
Robotics and the Conlnlon Sense Informatic Situation

Murray Shanahan

Department of Computer Science,
Queen Mary and Westfield College,

Mile End Road,
London E1 4NS,

England.
mps@dcs.qmw.ac.uk

Abstract
Any model of the world a robot constructs on the basis
of its sensor data is necessarily both incomplete, due
to the robot's limited window on the world, and
uncertain, due to sensor and motor noise. This paper
proposes a logic-based framework in which such
models are constructed through an abductive process
whereby sensor data is explained by hypothesising the
existence, locations, and shapes of objects. Symbols
appearing in the resulting explanations acquire
meaning through the theory, and yet are grounded by
the robot's interaction with the world. The proposed
framework draws on ex isting logic-based formalisms
for represen ting action, continuous change, space, and
shape. Noise is treated as a kind of non-determinism ,
and is dealt with by a consistency-based form of
abduction.

Introduction

Without ignoring the lessons of the past, the nascent area of
Cognitive Robotics [Lesperance, et al., 1994] seeks to
reinstate the ideals of the Shakey project [Nilsson, 1984],
munely the construction of robots whose architecture is
based on the idea of representing the world by sentences of
formal logic and reasoning about it by manipulating those
sentences . The chief benefits of this approach are,

that it facilitates the endowment of a robot with the
capac ity to perform high-level reasoning tasks, such
as planning, and

that it makes it possible to formally account for the
success (or otherwise) of a robot by appealing to the
notions of correc t reasoning and correct
representation .

This paper concerns the representation of knowledge
about the objects in a robot's environment, and how such
knowledge is acquired. The main feature of this knowledge
is its incompleteness and uncertainty, placing the robot in
what McCarthy calls the common sense informatic
situation [1989]. The treatment given in the paper is

95

rigorously logical, but has been carried through to
implementation on a real robot.

1 Assimilating Sensor Data

The key idea of this paper is to consider the process of
assimilating a stream of sensor data as abduction . Given
such a stream, the abductive L:'lsk is to hypothesise the
existence, shapes, and locations of objects which, given the
output the robot has supplied to its motors, would explain
that sensor data [Charniak & McDermott, 1985, page 455J.
This is, in essence, the map building task for a mobile
robot.

More precisely, if a stream of sensor data is represented
as the conjunction \}1 of a set of observation sentences , the
task is to find an explanation of \}1 in the form of a logical
description (a map) ~M of the initial locations and shapes
of a number of objects, such that,

LB /\ LE /\ ~N /\ ~M F \}1

where,

LB is a background theory , compris ing ax ioms for
change (including continuous change), action,
space, and shape,

~E is a theory relating the shapes and movements of
objects (including the robot itself) to th e robot's
sensor data. and

~N is a logical description of the movements of
objects, including the robot itself.

The exact form of these components is described in the
next three sections, whic h present formalisms for
representing and reasoning about action, change, space, and
shape. In practice, as we'll see, these components will have
to be split into parts for technical reasons.

Three major issues arise with this logical specification of
the map building task: noisy data, incomplete information,
and implementation .

I.E does not hav e to assume a perfect
correspondence between objects in the world and
sensor data rece ived from them, or a perfect
correspondence between motor outputs and actual

From AAAI Technical Report SS-96-04. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

movements in the world. In practice, a noisy
interface between world and robot must be assumed.
Using the expressive power of first-order logic, the
uncertainty resulting from such noise can be
captured.

Data in the common sense informatic situation is
incomplete as well as noisy. In abductive terms,
there will typically be many L'1M's that could explain
any given 'P. For example, the robot may only
receive sensor data from a small fraction of the total
surface of an object, and be unable to tell whether
the object is large or small. Again, using the
expressive power of first-order logic, this
incompleteness can be captured.

This logical specification of the map building task
must be rendered into an efficient implementation
which can be executed by the on-board
microprocessor of a mobile robot.

The provision of a logic-based theoretical account brings
issues like noise and incompleteness into sharp focus, and
permits their study within the same framework used to
address wider epistemological questions in knowledge
representation. It also enables the formal evaluation of
algorithms for low-level motor-perception tasks by
supplying a formalism in which these tasks can be
preciseiy specified.

2 Representing Action

The formalism used in this paper to represent action and
change, including continuous change, is adapted from the
circumscriptive Event Calculus presented in [Shanahan,
1995b] , which in turn is based loosely on the formalism of
Kowalski and Sergot [1986]. However, it employs a novel
solution to the frame problem , inspired by the work of
Kartha and Lifschitz [199S]. The result is a considerable
simplification of the formalism in [Shanahan, 1995b].

Throughout the paper, the language of many-sorted first­
order predicate calculus with equality will be used,
augmented with circumscription [McCarthy, 1986],
[Lifschitz, 1994] . Variables in formulae begin with lower­
case letters and are universally quantified with maximum
scope unless indicated otherwise.

In the Event Calculus, we have sorts for fluents, actions
(or events), and time points. It's assumed that time points
are interpreted by the reals, and that the usual comparative
predicates, arithmetic functions, and trigonometric
functions are suitably defined . The formula HoldsAt(f,t)
says that fluent f is true at time point t. The formulae
Iniliales(a,f,t) and Terminates(a,f,t) say respectively that
ac tion a makes fluent f true from time point t, and that a
makes f false from t. The effects of actions are described by
a collection of formulae involving Initiates and Terminates.

For exampl e, if the term Rotate(r) denotes a robot's
action of rotating r degrees about some axis passing
through its body, and the term Facing(r) is a fluent
representing that the robot is facing in a direction r degrees

96

from North, then we might write the following Initiates and
Terminates formulae.]

InitiatesCRotate(rl),Facing(r2),t) f- (2.1)
HoldsAt(Facing(r3),t) /\ r2 == r3 + rl

Terminates(Rotate(rl),Facing(r2),t) f­

HoldsAt(Facing(r2),t) /\ rl ;t 0
(2.2)

Once a fluent has been initiated or terminated by an
action or event, it is subject to the common sense law of
inertia, which is captured by the Event Calculus axioms to
be presented shortly. This means that it retains its value
(true or false) until another action or event occurs which
affects that fl uen t.

A narrative of actions and events is described via the
predicates Happens and Initially. The formula Happens(a,t)
says that an action or event of type a occurred at time point
t. Events are instantaneous. The formula Initially(f) says
that the fluent f is true from time point O. Here's an
example narrative.

Ini tialjy(F acing(O»

Happens(Rotate(90), 1 0)

Happens(Rotate(-180) ,20)

(2.3)

(2.4)

(2.S)
A theory will also include a pair of uniqueness-of-names

axioms, one for actions and one fluents.
UNA[Facing] (2.6)

UNA [Rotate] (2.7)

The relationship between HoldsAt, Happens, Initiates,
and Terminates is constrained by the following axioms.
Note that a fluent does not hold at the time of an action or
event that initiates it, but does hold at the time of an action
or event that terminates ir.

