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Abstract 
Any model of the world a robot constructs on the basis 
of its sensor data is necessarily both incomplete, due 
to the robot's limited window on the world, and 
uncertain, due to sensor and motor noise. This paper 
proposes a logic-based framework in which such 
models are constructed through an abductive process 
whereby sensor data is explained by hypothesising the 
existence, locations, and shapes of objects. Symbols 
appearing in the resulting explanations acquire 
meaning through the theory, and yet are grounded by 
the robot's interaction with the world. The proposed 
framework draws on ex isting logic-based formalisms 
for represen ting action, continuous change, space, and 
shape. Noise is treated as a kind of non-determinism , 
and is dealt with by a consistency-based form of 
abduction. 

Introduction 

Without ignoring the lessons of the past, the nascent area of 
Cognitive Robotics [Lesperance, et al., 1994] seeks to 
reinstate the ideals of the Shakey project [Nilsson, 1984], 
munely the construction of robots whose architecture is 
based on the idea of representing the world by sentences of 
formal logic and reasoning about it by manipulating those 
sentences . The chief benefits of this approach are, 

that it facilitates the endowment of a robot with the 
capac ity to perform high-level reasoning tasks, such 
as planning, and 

that it makes it possible to formally account for the 
success (or otherwise) of a robot by appealing to the 
notions of correc t reasoning and correct 
representation . 

This paper concerns the representation of knowledge 
about the objects in a robot's environment, and how such 
knowledge is acquired. The main feature of this knowledge 
is its incompleteness and uncertainty, placing the robot in 
what McCarthy calls the common sense informatic 
situation [1989]. The treatment given in the paper is 
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rigorously logical, but has been carried through to 
implementation on a real robot. 

1 Assimilating Sensor Data 

The key idea of this paper is to consider the process of 
assimilating a stream of sensor data as abduction . Given 
such a stream, the abductive L:'lsk is to hypothesise the 
existence, shapes, and locations of objects which, given the 
output the robot has supplied to its motors, would explain 
that sensor data [Charniak & McDermott, 1985, page 455J. 
This is, in essence, the map building task for a mobile 
robot. 

More precisely, if a stream of sensor data is represented 
as the conjunction \}1 of a set of observation sentences , the 
task is to find an explanation of \}1 in the form of a logical 
description (a map) ~M of the initial locations and shapes 
of a number of objects, such that, 

LB /\ LE /\ ~N /\ ~M F \}1 

where, 

LB is a background theory , compris ing ax ioms for 
change (including continuous change), action, 
space, and shape, 

~E is a theory relating the shapes and movements of 
objects (including the robot itself) to th e robot's 
sensor data. and 

~N is a logical description of the movements of 
objects, including the robot itself. 

The exact form of these components is described in the 
next three sections, whic h present formalisms for 
representing and reasoning about action, change, space, and 
shape. In practice, as we'll see, these components will have 
to be split into parts for technical reasons. 

Three major issues arise with this logical specification of 
the map building task: noisy data, incomplete information, 
and implementation . 

I.E does not hav e to assume a perfect 
correspondence between objects in the world and 
sensor data rece ived from them, or a perfect 
correspondence between motor outputs and actual 
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movements in the world. In practice, a noisy 
interface between world and robot must be assumed. 
Using the expressive power of first-order logic, the 
uncertainty resulting from such noise can be 
captured. 

Data in the common sense informatic situation is 
incomplete as well as noisy. In abductive terms, 
there will typically be many L'1M's that could explain 
any given 'P. For example, the robot may only 
receive sensor data from a small fraction of the total 
surface of an object, and be unable to tell whether 
the object is large or small. Again, using the 
expressive power of first-order logic, this 
incompleteness can be captured. 

This logical specification of the map building task 
must be rendered into an efficient implementation 
which can be executed by the on-board 
microprocessor of a mobile robot. 

