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Abstract

In this paper, we present a heterogeneous multi-agent
system called L-TEAM that highlights the potential
for learning as an important tool for acquiring organi-
zational knowledge in heterogeneous multi-agent sys-
tems. No single organization is good for all situations
and it is almost impossible to anticipate all the situa-
tions and provide the agents with capabilities to react
to each of them appropriately. L-TEAM is our at-
tempt to study ways to alleviate this enormous knowl-
edge acquisition bottle-neck.

Introduction
As Distributed Artificial Intelligence matures as a field,
the complexity of the applications being tackled are
beginning to challenge some of the common assump-
tions such as homogeneity of agents and tightly in-
tegrated coordination. Reusability of legacy systems
and heterogeneity of agent representations demand a
reexamination of many of the key assumptions about
the amount of sharable information and the types of
protocols for coordination. Lander and Lesser (Lan-
der & Lesser 1994) developed the TEAM framework
to examine cooperative search among a set of hetero-
geneous reusable agents. TEAM is an open system
assembled through minimally customized integration
of a dynamically selected subset from a catalogue of
existing agents. Reusable agents may be involved in
systems and situations that may not have been explic-
itly anticipated at the time of their design. Each agent
works on a specific part of the overall problem. The
agents work towards achieving a set of local solutions
to different parts of the problem that are mutually con-
sistent and that satisfy, as far as possible, the global
considerations related to the overall problem.

TEAM was introduced in the context of paramet-
ric design in multi-agent systems. Each of the agents
has its own local state information, a local database

*This material is based upon work supported by the Na-
tional Science Foundation under Grant Nos. IRI-9523419
and EEC-9209623. The content of this paper does not nec-
essarily reflect the position or the policy of the Government,
and no official endorsement should be inferred.

with static and dynamic constraints on its design com-
ponents and a local agenda of potential actions. The
search is performed over a space of partial designs. It
is initiated by placing a problem specification in a cen-
tralized shared memory that also acts as a repository
for the emerging composite solutions (i.e. partial so-
lutions) and is visible to all the agents. Any design
component produced by an agcnt is placed in the cen-
tralized repository. Some of the agents initiate base
proposals based on the problem specifications and their
own internal constraints and local state. Other agents
in turn extend and critique these proposals to form
complete designs.

An agent may detect conflicts during this process
and communicate feedback to the relevant agents; aug-
menting their local view of the composite search space
with meta-level information about its local search
space to minimize the likelihood of generating conflict-
ing solutions(Lander & Lesser 1994). For a compos-
ite solution in a givcn state, an agent can play one
of a set of organizational roles (in TEAM, these roles
are solution-initiator, solution-eztender, or solution-
critic). An organizational role represents a set of oper-
ators an agent can apply to a composite solution. An
agent can be working on several composite solutions
concurrently. Thus, at a given time, an agent is faced
with the problem of: 1) choosing which solution to
work on; and 2) choosing a role from the set of allowed
roles that it can play for that solution. This decision
is complicated by the fact that an agent has to achieve
this choice within its local view of the problem-solving
situation.

The objective of this paper is to investigate the util-
ity of machine learning techniques as an aid to the
decision processes of agents that may be involved in
problem-solving situations not necessarily known at
the time of their design. The results in our previ-
ous paper(NagendraPrasad, Lesser, & Lander 1995b)
demonstrated the promise of learning techniques for
such a task in L-TEAM, which is a learning version of
TEAM. In this paper, we present further experimental
dctails of our results and some new results since.
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Organizational Roles in Distributed

Search

Organizational knowledge can be described as a spec-
ification of the way the overall search should be or-
ganized in terms of which agents play what roles in
the search process and communicate what information,
when and to whom. It provides the agents a way to
effectively and reliably handle cooperative tasks. Each
agent in L-TEAM plays some organizational role in
distributed search. A role is a task or a set of tasks
to be performed in the context of a single solution. A
role may encompass one or more operators, e.g., the
role solution-initiator includes the operators initiate-
solution and relax-solution-requirement. A pattern of
activation of roles in an agent set is a role assignment.
All agents need not play all organizational roles; which
in turn implies that agents can differ in the kinds of
roles they are allotted. Organizational roles played by
the agents are important for the efficiency of a search
process and the quality of final solutions produced.

To illustrate the above issue, we will use a simple,
generic two-agent example and their search and solu-
tion spaces as shown in Figure 1. The shaded portions
in the local spaces of the agents A and B axe the lo-
cal solution spaces and their intersection represents the
global solution space. It is clear that if agent A initi-
ates and agent B extends, there is a greater chance of
finding a mutually acceptable solution. Agent A try-
ing to extend a solution initiated by Agent B is likely
to lead to a failure more often than not due the small
intersection space versus the large local solution space
in Agent B. Note however, that the solution distribu-
tion in the space is not known a priori to the designer
to hand code good organizational roles at the design
time.