HoldsAt(f,t) f- Initially(f) /\ -, Clipped(O,f,t) (EC I)

HoldsAt(f,t2) f- (EC2)
Happens(a,tl) /\ Initiates(a,f,tJ) /\ tl < t2 /\

-, Clipped(tl,f,t2)

-, HoldsAt(f,t2) f- (EC3)
Happens(a,tl) /\ Terminates(a,f,tl) /\ tl < t2/\

-, Dectipped(tl,f,t2)

Clipped(tl,f,t2) H (EC4)
Happens(a,t) /\ [Terminates(a,f,t) v Releases(a,f,l)] /\

tl < t /\ t < t2

Declipped(tl,f,t2) H (ECS)
Happens(a,t) /\ [InitiatL:s(a,f,t) v Releases(a,f,t)] /\

tl < t /\ t < t2
These axioms introduce a new predica te Releases

[Kartha & Lifschitz, 1994] . The formula Releases(a,f,t)
says that action a L:xempts fluent f from the common sense
law of inertia. This non-inertial status is revoked as soon as
the fluent is initiated or terminated once more. The use of
this predicate will be illustrated shortly in the context of
continuous change.

1 R otation is treated as instantaneous here , and thro ughout the
sequel.

Let the conjunction of (ECl) to (EC5) be denoted by EC.
The circumscription policy to overcome the frame problem
is the following. Given a conjunction of Happens and
Initially formulae N, a conjunction of Initiates, Terminates
and Releases formulae E, and a conjunction of uniqueness­
of-names axioms U, we are interested in,

CIRC[N ; Happens] /\
CIRC[E ; Initiates, Terminates, Releases] /\ U /\ EC

This formula embodies a form of the common sense law
of inertia, and thereby solves the frame problem. Further
details of this solution are to be found in [Shanahan, 1996].
The key to the solution is to put EC outside the scope of the
circumscriptions, thus ensuring that the Hanks-McDermott
problem is avoided [Hanks & McDermott, 1987]. In most
cases, the two circumscriptions will yield predicate
completions, making the overall formula manageable ana
intuitive.

For the example above, we have the following
proposition. Let E be the conjunction of (2.1) with (2.2), let
N be the conjunction of (2.3) to (2.5), and let U be the
conjunction of (2.6) with (2.7) .

Proposition 2.8.

CIRC[N ; Happens] /\
CIRC[E ; Initiates, Terminates , Releases] /\ U /\ EC Fe

HoldsAt(Facing(r),t) (-
[0 :0; t :0; 10 /\ r = 0] v [10 < t:O; 20 /\ r = 90] v

[20 < t /\ r= 270] .

Proof. See Appendix.

3 Domain Constraints and Continuous
Change

o

Two additional features of the calculus are important: the
ability to represent domain constraints, and the ability to
represent continuous change.

Domain constraints are straightforwardly dealt with in
the proposed formalism. They are simply formulated as
HoldsAt formulae with a single universally quantified time
variable, and conjoined outside the scope of the
circumscriptions along with EC. For example, the
following domain constraint expresses the fact that the
robot can only face in one direction at a time.

HoldsAt(Facing(rl),t) /\ HoJdsAt(Facing(r2),t) -..:; rl = r2

In the Event Calculus, domain constraints are used to
determine values for fluents that haven't been initiated or
terminated by actions or events (non-inertial fluents) given
the values of other fluents that have. (Domain constraints
that attempt to constrain the relationship between inertial
f1uents can lead to inconsistency.) 1

Following [S hanahan, 1990], continuous change is
represented through the introduction of a new predicate and
the addition of an extra axiom. The formula

I Note that Initiates(a,Fl,t) -7 Initiates(a,F2,t) does not follow

from HoldsAt(Fl,t) -7 HoldsAt(F2,t).

97

Trajectory(fl,t,f2,d) represents that, if the fluent fl is
initiated at time t, then after a period of time d the fluent f2
holds. We have the following axiom.

HoldsAt(f2,t2) (- (EC6)
Happens(a,tl) /\ Initiates(a,fl,tl) /\ tl < t2 /\

t2 = tl + d /\ Trajectory(fl,tl,f2,d) /\
-, Clipped(tl,fl ,12)

Let CEC denote EC /\ (EC6), and U denote the
conjunction of a set of uniqueness-of-names axioms. If R is
the conjunction of a set of domain constraints and T is the
conjunction of set of formulae constraining Trajectory, then
we are interested in,

CIRC[N ; Happens] /\
CIRC[E ; Initiates, Terminates, Releases] /\

T /\ R /\ U /\ CEC.

For example, suppose the robot's repertoire of actions is
expanded to include the actions Go and Stop. The Go
action initiates a period of continuous change in the robot's
location. The Stop action terminates such a period. The
robot's location will be represented by the fluent
Location(Robot,p), where p is a pair of Cartesian co­
ordinates the form (x,y). (The first argument of this fluent
is there so that we can represent the locations of other
objects beside the robol. This will be useful later on.) A
constant velocity V is assumed in the following collection
of formulae, which are intended to capture this example.

Let E be the conjunction of the following fonnulae.

Initiates(Go,Moving,t) (3.1)

Releases(Go,Location(Robot,p),t) (3.2)

Terminates(Stop,Moving,t) (3.3)

Initiates(Stop,Location(Robot,p),t) (- (3.4)
HoldsAt(Location(Robot,p),t)

Let T be the following formula.

Trajectory(Moving,t.Location(Robot,(x2,y2»,d) (- (3.5)
HoldsAt(Location(Robot,(x I ,y 1)),t) A

HoldsAt(Facing(r),tl) /\
x2 = xl + V.d.Sin(r) /\ y2 = yl + V.d.Cos(r)

Let R be the following domain constraint.

[HoldsAt(Location(w,p 1),t) /\ (3.6)
HoldsAt(Location(w,p2),t)] -..:; pI = p2

Let U be the conjunction of the foUowing uniqueness-of­
names axioms.

UNA[Location, Facing, Moving]

UNA[Go, Stop] (3.8)

Let N be the following narrative description .

I ni tiall y(Location(Robot, (0,0»

lnitially(Facing(90»

Happens(Go,lO)

Happens(Stop,20)

(3.7)

(3.9)

(3.10)

(3. I 1)

(3.12)
Now, given that the circumscriptions of E and N yield

the predicate completions of Happens, Initiates,
Terminates, and Releases, it's a straightforward exercise to

show that the recommended circumscription yields what
we would expecl.

Proposition 3.13.

CfRC[N; Happens]/\
CIRC[E ; Initiates, Terminates, Releases] /\

T /\ R /\ U /\ CEC F
HoldsAt(Location(Robot,(x,y»,t) H

ro ::; t S; 10 /\ X = 0 /\ Y = 0] v
[10 < t ::; 20 /\ X = V.(t - 10) /\ Y = 0] v

[20 < t /\ X = V.lO /\ Y = 0].

Proof. See Appendix. 0
Notice that we are at liberty to include formulae which

describe triggered events in N. Here's an example of such a
formula, which describes conditions under which the robot
will collide with a wall lying on an East-West line 100
units north of the origin.