The provision of a logic-based theoretical account brings 
issues like noise and incompleteness into sharp focus, and 
permits their study within the same framework used to 
address wider epistemological questions in knowledge 
representation. It also enables the formal evaluation of 
algorithms for low-level motor-perception tasks by 
supplying a formalism in which these tasks can be 
preciseiy specified. 

2 Representing Action 

The formalism used in this paper to represent action and 
change, including continuous change, is adapted from the 
circumscriptive Event Calculus presented in [Shanahan, 
1995b] , which in turn is based loosely on the formalism of 
Kowalski and Sergot [1986]. However, it employs a novel 
solution to the frame problem , inspired by the work of 
Kartha and Lifschitz [199S]. The result is a considerable 
simplification of the formalism in [Shanahan, 1995b]. 

Throughout the paper, the language of many-sorted first­
order predicate calculus with equality will be used, 
augmented with circumscription [McCarthy, 1986], 
[Lifschitz, 1994] . Variables in formulae begin with lower­
case letters and are universally quantified with maximum 
scope unless indicated otherwise. 

In the Event Calculus, we have sorts for fluents, actions 
(or events), and time points. It's assumed that time points 
are interpreted by the reals, and that the usual comparative 
predicates, arithmetic functions, and trigonometric 
functions are suitably defined . The formula HoldsAt(f,t) 
says that fluent f is true at time point t. The formulae 
Iniliales(a,f,t) and Terminates(a,f,t) say respectively that 
ac tion a makes fluent f true from time point t, and that a 
makes f false from t. The effects of actions are described by 
a collection of formulae involving Initiates and Terminates. 

For exampl e, if the term Rotate(r) denotes a robot's 
action of rotating r degrees about some axis passing 
through its body, and the term Facing(r) is a fluent 
representing that the robot is facing in a direction r degrees 
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from North, then we might write the following Initiates and 
Terminates formulae.] 

InitiatesCRotate(rl),Facing(r2),t) f- (2.1) 
HoldsAt(Facing(r3),t) /\ r2 == r3 + rl 

Terminates(Rotate(rl),Facing(r2),t) f­

HoldsAt(Facing(r2),t) /\ rl ;t 0 
(2.2) 

Once a fluent has been initiated or terminated by an 
action or event, it is subject to the common sense law of 
inertia, which is captured by the Event Calculus axioms to 
be presented shortly. This means that it retains its value 
(true or false) until another action or event occurs which 
affects that fl uen t. 

A narrative of actions and events is described via the 
predicates Happens and Initially. The formula Happens(a,t) 
says that an action or event of type a occurred at time point 
t. Events are instantaneous. The formula Initially(f) says 
that the fluent f is true from time point O. Here's an 
example narrative. 

Ini tialjy(F acing(O» 

Happens(Rotate(90), 1 0) 

Happens(Rotate( -180) ,20) 

(2.3) 

(2.4) 

(2.S) 
A theory will also include a pair of uniqueness-of-names 

axioms, one for actions and one fluents. 
UNA[Facing] (2.6) 

UNA [Rotate] (2.7) 

The relationship between HoldsAt, Happens, Initiates, 
and Terminates is constrained by the following axioms. 
Note that a fluent does not hold at the time of an action or 
event that initiates it, but does hold at the time of an action 
or event that terminates ir. 

HoldsAt(f,t) f- Initially(f) /\ -, Clipped(O,f,t) (EC I) 

HoldsAt(f,t2) f- (EC2) 
Happens(a,tl) /\ Initiates(a,f,tJ) /\ tl < t2 /\ 

-, Clipped(tl,f,t2) 

-, HoldsAt(f,t2) f- (EC3) 
Happens(a,tl) /\ Terminates(a,f,tl) /\ tl < t2/\ 

-, Dectipped(tl,f,t2) 