During each cycle of operator application in TEAM,
each agent in turn has to decide on the role it can play
next, based on the available partial designs. An agent
can choose to be an initiator of a new design or an ex-
tender of an already existing partial design or a critic
of an existing design. The agent needs to decide on
the best role to assume next and accordingly construct
a design component. Due the complexity and uncer-
tainty associated with most real-world organizations,
there may be no single organizational structure for all
situations. This makes it imperative that the agents
adapt themselves to be better suited for the current
situation, so as to be effective. This paper investigates
the effectiveness of learning situation-specific organi-
zational roles assignments. Roles for the agents are
chosen based on the present problem solving situation
(we will discuss situations in more detail in the follow-
ing section).

Learning Organizational Roles

The formal basis for learning search strategies adopted
in this paper is derived from the UPC formalism

for search control (see (Whitehair & Lesser 1993))
that relies on the calculation and use of the Utility,
Probability and Cost (UPC) values associated with
each (state, op, final state) tuple. The Utility com-
ponent represents the present state’s estimate of the
final state’s expected value or utility if we apply op-
erator op in the present state. Probability represents
the expected uncertainty associated with the ability to
reach the final state from the present state, given that
we apply operator op. Cost represents the expected
computational cost of reaching the final state. Addi-
tionally, in the complex search spaces for which the
UPC formalism was developed, application of an op-
erator to a state does more than expand the state; it
may also result in an increase in the problem solver’s
understanding of the interrelationships among states.
In these situations, an operator that looks like a poor
choice from the perspective of a local control policy
may actually be a good choice from a more global per-
spective due to some increased information it makes
available to the problem solver. This property of an
operator is referred to as its potential and it needs to
be taken into account while rating the operator. An
evaluation function defines the objective strategy of the
problem solving system based on the UPC components
of an operator and its potential.

We modify the UPC formalism for the purpose of
learning organizational roles for agents. All the pos-
sible states of the search are classified into a pre-
enumerated finite class of situations. These classes
of situations represent abstractions of the state of a
search. Thus, for each agent, there is a UPC vector
per situation per operator leading to a final state. A
situation in L-TEAM is represented by a feature vec-
tor whose values determine the class of a state of the
search. In L-TEAM, an agent responsible for decision
making at the node retrieves the UPC values based on
the situation vector for all the roles that are applicable
in current state. Depending on the objective function
to be maximized, these UPC vectors are used to choose
a role to be performed next.

We use the supervised-learning approach to predic-
tion learning (see (Sutton 1988)) to learn estimates 
the UPC vectors for each of the states1.

Obtaining measures of potential is a more involved
process requiring a certain understanding of the sys-
tem. For example, in L-TEAM the agents can apply
operators that lead to infeasible solutions due to con-
flicts in their requirements. However, this process of
running into a conflict leads to certain important con-
sequences such as the exchange of violated constraints.
The constraints an agent receives from other agents
aid that agent’s subsequent search in that episode
by letting it relate its local solution requirements to
more global requirements. Hence, the operators lead-
ing’ to conflicts followed by information exchange are

1For details, the reader is referred to Nagendra Prasad
et. al.(NagendraPrasad, Lesser, & Lander 1995a)
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Figure 1: Local and Composite Search Spaces

rewarded by potential. Learning algorithm for the po-
tential of an operator again uses supervised-learning
approach to prediction learning and is similar to that
for utility.

Experiments

To demonstrate the effectiveness of the mechanisms
in L-TEAM and compare them to those in TEAM,
we used the same domain as in (Lander & Lesser
1994) -- parametric design of steam condensers. The
prototype multi-agent system for this domain, built
on top of the TEAM framework, consists of seven
agents: pump-agent, heat-exchanger-agent, motor-
agent, vbelt-agent, shaft-agent, platform-agent, and
frequency-critic. Problem specification consists of
three parameters -- required capacity, platform side
length, and maximum platform deflection.

Each agent can play a single organizational role in
any single design. In this paper, we confine ourselves to
learning the appropriate application of two roles in the
agents- solution-initiator or solution-eztender. Four
of the seven agents -- pump-agent, motor-agent, heat-
exchanger-agent, and Vbelt-agent -- are learning ei-
ther to be a solution-initiator or solution-extender in
each situation. The other three agents have fixed or-
ganizational roles -- platform and shaft agents always
extend and frequency-critic always critiques.

In the experiments reported below, the situation vec-
tor for each agent had three components. The first
component represented changes in the global views of
any of the agents in the system. If any of the agents re-
ceives any new external constraints from other agents
in the past m time units (m is set to 4 in the exper-
iments), this component is ’1’ for all agents. Other-
wise it is ’0’. If any of the agents has relaxed its local
quality requirements in the past n time units (n = 2)
then the second component is ’1’ for all agents. Oth-
erwise it is ’0’. Typically, a problem solving episode
in L-TEAM starts with an initial phase of exchange of
all the communicable information involved in conflicts
and then enters a phase where the search is more in-
formed and all the information that leads to conflicts
and can be communicated has already been exchanged.