Happens(Bump,t) f--

HoldsAt(Moving,t) 1\ HoldsAt(Facing(r),t) /\
-90 < r < 90 /\ HoldsAt(Location(Robot,(x,90»,t)

4 Representing Space and Shape

The formalism used in this paper to represent space and
shape is taken from [Shanahan, 1995a]. Space is considered
a real-valued co-ordinate system. For present purposes we
can take space to be the plane IR x IR, reflecting the fact that
the robot we will consider will move only in two
dimensions. A region is a subset of IR x IR. A point is a
member of IR x IR. I will consider only interpretations in
which points are interpreted as pairs of reals, in which
regions are interpreted as sets of points, and in which the E

predicate has its usual meaning.
A shape is represented as a region. The only shapes we

will consider are open and path-connected. Every shape has
a conventional centre, which is the origin (0,0).1 For
example, an open circle of radius z units is described by
following formula.

p E Disc(z) H Distance(p,(O,O» < z (SpI)

where Distance is a function yielding a positive real
number, defined in the obvious way.

Dislance«xl ,yI),(x2,y2» = ';'-(-xl---x2-)-=-2 -+-(y-I--y-2-=)2 (Sp2)

The function Bearing is also useful.
Bearing((x l,yI),(x2,y2» = r f-- (Sp3)

z = Distance«xl,y 1),(x2,y2» /\ z #- 0 /\
x2-xl l1=Yl

Siner) = -- /\ Cos(r) =
z z

Using Distance and Bearing we can define a straight line
as follows. The term Line(p 1 ,p2) denotes the straight line
whose end points are pI and p2. The Line function is useful
in defining shapes with straight line boundaries.

I This conventional "cen tre" is just a reference point, and doesn'l
even have to be inside the shape in question.

98

P E Line(pl,p2) H

Bearing(p l ,p) = Bearing(p 1 ,p2) /\
Distance(p l,p) S; Distance(p 1 ,p2)

(Sp4)

Space is occupied by objects. Each object w has a unique
shape denoted by the term Shape(w). If the robot is denoted
by the term Robot, and if its body is circular and ten units
in radius, then we can express this as follows.

Shape(Robot) = Disc(0·5)

Spatial occupancy is represented by the fluent Occupies.
The term Occupies(w ,g) denotes that object w occupies
region g. No object can occupy two regions at the same
time. This implies, for example, that if an object occupies a
region g, it doesn't occupy any subset of g nor any superset
of g. We have the following domain constraints.

[HoldsAt(Occupies(w ,g 1),t) /\ (Sp5)
HoldsAt(Occupies(w,g2),t)] ~ gl = g2

HoldsAt(Occupies(wI,gl),t) /\ (Sp6)
HoldsAt(Occupies(w2,g2),t) /\ wI #- w2 ~

--, ~ p Lp E gl /\ P E g2]
The first of these axioms captures the uniqueness of an

object's region of occupancy, and the second insists that no
two objects overlap.

An object's location is represented by the fluent
Location. A further domain constraint is required which
relates Location to Occupies. The term Location(w,p),
which we've already encountered, denotes that the object w
is located at point p. This means that the region it occupies
is the result of displacing the conventional centre of its
shape by x units east and y units north, where p = (x,y). If
the object's shape is the region g, then the result of this
displacement is denoted by the term Displace(g,p).

HoldsAt(Occupies(w ,Displace(g,p» ,t) H (Sp7)
~ g [Shape(w,g) /\ HoldsAt(Location(w,p),t)]

(xI,yI) E Displace(g,(x2,y2» H (xl-x2,yl-y2) E g(Sp8)

Using the Displace function, shapes can be conveniently
combined to form new shapes by taking their union (via a
disjunction). The following formula defines a shape a little
like the field of view through a pair of binoculars , formed
from two overlapping circles.

p E TwoDiscs(x) H

P E Displace(Disc(x),(-~,O» v

p E Displace(Disc(x),(~,O»

The incorporation of rotations in this formalism is
extremely straightforward. In the present context, however,
the only moving objects we'll encounter are circular, so the
possibility of rotating a shape has been ignored.

The final component of the framework is a means of
default reasoning about spatial occupancy [Shanahan,
1995a]. Shortly, a theory of continuous motion will be
described. This theory insists that, in order for an object to
follow a trajectory in space, that trajectory must be clear.
Accordingly, as well as capturing which regions of space
are occupied, our theory of space and shape must capture
which regions are unoccupied.

A suitable strategy for now is to make space empty by
default. It's sufficient to apply this default just to the
situation at time 0 - the common sense law of inertia will
effectively carry it over to later times. The following axiom
is required, which can be thought of as a common sense law
oj spatial occupancy.

AbSpace(w) ~ Initially(Location(w,p» (Ocl)

The predicate AbSpace needs to be minimised, with
Initially allowed to vary.

Where previously we were interested in CIRC[N ;
Happens), it's now convenient to split this circumscription
into two, and to distribute Initially formulae in two places.
Given,

the conjunction 0 of Axioms (Spl) to (Sp8) with
Axiom (Ocl).

a conjunction M of Initially formulae which mention
only the spatial fluents Location and Occupies , and

a conjunction N of Happens formulae and Initially
formulae which don't mention the spatial fluents
Location and Occupies, and

conjunctions E, T , R, U, and CEC as described in
the last section.

we are now interested in,
CIRC [0 /\ M ; AbSpace; Initially) /\

CIRC[N ; Happens, 1\

CIRC[E ; Initiates, Terminates, Releases] /\
T 1\ R /\ U 1\ CEC.

5 Sensors and Motors: The Theory I.E

We now have the logical apparatus required to construct a
formal theory of the relationship between a robot's motor
activity. the world, and the robot's sensor data. For now we
will assume perfect motors and perfect sensors. The issue
of noise is dealt with in Section 7.

The robot used as an example throughout the rest of the
paper is one of the simplest and cheapest commerciaIly
available mobile robotic platforms at the time of writing,
namely the Rug Warrior described by Jones and Flynn
[1993] (Figure 5a). This is a small, wheeled robot with a
68000 series microprocessor plus 32K RAM on board. It
has a very simple collection of sensors. These include three
bump switches arranged around its circumference, which
will be our main concern here. In particular, we wiIl
confine our attention to the two forward bump switches,
which, in combination, can deliver three possible values for
the direction of a collision.

Needless to say, each different kind of sensor gives rise
to its own particular set of problems when it comes to
constructing LE. The question of noise is largely irrelevant
when it comes to bump sensors. With infra-red proximity
detectors, noise plays a small part. With sonar, the
significance of noise is much greater. The use of cameras
gives rise to a whole set of issues which are beyond the
scope of this paper.

99

The central idea of this paper is the assimilation of
sensor data through abduction. This is in accordance with
the principle, "prediction is deduction but explanation is
abduction" [Shanahan, 1989]. To begin with, we'll be
looking at the predictive capabilities of the framework
described. The conjunction of our general theory of action,
change, space, and shape with the theory LE, along with a
description of the initial locations and shapes of objects in
the world and a description of the robot's actions, should
yield a description of the robot's expected sensory input. If
prediction works properly using deduction in this way, the
reverse operation of explaining a given stream of sensor
data by hypothesising the locations and shapes of objects in
the world is already defmed. It is simply abduction using
the same logical framework.