Clipped(tl,f,t2) H (EC4) 
Happens(a,t) /\ [Terminates(a,f,t) v Releases(a,f,l)] /\ 

tl < t /\ t < t2 

Declipped(tl,f,t2) H (ECS) 
Happens(a,t) /\ [InitiatL:s(a,f,t) v Releases(a,f,t)] /\ 

tl < t /\ t < t2 
These axioms introduce a new predica te Releases 

[Kartha & Lifschitz, 1994] . The formula Releases(a,f,t) 
says that action a L:xempts fluent f from the common sense 
law of inertia. This non-inertial status is revoked as soon as 
the fluent is initiated or terminated once more. The use of 
this predicate will be illustrated shortly in the context of 
continuous change. 

1 R otation is treated as instantaneous here , and thro ughout the 
sequel. 



Let the conjunction of (ECl) to (EC5) be denoted by EC. 
The circumscription policy to overcome the frame problem 
is the following. Given a conjunction of Happens and 
Initially formulae N, a conjunction of Initiates, Terminates 
and Releases formulae E, and a conjunction of uniqueness­
of-names axioms U, we are interested in, 

CIRC[N ; Happens] /\ 
CIRC[E ; Initiates, Terminates, Releases] /\ U /\ EC 

This formula embodies a form of the common sense law 
of inertia, and thereby solves the frame problem. Further 
details of this solution are to be found in [Shanahan, 1996]. 
The key to the solution is to put EC outside the scope of the 
circumscriptions, thus ensuring that the Hanks-McDermott 
problem is avoided [Hanks & McDermott, 1987]. In most 
cases, the two circumscriptions will yield predicate 
completions, making the overall formula manageable ana 
intuitive. 

For the example above, we have the following 
proposition. Let E be the conjunction of (2.1) with (2.2), let 
N be the conjunction of (2.3) to (2.5), and let U be the 
conjunction of (2.6) with (2.7) . 

Proposition 2.8. 

CIRC[N ; Happens] /\ 
CIRC[E ; Initiates, Terminates , Releases] /\ U /\ EC Fe 

HoldsAt(Facing(r),t) (-
[0 :0; t :0; 10 /\ r = 0] v [10 < t:O; 20 /\ r = 90] v 

[20 < t /\ r= 270] . 

Proof. See Appendix. 

3 Domain Constraints and Continuous 
Change 

o 

Two additional features of the calculus are important: the 
ability to represent domain constraints, and the ability to 
represent continuous change. 

Domain constraints are straightforwardly dealt with in 
the proposed formalism. They are simply formulated as 
HoldsAt formulae with a single universally quantified time 
variable, and conjoined outside the scope of the 
circumscriptions along with EC. For example, the 
following domain constraint expresses the fact that the 
robot can only face in one direction at a time. 

HoldsAt(Facing(rl),t) /\ HoJdsAt(Facing(r2),t) -..:; rl = r2 

In the Event Calculus, domain constraints are used to 
determine values for fluents that haven't been initiated or 
terminated by actions or events (non-inertial fluents) given 
the values of other fluents that have. (Domain constraints 
that attempt to constrain the relationship between inertial 
f1uents can lead to inconsistency.) 1 

Following [S hanahan, 1990], continuous change is 
represented through the introduction of a new predicate and 
the addition of an extra axiom. The formula 

I Note that Initiates(a,Fl,t) -7 Initiates(a,F2,t) does not follow 

from HoldsAt(Fl,t ) -7 HoldsAt(F2,t). 
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Trajectory(fl,t,f2,d) represents that, if the fluent fl is 
initiated at time t, then after a period of time d the fluent f2 
holds. We have the following axiom. 