This phase shift is represented in the situation vector
through the third component: during the initial phase
of conflict detection and exchange of information, it is
’0’ while in the second phase, it is ’1’. We used the
following objective evaluation function for rating an
organizational role:

f(U, P, C, potential) = U, P + potential

We trained L-TEAM on 150 randomly generated
design requirements and then tested L-TEAM and
TEAM pairwise on 100 randomly generated design
requirements different from those used for training.
TEAM was set up so that heat-exchanger and pump
agents could either initiate a design or extend a design
whereas Vbelt, shaft and platform agents could only
extend a design. In TEAM, an agent initiates a design
only if there are no partial designs on the blackboard
that it can extend. The performance parameter we an-
alyzed was the cost of the best design produced (lowest
cost).

We ran L-TEAM and TEAM in two ranges of the
input parameters. Range I consisted of required-
capacity 50 - 1500, platform-side-length 25 - 225,
platform-deflection 0.02 - 0.1. Range 2 consisted of
requlred-capaclty 1750- 2000, platform-side-length 175
- 225, platform-deflection 0.06 - 0.1. Lower values of
required-capacity in Range 1 represented easier prob-
lems. We chose the two ranges to represent "easy"
and "tough" problems. Table 2 represents the same
organization learned by non-situation-specific TEAM
in both the ranges. One can see from Table 3 and Ta-
ble 4 that the two learned organizations for Range I
and Range 2 are different. Table 1 shows the average
design costs for the three systems - situation-specific L-
TEAM (ss-L-TEAM), non-situation-specific L-TEAM
(ns-L-TEAM), and TEAM - over the 2 ranges.

Wilcoxon matched-pair signed-ranks test revealed
significant differences between the cost of designs pro-
duced by all the pairs in the table except between
situation-specific L-TEAM and non-situation-specific
L-TEAM in Range 12 and between non-situation-

2Easy problems may not gain by sophisticated mecha-
nisms like situation-speclficity

74



Range ss-L-TEAM ns-L-TEAM TEAM
Range 1 5587.6 5616.2 5770.6
Range 2 17353.75 17678.97 17704.70

Table 1: Average Cost of a Design

agent pump heatx motor vbelt shaft platform frequency
agent agent agent agent agent agent critic

ro~e8 initiator
extender extender extender extender extender critique

Table 2: Organizational roles for non-situation-specific L-TEAM after learning

situation
1 1 1 1 0 0 0 0
1 1 0 O 1 1 0 0

agent 1 0 1 0 1 0 1 0

pump initiator initiator initiator initiator initiator
agent extender extender extender
hear initiator
agent extender extender extender extender extender extender extender
motor initiator
agent extender extender extender extender extender extender extender
vbelt
agent extender extender extender extender extender extender extender extender

Table 3: Organizational roles learned by situation-specific L-TEAM for Range 1
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specific L-TEAM and TEAM in Range 2a.

These experiments highlight some important aspects
of role organization:

¯ Learning is a promising approach to acquiring or-
ganizational knowledge about roles in distributed
search. Both situation-specific and non-situation
specific learning outperforms hand-coded organiza-
tional role assignment in our experiments.

¯ Situation-specificity is an important part of role or-
ganization. Situation-specific L-TEAM produces de-
signs that are lower in cost than those produced by
non-situation-specific L-TEAM in both the ranges.

¯ In addition, the role organization produced by learn-
ing is different for the two different ranges implying
that different nature of the problems being solved by
the system may need different role organization.

Conclusion
L-TEAM highlights the potential for learning as an
important tool for acquiring organizational knowledge
in heterogeneous multi-agent systems. No single or-
ganization is good for all situations and it is almost
impossible to anticipate all the situations and provide
the agents with capabilities to react to each of them ap-
propriately. L-TEAM is our attempt to study ways to
alleviate this enormous knowledge acquisition bottle-
neck.

References

Lander, S. E., and Lesser, V. R. 1994. Sharing meta-
information to guide cooperative search among het-
erogeneous reusable agents. Computer Science Tech-
nical Report 94-48, University of Massachusetts. To
appear in IEEE Transactions on Knowledge and Data
Engineering, 1996.

NagendraPrasad, M. V.; Lesser, V. R.; and Lander,
S. E. 1995a. Learning organizational roles in a hetero-
geneous multi-agent system. Computer Science Tech-
nical Report 95-35, University of Massachusetts.

NagendraPrasad, M. V.; Lesser, V. R.; and Lander,
S. E. 1995b. Learning experiments in a heterogeneous
multi-agent system. In Proceedings of the IJCAI-
95 Workshop on Adaptation and Learning in Multi-
Agent Systems.
Sutton, R. 1988. Learning to predict by the methods
of temporal differences. Machine Learning 3:9-44.
Whitehair, R., and Lesser, V. R. 1993. A framework
for the analysis of sophisticated control in interpre-
tation systems. Computer Science Technical Report
93-53, University of Massachusetts.

s In addition to cost of design, we also did experiments
on number of cycles (representing the amount of search.
ss-L-TEAM out performed both ns-L-TEAM and TEAM
on these measures too.

76



situation
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0

agent 1 0 1 0 I 0 1 0
pump initiator initiator initiator initiator initiator
agent extender extender extender
hea~ initiator initiator
agent extender extender extender extender extender extender
motor initiator
agent extender extender extender extender extender extender extender
vbelt
agent extender extender extender extender extender extender extender extender

Table 4: Organizational roles learned by situation-specific L-TEAM for Range 2
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