Switch3

Figure Sa:
The Rug Warrior Robot from Above

In the caricature of the task of assimilating sensor data
presented in Section 1, the realtionship between motor
activity and sensor data was described by LE. In practice,
this theory is split into parts and distributed across clifferent
circumscriptions (see Section 3).

First, we have a collection of formulae which are outside
the scope of any circumscription. Let B be the conjunction
of CEC with Axioms (B 1) to (B5) below. The robot is
assumed to travel at a velocity of one unit of distance per
unit of time.

UNA [Occupies, Location, Facing, Moving) (B I)

UNA [Rotate, Go, Stop] (B2)

Trajectory(Moving,t,Location(Robot,(x2,y2»,d) ~ (B3)
HoldsAt(Location(Robot,(xl ,yl)).t) 1\

HoldsAt(Facing(r),t) 1\

x2 = xl + d.Sin(r) /\ y2 = yl + d.Cos(r)

HoldsAt(Blocked(w 1, w2,r) ,t) H (B4)
HoldsAt(Occupies(wl,gl),t) /\

HoldsAt(Occupies(w2,g2),t) 1\ wI ;r. w2 /\
HoldsAtCLocation(wl ,p l),t) 1\

--,3 zl [zl > 0 1\ \:j 72 [z2:<=; zl 1\

Bearing(p 1 ,p2,r) /\ Distance(p 1 ,p2,z2) ~
--, 3 p [p E g2 1\ P E Displace(g 1 ,p2)]]]

HoidsAt(Touching(wI ,w2,p),t) H (B5)
HoldsAt(Occupies(wI,gI),t) /\

HoldsAt(Occupies(w2,g2),t) /\ wI :t w2 /\
::3 P 1, p2 [p E Line(p 1 ,p2) /\ P :t pI /\ P :t p2 /\

'II p3 [[p3 E Line(pl ,p) /\ p3 :t p] ---7

p3Egl]/\
'II p3 [[p3 E Line(p,p2) /\ p3 :t p] ---7

p3 E g2]].
The fluent Blocked(w 1 ,w2,r) holds if object wI cannot

move any distance at all in direction r without overlapping
with another object. The fluent Touching(wl,w2,p) holds if
wI and w2 are touching at point p. This is true if a straight
line ~xists from pI to p2 at a bearing r which includes a
point p3 such that every point between pI and p3 apart
from p3 itself is in gi and every point from p2 to p3 apart
from p3 itself is in g2.

Next we have a collection of Initiates. Terminates, and
Releases formulae. Let E be the conjunction of the
following axioms (El) to (E6). A Bump event occurs when
the robot collides with something.

lnitiates(Rotate(rI),Facing(rl +r2),t) f- (E 1)
HoldsAt(Facing(r2),t)

Releases(Rotate(rl),Facing(r2),t) f-
HoldsAt(Facing(r2) ,t) /\ rl :t 0

Initiates(Go,Moving,t)

Releases(Go,Location(Robot,p). t)

Terminates(a,Moving,t) f-
a = Stop v a = Bump v a = Rotate(r)

Ini tiates(a,Location(Robot,p),t) f-
[a = Stop v a = Bump] /\

HoldsAt(Location(Robot,p) ,t)

(E2)

(E3)

(E4)

CE5)

(E6)

Now we have a collection of formulae concerning the
narrative of actions and events we're interested in. This
collection has two parts. Let N be Nl /\ N2. The first
component part concerns triggered events. The events
Switch 1 and Switch2 occur when the robot's forward bump
switches are tripped (see Figure Sa). Let Nl be the
conjunction of Axioms (HI) to (H3) below. 1

Happens(Bump,t) f- (HI)
[HoldsAt(Moving,t) v Happens(Go,t)] /\

HoldsAt(Facing(r),t) /\
HoldsAt(BlockedCRobot, w ,r),t)

Happens(S witch 1 ,t) f-
Happens(Bump,t) /\ HoldsAt(Facing(r),t) /\

HoldsAt(Location(Robot,pl) ,t) /\
HoldsAt(Touching(Robot,w,p2),t) /\

r-90 ~ Bearing(pI ,p2) < r+I2

Happens(Switch2,t) f-
Happens(Bwnp,t) /\ HoldsAt(Facing(r) ,t) /\

HoldsAt(Location(Robot,p 1),t) /\
HoldsAt(Touching(Robot,w,p2),t) /\

r-12 ~ Bearing(pl,p2) < r+90

(H2)

(H3)

1 Both forward bump switches are tripped if the collision point IS

within approximately 120 of the robot's bearing.

100

Note that Axiom (HI) caters for occasions on which the
robot attempts to move when it is already blocked. as well
as for occasions on which the robot's motion causes it to
collide with something. In the former case, an immediate
Bump event occurs, and the robot accordingly moves no
distance at all.

For present purposes, the Bump event is somewhat
redundant. In Axioms (E5) and (E6) it could be replaced by
Switch1 and Switch2 events, and in Axioms (H2) and (H3)
it could be simplified away. One reason not to abolish the
Bump event is that, in principle, a collision could occur
without the attendant sensor event - if one of the bump
switches were broken, say. Similarly, a sensor event could
occur without a collision as its cause - if a rain drop were
to momentarily short a connection, for example.

Another reason is that abolishing the Bump event would
violate a basic principle of the present approach, according
to which the assumption of an external world governed by
certain physical laws, a world to which its sensors have
imperfect access. is built in to the robot. The robot 's task is
to do its best to explain its sensor data in term s of a model
of the physics governing that world. In any such model,
incoming sensor data is the end of the line. causally
speaking. In the physical world, it's not a sensor event that
stops the robot but a collision with a solid object.

The second component of N is a description of the
robot's actions. Suppose the robot hehaves as illustrated in
Figure 5b. Let N2 be the conjunction of the following
formulae, which represent the robot 's actions up to the
moment when it bumps into obstacle A.

Happens(Go,O) (5.1)

Happens(Stop,2·8)

Happens(Rotate(-90),3·3)

Happens(Go,3·8)

(5.2)

(5.3)

(5.4)

The final component of our theory is 0 /\ M, where M is
a map of the robot's world and 0 is the conjunction of
Axioms (SpI) to (Sp8) with Axiom (Oc1). Like N, M is
conveniently divided into two parts. Let M be Ml /\ M2,
where Ml is a description of the initial locations, shapes ,
and orientations (where applicable) of known objects,
including the robot itself. For the example of Figure 5b, Ml
would be the conjunction of the following formulae.

Initially(Facing(80» (5.5)

Initially(Location(Robot,(1,1 »)

Shape(Robot) = Disc(0·5)

(5 .6)

(5.7)
The form of M2 is the same as that of MI. However.

when assimilating sensor data , M2 is supplied by
abduction. For now though, let's look at the predictive
capabilities of this framework, and supply M2 directly. Let
M2 be the following formula, which describes the obstacle
in Figure 5b.