HoldsAt(f2,t2) (- (EC6) 
Happens(a,tl) /\ Initiates(a,fl,tl) /\ tl < t2 /\ 

t2 = tl + d /\ Trajectory(fl,tl,f2,d) /\ 
-, Clipped(tl,fl ,12) 

Let CEC denote EC /\ (EC6), and U denote the 
conjunction of a set of uniqueness-of-names axioms. If R is 
the conjunction of a set of domain constraints and T is the 
conjunction of set of formulae constraining Trajectory, then 
we are interested in, 

CIRC[N ; Happens] /\ 
CIRC[E ; Initiates, Terminates, Releases] /\ 

T /\ R /\ U /\ CEC. 

For example, suppose the robot's repertoire of actions is 
expanded to include the actions Go and Stop. The Go 
action initiates a period of continuous change in the robot's 
location. The Stop action terminates such a period. The 
robot's location will be represented by the fluent 
Location(Robot,p), where p is a pair of Cartesian co­
ordinates the form (x,y). (The first argument of this fluent 
is there so that we can represent the locations of other 
objects beside the robol. This will be useful later on.) A 
constant velocity V is assumed in the following collection 
of formulae, which are intended to capture this example. 

Let E be the conjunction of the following fonnulae. 

Initiates(Go,Moving,t) (3.1) 

Releases(Go,Location(Robot,p ),t) (3.2) 

Terminates(Stop,Moving,t) (3.3) 

Initiates(Stop,Location(Robot,p),t) (- (3.4) 
HoldsAt(Location(Robot,p),t) 

Let T be the following formula. 

Trajectory(Moving,t.Location(Robot,(x2,y2»,d) (- (3.5) 
HoldsAt(Location(Robot,(x I ,y 1) ),t) A 

HoldsAt(Facing(r),tl) /\ 
x2 = xl + V.d.Sin(r) /\ y2 = yl + V.d.Cos(r) 

Let R be the following domain constraint. 

[HoldsAt(Location( w,p 1 ),t) /\ (3.6) 
HoldsAt(Location(w,p2),t)] -..:; pI = p2 

Let U be the conjunction of the foUowing uniqueness-of­
names axioms. 

UNA[Location, Facing, Moving] 

UNA[Go, Stop] (3.8) 

Let N be the following narrative description . 

I ni tiall y(Location(Robot, (0,0» 

lnitially(Facing(90» 

Happens(Go,lO) 

Happens(Stop,20) 

(3.7) 

(3.9) 

(3.10) 

(3. I 1) 

(3.12) 
Now, given that the circumscriptions of E and N yield 

the predicate completions of Happens, Initiates, 
Terminates, and Releases, it's a straightforward exercise to 



show that the recommended circumscription yields what 
we would expecl. 

Proposition 3.13. 

CfRC[N; Happens]/\ 
CIRC[E ; Initiates, Terminates, Releases] /\ 

T /\ R /\ U /\ CEC F 
HoldsAt(Location(Robot,(x,y»,t) H 

ro ::; t S; 10 /\ X = 0 /\ Y = 0] v 
[10 < t ::; 20 /\ X = V.( t - 10) /\ Y = 0] v 

[20 < t /\ X = V.lO /\ Y = 0]. 

Proof. See Appendix. 0 
Notice that we are at liberty to include formulae which 

describe triggered events in N. Here's an example of such a 
formula, which describes conditions under which the robot 
will collide with a wall lying on an East-West line 100 
units north of the origin. 

Happens(Bump,t) f--

HoldsAt(Moving,t) 1\ HoldsAt(Facing(r),t) /\ 
-90 < r < 90 /\ HoldsAt(Location(Robot,(x,90»,t) 

4 Representing Space and Shape 

The formalism used in this paper to represent space and 
shape is taken from [Shanahan, 1995a]. Space is considered 
a real-valued co-ordinate system. For present purposes we 
can take space to be the plane IR x IR, reflecting the fact that 
the robot we will consider will move only in two 
dimensions. A region is a subset of IR x IR. A point is a 
member of IR x IR. I will consider only interpretations in 
which points are interpreted as pairs of reals, in which 
regions are interpreted as sets of points, and in which the E 

predicate has its usual meaning. 
A shape is represented as a region. The only shapes we 

will consider are open and path-connected. Every shape has 
a conventional centre, which is the origin (0,0).1 For 
example, an open circle of radius z units is described by 
following formula. 

p E Disc(z) H Distance(p,(O,O» < z (SpI) 

where Distance is a function yielding a positive real 
number, defined in the obvious way. 

