec-
tors.

Similar experiments were carried out for range-to-
range negotiations. As the number of interactions
is smaller, and the agents convey less information
to each other, the learning was significantly
slower. However, the number of failures in reach-
ing an agreement was about 3 times as high as in
point-to-point negotiations. Using the same type
of changes in the points of view in various combi-
nations, the interactions were reduced by 40%
after going through 50 experiments.

For all of the previous experiments, the changes in
requirements produced problems which were
fairly close to the ones in the reference design
problem. The primary target was to test the reduc-
tion in the number of interactions under the
assumption that the variations can be captured rel-
atively quickly. Another type of analysis assumed
that the changes in the design requirements
affected only one agent, but on a large scale. The
goal was to investigate how a selector would build
a reliable model of the corresponding agent for a
large number of situations.

We targeted how well a selector can learn about
the other selector. The main problem affecting
learning accuracy is that the knowledge which

selector S learns about a critic C prevents it from
revealing preferences that will play a role when
the critic isn’t present. Note that the critic is active
depending on conditions which are different from
the ones which influence the selectors.

Having a selector learn without the critics and then
running the system on the same (or similar) cases,
but with the critics, generated the most accurate
learning. Accuracy was measured in terms of dis-
tance between the concepts developed and the
actual preferences of the targeted agent. The per-
formance is due to the fact that learning without
the interference of critics generates an accurate
partitioning of the design requirements into con-
cepts. Adding the critics does not bring large
changes to the conceptual partitioning of agent
behavior, but causes the concepts to be refined.

The major challenge in this investigation is the
development of additional criteria to show how the
evolution of agent B will influence the accuracy of
what agent A learns about B. The learning of A
about B, and of B about A, depend on each other.
At the same time, A’s learning mirrors what B has
learned about, say, critic C. The knowledge that
agent A learns about B does not become obsolete
as B evolves, but it can obviously be reduced as B
bases its reasoning on knowledge compiled from
previous interactions. Learning can be explored in
isolated selector to selector interactions. However,
it can be significantly different in the presence of
critics. Therefore, besides local investigations,
some global criteria are needed to evaluate what
happens with a group of agents learning together.

Additional work will explore the phenomena gen-
erated by using the system to decide the values of
all the design parameters in helical compression
spring design. Advisors and estimators will need
to be included in predictions. Advisors also raise
the problem of a new type of learning: Assuming
that advisor A advises selector S, agent B which
interacts with S will receive answers from S,
which will reflect the reasoning of A and S. Esti-
mators are used for preliminary estimates in solv-
ing constraints between design parameters. An
estimator attached to a parameter provides infor-

TABLE 2. Decrease of interactions in point-to-point 
negotiations (design problems were ordered such that 
requirements for selectors were changed first)

Type of 
analysis

Average number (rounded to closest 
integer) of interactions after

6 
expts.

12 
expts.

17 
expts.

22 
expts.

without 
learning

34 35 33 34

with 
learning

31 (25) 22 (18) 19 (16) 15 (13)



mation to a group of agents attached to another
parameter. The use of estimators will generate sit-
uations in which the learning agent and the agent
learned about belong to agent groups associated
with different parameters. Another important issue
is raised by the use of the methodology for design
parameters which span over continuous ranges.
Discretization of the domain (which is close to
dimensional standardization in design) would be
the most likely approach to take. 

SiFAs, using their relatively simple negotiation
schemes, provide good opportunities to analyze
learning in multi-agent systems. The work done so
far indicates that learning can help make the inter-
actions smoother for the most frequent design
ranges. However, learning experiments will pro-
vide more insight into the efficiency of various
improvement schemes.
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