Initially(Location(A,(2,4») /\ (5.8)
'II x, y [(x,y) E Shape(A) H -1 < x < 1 /\

-0·5 < y < 0·5]

4-

3-

2-

1-

O-t----:----:-----:----

o 2 3 4

Figure 5b: A Sequence of Robot Actions

The following proposition says that, according to the
formalisation, bump switch two is tripped at approximately
time 5·5 (owing to a collision with obstacle A), and that the
bump switches are not tripped at any other time.
Proposition 5.9.

CIRC lO /\ Ml /\ M2; AbSpace; Initially] /\
CIRC[NI /\ N2 ; Happens] /\

CIRC[E ; Initiates, Terminates, Releases] /\ B F
Happens(Switchl,Tbump) /\

Happens(Switch2,Tbump) /\
[[Happens(Switch I ,t) v

Happens(Switch2,t)] -7 t = Tbump]

_ 2·5 + 2·8.Cos(80)
where Tbump - Cos(-lO) + 3·8.

Proof. See Appendix. 0
The process of assimilating sensor data is the reverse of

that of predicting sensor data. As outlined in Section 1, the
task is to postulate the existence, location, and shape of a
collection of objects which would explain the robot's
sensor data, given its motor activity)

Let'P be the conjunction of a set of formulae of the form
Happens(Switchl,1:) or Happens(Switch2,1:) where 1: is a
time point. What we want to explain is the partial
completion of this formula, for reasons that will be made
clear shortly. The only-if half of this completion is defined
as follows.
Definition 5.10.

COMP['P] =def
[Happens(a,t) /\ [a = Switchl v a = Switch2]] -7

1 In the present paper, it is assumed that all sensor data require
explanation . To take account of glitches (as opposed to just
noise) , this requirement can be relaxed.

101

V [a = a /\ t = 1:]
(a,1:)E ['

where 1= ((a,1:) I Happens(a,1:) E 'P}. o
Given 'P, we ' re interested in fmding conjunctions M2 of

formulae in which each conjunct has the form,

Initially(Location(O),p» /\ '<j P [p E Shape(O) H TI]
where p is a point constant, 0) is an object constant, and TI
is any formula in which p is free, such that 0 /\ Ml /\ M2 is
consistent and,

ClRC[O /\ MI/\ M2 ; AbSpace; Initially] /\
CIRC[N 1 /\ N2 ; Happens] /\

CIRC[E ; Initiates, Terminates, Releases] /\ B F
'P /\ COMP['P].

The partially completed form of the Happens formula on
the right-hand-side of the turnstile eliminates anomalous
explanations in which, for example, the robot encounters a
phantom extra obstacle before the time of the first event in
'P. If 'P on its own were used instead of this partiaJly
completed formu la, it would be possible to construct such
explanations by shifting all the obstacles that appear in a
proper explanation into new positions which take account
of the premature interuption in the robot's path caused by
the phantom obstacle.

Clearly, from Proposition 5.9, if 'l' is,

Happens(Switch 1 ,Tbump) /\ Happens(Switch2,Tbump)

then (5.8) is an explanation that meets this specification.2

Note that the symbol A in (5.8) (or rather its computational
counterpart in the actual robot), when generated through
the abductive assimilation of sensor data, is grounded in
Harnad's sense of the term [Hamad, 1990], at the same
time as acquiring meaning through the theory.
Furthermore, the theoretical framework within which such
explanations are understood ,

Links the symbols that appear in them directly to a
level of representation at which high-level reasoning
tasks can be performed, and

Licenses an account of the robot's success (or
otherwise) at performing its tasks which appeals to
the correctness of its representations and its
reasoning processes.

However, (5.8) is just one among infinitely many
possible explanations of this 'P of the required form. A
bizarre example of an alternative explanation would be that
the whole of space was occupied by a single object with a
tunnel bored in it whose shape exactly matched that of the
robot' s path up to time Tbump.

In the specification of an abductive task like this, the set
of explanations of the required form will be referred to as
the hypothesis space. It's clear, in the present case, that
some constraints must be imposed on the hypothesis space
to eliminate bizarre explanations. Furthermore, the set of
all explanations of the suggested form for a given stream of

2 It is assumed that our language includes an arbitrarily large se t

of unused constant symbols, from which (J) is drawn .

sensor data is hard to reason about, and computing a useful
representation of such a set is infeasible. This problem is
tackled in the full paper by adopting a boundary-based
representation of shape (see (Davis. 1990. Chapter 6]).
Space limitations preclude further discussion of this topic
nere.

6 Noise

The hallmark of the common sense informatic situation for
a mobile robot is incomplete and uncertain knowledge of a
spatially extended world of middle-sized objects.
Incompleteness is a consequence of the robot's limited
window on the world, and uncertainty results from noise in
its sensors and actuators. This section deals with noise.

Both noisy sensors and noisy actuators can be captured
using non-determinism. (An aitemative is to use probability
fBacchus, el al., I995J). Here we'll only look at the
uncertainty in the robot's location that results from its
noisy motors. The robot ' s motors are "noisy" for various
reasons. For example, the two wheels might rotate at
slightly different speeds when the robot is trying to travel
in a straight line, or the robot might be moving on a slope
or a slippery surface. Motor noise of this kind can be
captured using a non-deterministic Trajectory formula.
such as the following replacement for Axiom (83).1

::3 x I, Y 1 [Trajectory(Moving,t, (B6)
Location(Robot,(xl,yl»,d) /\

Distance«xI,yl),(x2,y2»::; d.£] (­
HoldsAt(Location(Robot,(x3.y3»,t) /\

HoldsAt(Facing(r),t) /\
x2 = x3 + d.SinCr) /\ y2 = y3 + d.Cos(r)

In effect, Axiom (B6) constrains the robot's location to
be within an ever-expanding circle of uncertainty centred
on the location it would be in if its motors weren't noisy.2
The constant £ determines the rate at which this circle
grows. Axiom (87) below ensures that there are no
discominuities in the robot 's trajectory. Without this axiom
the robot would be able to leap over any obstacle which
didn't completely cover the circle of uncertainty for its
location. The term Abs(d) denotes the absolute value of d.

Trajectory(f,t,Location(x,pI),dl) -7 (B7)
'v' z [z > 0 -7 ::3 d 'v' d2, p2 [[d2> 0 /\

Abs(d2-dI) < d /\
Trajectory(f,t,Location(x,p2).d2)] -7

Distance(pl,p2) < z]]

Figure 6a shows the robot exploring the corner of an
obstacle. Figure 6b shows the evolution of the
corresponding circle of uncertainty, highlighting the points
where the robot changes direction.

Figure 6b is somewhat misleading, however. Consider
Figure 6c. On the top left, the evolution of the circle of

1 The Rotate action could also be made non-deterministic.

2 Note that, while objects occupy open subsets of /R2, regiuns uf
uncertainty are closed.

uncertainty for the robot's location is shown. To the right,
three potential locations are shown for the three changes of
direction, Although these locations all fall within the
relevant circles of uncertainty, the robot could never get to
the third location from the second. This is because, as
depicted at the bottom of the figure, in any given model the
circle of uncertainty for the robot's location at the end of a
period of continuous motion can only be defined relative to
its actual location at the start of that period. This can be
verified by inspecting Axioms (86) and (B7).

The relative nature of the evolution of the circle of
uncertainty means that the robot can acquire a detailed
knowledge of some area Al of its environment, then move
to another area A2 which is some distance from A I, and
acquire an equally detailed knowledge of A2. The
accumulated uncertainty entails only that the robot is
Jncertain of where Al is relative to A2. This TlaturaJ
feature of the formalisation conforms with what we would
intuitively expect given the robot's informatic situation.

Figure 6a: The Robot Explores a Corner
Non-determinism is a potential source of difficulty for

the abductive approach to explanation. Even with a precise
and complete description of the initiaJ state of the world,
including all its objects and their shapes, a non­
deterministic theory incorporating a formula like the one
above will not yield the exact times at which collision
events occur. Yet the sensor data that has to be assimilated
has precise times attached to it. Fortunately we can recast
the task of assim i tati ng sensor data as a form of weak
abduction so that it yields the required results. Intuitively
what we want to capture is the fact that without the
hypothesised objects, the sensor data could not have been
received. This is analogous to the consistency-based
approach to diagnosis proposed by Reiter [1987].

102

Figure 6b:
The Evolution of the Circle of Uncertainty

Figure 6c:
The Circle of Uncertainty Is Relative

Not Absolute
Definition 6.1. Given,

the conjunction B of CEC with Axioms (Bl), (B2),
and (B4) to (B7),

the conjunction E of Axioms (E1) to (E6),

the conjunction 0 of Axioms (SpI) to (Sp8) with
Axiom (Ocl),

103

a conjunction M1 of Initially and Shape formulae
describing th e initial location s, shapes, and
orientations of known objects, including the robot
itself.

the conjunction NI of Axioms (HI) to (H3),

a conjunction N2 of Happens formulae describing
the robot's actions, and

a conjunction '¥ of formulae of the form
Happens(Switch 1 ,'C) or Happens(Switch2,'C),

an explanation of '¥ is a conjunction M2 of formulae in
which each conjunct ha~ the form,

Initially(Location(co,p» /\ '\j P [p E Shape(co) H TI]
where p is a point constant. co is an object constant, and TI
is any formula in which p is free, such that 0/\ Ml /\ M2 is
consistent, and ,

CIRC[O /\ MI /\ M2 ; AbSpace; Initially] /\
ClRC[NI /\ N2 ; Happens] /\

ClRC[E ; Initiates, Terminates, Releases) /\ B
I;t --, ['¥ /\ COMP['¥JJ. 0

There will , naturally , be many explanations for any
given '¥ which meet this definition, even using the
boundary-based representation of shape adopted in the full
version of the Daper. A standard way to treat multiple
explanations in abductive knowledge assimilation is to
adopt their disjunction. This has the effect of smothering
any explanations which are stronger than necessary, such
as those which postulate superfluous obstacles. The
disjunction of all explanations of '¥ is the cautious
explanation of '¥.

A variety of preference relations over explanations can
also be introduced. For example, it might be reasonable to
assume that nearby collision points indicate the presence of
a single object. Such preference relations are a topic for
further study.

The following theorem establishes that the above
definition of an explanation is equivalent to the
deterministic specification offered in the last section when
£ is O. Let Bdet be the conjunction of CEC with Axioms
(B 1) to (BS).
Definition 6.2. A formula M is a comp lete spatial
description if the location and shape of every object
mentioned in M is the same in every model of,

ClRC[O /\ M ; AbSpace; Initially). 0

Theorem 6.3. If £ = 0 and M1 is a complete spatial
description, then M2 is an explanation of '¥ if and only if 0
/\ Ml /\ M2 is consistent and,

CIRC[O /\ MI/\ M2 ; AbSpace ; Initially] /\
CIRC[NI/\ N2 ; Happens) /\

ClRC[E ; Initiates, Terminates, Releases) /\ Bdet 1=
'¥ /\ COMP['¥).

Proof. See Appendix. C
A considerable amount of further work has been carried

out, which is reported in the full version of the paper, but
which it is only possible to present in outline here. Two

further theorems have been established which characterise
the abductive explanations defined above in terms which
appeal more directly to the information available to any
map-building algorithm which might be executed on board
the robot. These theorems have been used to prove the
correctness, with respect to the abductive specification
given, of an algorithm for sensor data assimilation which
constructs an occupancy array [Davis, 1990, Section
6.2.1J.

This algorithm forms the core of an implementation in C,
which runs on data acquired by the robot in the real world.
Some preliminary experiments have been conducted in
which the robot, under the control of a behaviour-based
architecture [Brooks, 1986J, explores an enclosure, and
makes a record of its actions and sensor data for subsequent
processing using the algorithm.

Concluding Remarks

In the paper accompanying his 1991 Computers and
Thought Award Lecture, Brooks remarked that,

[The field of Knowiedge Representation] concentrates
much of its energies on anomalies within formal
systems which are never used for any practical task.

[Brooks, 1991, page 578]

This paper should be conSU1Jed as an answer to Brooks.
According to the logical account given in this paper, a
robot's incoming sensor data is filtered through an
abductive process based on a framework of innate
concepts , namely space, time, and causality. The
development of a rigorous, formal account of this process
bridges the gap between theoretical work in Knowledge
Representation and practical work in robotics, and opens
up a great many possibilities for further research. The
following three issues are particularly pressing.

The assimilation of sensor data from moving
objects, such as humans, animals, or other robots.
Movable obstacles should also be on the agenda.

The assimilation of richer sensor data than that
supplied by the Rug Warrior's simple bump
switches.

The control of the robot via the model of the world
it acquires through abduction. Existing work in the
Cognitive Robotics vein is likely to be influential
here [Lesperance, et aI, 1994], [Kowalski, 1995] ,
[Poole, 1995J.

Acknowledgements

Thl: inspiration for Cognitive Robotics comes from Ray
Reiter and his colleagues at the University of Toronto.
Thanks to Neelakantan Kartha and Rob Miller. The author
is an EPSRC Advanced Research Fellow.

104

References

[Bacchus, et al., 1995] F.Bacchus, J.Y .Halpren, and
H.J .Levesque, Reasoning about Noisy Se nsors in the
Situation Calculus, Proceedings IJCAI 95, pages 1933-
1940.

[Brooks , 1986J R.A.Brooks, A Robust Layered Control
System for a Mobile Robot, IEEE Journal of Robotics and
Automation , vol 2, no 1 (1986), pages 14-23.

[Brooks, 1991] R.A.Brooks, Intelligence Without Reason ,
Proceedings IJCAI 91, pages 569-595.
[Charniak & McDermott, 1985J E.Charniak and
D.McDermott, Introduction to Artificial Int elliRence,
Addison-Wesley (1985).
[Davis, 1990J E.Davis, Representations of Commonsense
Knowledge, Morgan Kaufmann (1YYO).

[Hanks & McDermott, 19R7] S.Hanks and D.McDermott,
Nonmonotonic Logic and Temporal Projection, Artificial
Intelligence, vol 33 (1987), pages 379-412.

[Harnad, 1990J S.Harnad, The Symbol Grounding
Problem, Physica D, vol 42 (1990), pages 335-346.

[Jones & Flynn, 1993J J.L.Jones and A.M.Flynn, Mobile
Robots: Inspiration to Implementation, A.K.Peters (1993).

[Kartha & Lifschitz. 1994] G.N.Kartha and V.Lifschitz.
Actions with Indirect Effects (Preliminary R eport),
Proceedings 1994 Knowledge Representation Conference.
pages 341-350.

[Kartha & Lifschitz. 1995J G.N.Kartha and V.Lifschitz, A
Simple Formalization of Actions Using Circumscription ,
Proceedings IJCAI 95, pages 1970-1975.

[Kowalski , 1995] R.A.Kowaiski, Using Meta-Logic to
Reconcile Reactive with Rational Agents. in Meta-Logics
and Logic Programming, ed. K.R.Apt and F.Turini, MIT
Press (1995), pages 227-242.

[Kowalski & Sergot. 1986] R.A.Kowaiski and MJ.Sergol.
A Logic-Based Calculus of Events, New Generation
Computing, vol4 (1986), pages 67-95.

[Lesperance, et al., 1994] Y.Lesperance, H.J.Levesque,
F.Lin, D .Marcu, R.Reiter, and R.B.Scher! , A Logical
Approach to High-Level Robot Programming: A Progress
Report, in Control of the Physical World by Int elli!!,ent
Systems: Papers from the 1994 AAAI Fall Syposium, ed.
B.Kuipers, New Orleans (1994), pages 79-85.

[Lifschitz, 19lJ4] V.Lifschitz, Circumscription, in The
Handb ook of Logic in Artificial IntelliR ence and LORic
Programming, Volume 3: Nonmonotonic Reasoning and
Uncertain Reasoning, ed. D.M.Gabbay, C.J .Hogger and
J.A.Robinson, Oxford University Press (1994), pages 297-
352.
[McCarthy , 1986] J.McCarthy, Applications of
Circumscription to Formalizing Common Sense
Knowledge, Artificial Intelligence. vol 26 (1986), pages
89-116.

[McCarthy, 1989) J .McCarthy, Artificial Intelligence.
Logic and Formalizing Common Sense. in Philosophical
LOf!,ic and Artijiciallntelligence, ed. R.Thomason, Kluwer
Academic (1989), pages ???-???
[Nilsson, 1984] NJ.Nilsson, ed., Shakey the Robot , SRI
Technical Note no. 323 (1984), SRI, Menlo Park,
California.

[Poole, 1995] D.Poole, Logic Programming for Robot
Control , Proceedings IlCAI 95, pages 150-157.

[Reiter, 1987] R.Reiter, A Theory of Diagnosis from First
Principles, Artificial Intelligence , vol 32 (1987), pages 57-
95.
[Shanahan, 1989] M.P.Shanahan, Prediction Is Deduction
but Explanation Is Abduction, Proce edings IlCAI 89,
pages 1055-1060.
[Shanahan, 1990) M.P.Shanahan, Representing Continuous
Change in the Event Calculus, Proceedings ECAI 90, pages
598-603.
[Shanahan , 1995a] M.P.Shanahan , Default Reasoning
about Spatial Occupancy, Artificial Int elligence, vol 74
(1995) . pages 147-163.

[Shanahan, 1995b] M.P.Shanahan , A Circumscriptive
Calculus of Events. Artificial Intelligence, vol 77 (1995),
Dages 249-284.

[Shanahan, 1996) M .P.Shanahan, Solving the Frame
Problem: A Mathematical Investigation of the Common
Sense Law of Inertia . MIT Press (1996) , to appear.

Appendix A: Proofs

Proof of Proposition 2.8. From CLRC[N ; Happens), we
get,

Happens(a.t) H [A.l]
[[a = Rotate(90) /\ t = 10] v

[a = Rotate(-180) /\ t = 20]).

From CIRC[E ; Initiates , Terminates, Releases], we get,
Initiates(a,f,t) H [A.2]

a = Rotate(rl) /\ f = Facing(r2) /\
HoldsAt(Facing(r3),t) /\ r2 = r3 + r1

Terminates(a,f,t) H [A.3]
a = Rotate(rl) /\ f = Facing(r2) /\

HoldsAt(Facing(r2) ,t) /\ r1 :F- 0

-, j a,f,t [Releases(a,f,t)]. [A A]

From [A.l] and (EC4), we get,
-, Clipped(O,Facing(O),t) ~ 0 :=:; t:=:; 10

which, given (ECI) and (2.3), yields,
HoldsAt(Facing(O),t) ~ O:=:; t :=:; 10. [A.S]

From [A.21 and [A.S], we get,

Initiates(Rotate(90),Facing(90),1 0). [A.6)
From [A.]] and (EC4), we get,

-, Clipped(1O,Facing(90),t) ~ 10 < t:=:; 20
which , given [A.I], [A .6] and (EC2), yields,

HoldsAt(Facing(90),t) ~ O:=:; t:=:; 10. [A.7]

105

From [A.2] and [A.5], we get,

Initiates(Rotate(-180) ,Faci ng(270),20) . [A.8]

From [A.I] and (EC4), we get,

-, Clipped(20,Facing(270),t) ~ 20 < t

which, given [A.I], [A.8] and (EC2) , yields,

HOldsAt(Facing(270),t) ~ 20 < t. [A.9]

The proposition follows from [A.S] , [A.7], and [A.9]. 0
Proof of Proposition 3.13. From CIRC[N ; Happens], we
get,

Happens(a ,t) H [A.I 0]
[[a = Go /\ t = 10] v [a = Stop /\ t = 20)).

From CIRC[E ; Initiates, Terminates, Releases], we get,

Initiates(a,f,t) H [A. 1 I]
[a = Go /\ f = Moving] v

[a = Stop /\ f = Location(RoboL,p) /\
HoldsAt(Localion(Robot,p) ,t)]

Terminates(a,f,t) H a = Stop /\ f = Moving [A.12)

Releases(a,f,t) H [A.13)
a = Go /\ f = Location(Robot,p).

From [A.lO] and (EC4), we get,
-, Clipped(O,Location(Robot,(O.O»,t) ~ 0 :=:; L :=:; 10

which, from (ECI) and (3.9), yields,

HoldsAt(Location(Robot,(O,O»,t) ~ O:=:; t:=:; 10. r A.14]

Similarly, we can show,
HoldsAt(Facing(90),1 0). [A.15]

From [A.ll] we have,
Initiates(Go,Moving,10). [A.16)

From [A. 10] and (EC4), we get,
-, CJipped(lO,Moving,t) ~ 10 < t:=:; 20. [AJ7]

From [A.l4], [A.l5], and (3.5), we get,

Trajectory(Moving, I O,Location(Robot,(x ,0)),d) ~
x = V.d

which, given [A. 10], [A .1 6J, [A.17] and (EC6), yields ,

HoldsAt(Location(Robot,(x,O»,t) ~ [A.18]
10< t :=:; 20 /\ X = V .(t - 10).

From [A.II] and [A.18], we have,

lnitiates(Stop,LocaLion(Robot,(x ,0»,20) ~ [A.l9)
x = V.lO.

From [A. 10] and (EC4) , we get,

-, Clipped(20,Localion(Robot,(x,O» ,t) ~
20 < t /\ X = V. 10

which, given [A.lOJ, [A.l8J, [A.19J and (EC2), yields,
HoldsAt(Location(Robot,(x,O».t) ~ [A.20]

20<I/\x=V.1O.
From [A.14], [A.l~] and [A.20J, we arrive at,

HoldsAt(Localion(Robot,(x ,y» ,t) ~
[0 :=:; t :=:; 10 /\ X = 0 /\ Y = 0] v

[10 < t:=:; 20 /\ X = V.(t - 10) /\ Y = OJ v
[20 < t /\ X = V.lO /\ Y = OJ .

The proposition follows from this and the domain
constraint (3.6). 0

Proof of Proposition 5.9. From CIRC[NI /\ N2 ;
Happens] , we get,

Happens(a,t) H [A.21]
Hl (a,t) v H2(a,t) v H3(a,t) v H4(a,l)

where,

.i-tl(a,t) =def
[a = Go /\ t = 0] v [a = Stop /\ t = 2·8] v

[a = ROlate(-90) /\ t = 3·3] v [a = Go /\ t = 3·8]

H2(a,t) =def
::3 w.r [a = Bump /\ [HoldsAt(Moving,t) v t = 3·8] /\

HoldsAt(Facing(r),t) /\
HoldsAt(Blocked(Robot, w ,r) ,t)]

H3(a,t) =def
:J w.r [a = Switch 1 /\ [HoidsAt(Moving,t) v t = 3·8] /\

HoldsAt(Facing(r) ,t) /\
HoldsAt(Location(Robot,p 1),t) /\

HoldsAt(Touching(Robot,w,p2),t) /\
r-lS0 < Bearing(pl,p2) < r+30]

H4(a,t) =def
::3 w.r [a = Switch2 /\ [HoldsAt(Moving,t) v t = 3·8] /\

HoldsAt(Facing(r),t) /\
HoldsAt(Location(Robot,p 1),t) /\

HoldsAt(Touching(Robot,w ,p2),t) /\
r-30 < Bearing(pl,p2) < r+ISOJ.

From CIRC[E ; Initiates, Terminates, Releases] , we get,
Initiates(a,f,t) H [A.22]

[a = Rotate(rl) /\ f = Facing(rl H2) /\
HoldsAt(Facing(r2),t)] v [a = Go /\ f = Moving] v

[[a = Stop va = Bump(r)] /\
f = Location(Robot,p) /\

HoldsAt(Location(Robot,p) ,r)]

Terminates(a,f,t) H [A.23]
[a = Stop v a = Bump(r) v a = Rotate(r)] /\

f= Moving

Releases(a,f,t) H [A.24]
a = Go /\ f = Location(Robot,p).

From CIRC [0 /\ Ml /\ M2; AbSpace; Initially] we get,
Initially(Location(x,p» --7 x = A v x = Robot. [A.2S]

It can easily be shown that A retains its initial location for
all time. Let Xturn = 1 + 2·8.Sin(80), Yturn = I +
2·8 .Cos(80). From [A.2S] and (S.8), using Axioms (Sp7) ,
(Sp8) and (B4) , it can be confirmed that,

--, HoldsAt(Blocked(Robot,w,r),I) f-- [A. 26]
HoldsAt(Location(Robot,(x,y»,t) /\

::3 d [[0 ~ d ~ 2·8 /\ x = 1 + d.Sin(80) /\
y = I + d.Cos(80)] v

[3·8 < d < Tbump /\
x = Xturn + (d - 3·8).Sin(-1O) /\

y = Ytum + (d - 3·8).Cos(-IO)]] .

It can similarly be confirmed that,

106

--, HoldsAt(Touching(Robot,w,p) ,t) f-- [A.27]
HoldsAt(Location(Robot,(x ,y»,t) /\

::3 d [[0 ~ d ~ 2·8 /\ x = 1 + d.Sin(80) /\
y = 1 + d.Cos(80)] v

[3·8 < d < Tbump /\
x = Xturn + (d - 3·8).Sin(-IO) /\

y = Yturn + (d - 3·8).Cos(-IO)]].

Given [A.26], from [A .21] to [A.24], using a similar
procedure to that employed in the moof of Proposition
3.13, we can show,

HoidsAt(Location(Robot,(x,y»,t) f-- [A.28]
[0 ~ t ~ 2·8 /\ x = 1 + t.Sin(80) /\

y = 1 + r.Cos(80)] v
r2·8 < t ~ 3.8 /\ x = Xturn /\ Y = Y turn] v

[3·8 < t ~ Tbump /\
x = Xturn + (t - 3·8).Sin(-IO) /\

y = Yturn + (t- 3·8).Cos(-10)] .

Given that A retains its initial location, from [A.28], [A .2S]
and (S.8), using Axioms (Sp7) and (Sp8), we can show,

HoldsAt(Blocked(Robot,A,-lO),Thump). [A.29]

We can also show,

HoldsAt(Facing(-1 O),Tbump) . [A.30]

From [A.29] and [A.30], using Axiom (B4) , we get.

Happens(Bump,Tbump). LA .3 1]

Given that A retains its initial location , from [A.28], [A.2S]
and (S.8) , using Axioms (Sp7) and (Sp8) , we can show,

::3pl , p2[[A.32]
HoldsAt(Touching(Robot,A,p 1),Tbump) /\

HoldsAt(Location(Robot,p2),Tbump) /\
Bearing(pl,p2) = 0].

From [A.2I] and [AJO] to [A.32] we get,

Happens(Switch 1 ,Tbump) /\ [A.3 3]
Happens(Switch2,Tbump).

From [A.21J, [A.27] and Axiom CBS) we get,
[Happens(Switch l,t) v Happens(Switch2,t)) --7 [A.34]

t = Tbump.
The proposition follows directly from [A.33] and [A.34]. C
Proof' of Theorem 7.5. We only need to consider 'P since
the definition of an explanation caters for COMP['P]
automatically. The theorem follows from the fact that
Axioms (B3) and (BS) are equivalent if £ is 0, and the fact
that (B3) ensures that the robot 's path is deterministic in
the sense that at any given time its location is the same in
every model of,

CIRcrO /\ Ml /\ M2 ; AbSpace ; Initially] /\
CIRC[Nl /\ N2 ; Happens] /\

CIRC[E ; Initiates, Terminates, Releases] /\ Bdl:t.

To see that the theorem follows, consider that, if the robot 's
path is deterministic according to a formula r and the
locations and shapes of objects are the same in every model
of r (as they must be in the above formula since Ml and
M2 are complew spatial descriptions), then r It --, 'P if and
only if r 1= 'P. 0