Dislance«xl ,yI),(x2,y2» = ';'-(-xl---x2-)-=-2 -+-(y-I--y-2-=)2 (Sp2) 

The function Bearing is also useful. 
Bearing( (x l,yI ),(x2,y2» = r f-- (Sp3) 

z = Distance«xl,y 1),(x2,y2» /\ z #- 0 /\ 
x2-xl l1=Yl 

Siner) = -- /\ Cos(r) = 
z z 

Using Distance and Bearing we can define a straight line 
as follows. The term Line(p 1 ,p2) denotes the straight line 
whose end points are pI and p2. The Line function is useful 
in defining shapes with straight line boundaries. 

I This conventional "cen tre" is just a reference point, and doesn'l 
even have to be inside the shape in question. 
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P E Line(pl,p2) H 

Bearing(p l ,p) = Bearing(p 1 ,p2) /\ 
Distance(p l,p) S; Distance(p 1 ,p2) 

(Sp4) 

Space is occupied by objects. Each object w has a unique 
shape denoted by the term Shape(w). If the robot is denoted 
by the term Robot, and if its body is circular and ten units 
in radius, then we can express this as follows. 

Shape(Robot) = Disc(0·5) 

Spatial occupancy is represented by the fluent Occupies. 
The term Occupies(w ,g) denotes that object w occupies 
region g. No object can occupy two regions at the same 
time. This implies, for example, that if an object occupies a 
region g, it doesn't occupy any subset of g nor any superset 
of g. We have the following domain constraints. 

[HoldsAt(Occupies(w ,g 1),t) /\ (Sp5) 
HoldsAt(Occupies(w,g2),t)] ~ gl = g2 

HoldsAt(Occupies(wI,gl),t) /\ (Sp6) 
HoldsAt(Occupies(w2,g2),t) /\ wI #- w2 ~ 

--, ~ p Lp E gl /\ P E g2] 
The first of these axioms captures the uniqueness of an 

object's region of occupancy, and the second insists that no 
two objects overlap. 

An object's location is represented by the fluent 
Location. A further domain constraint is required which 
relates Location to Occupies. The term Location(w,p), 
which we've already encountered, denotes that the object w 
is located at point p. This means that the region it occupies 
is the result of displacing the conventional centre of its 
shape by x units east and y units north, where p = (x,y). If 
the object's shape is the region g, then the result of this 
displacement is denoted by the term Displace(g,p). 

HoldsAt(Occupies(w ,Displace(g,p» ,t) H (Sp7) 
~ g [Shape(w,g) /\ HoldsAt(Location(w,p),t)] 

(xI,yI) E Displace(g,(x2,y2» H (xl-x2,yl-y2) E g(Sp8) 

Using the Displace function, shapes can be conveniently 
combined to form new shapes by taking their union (via a 
disjunction). The following formula defines a shape a little 
like the field of view through a pair of binoculars , formed 
from two overlapping circles. 

p E TwoDiscs(x) H 

P E Displace(Disc(x),(-~,O» v 

p E Displace(Disc(x),(~,O» 

The incorporation of rotations in this formalism is 
extremely straightforward. In the present context, however, 
the only moving objects we'll encounter are circular, so the 
possibility of rotating a shape has been ignored. 

The final component of the framework is a means of 
default reasoning about spatial occupancy [Shanahan, 
1995a]. Shortly, a theory of continuous motion will be 
described. This theory insists that, in order for an object to 
follow a trajectory in space, that trajectory must be clear. 
Accordingly, as well as capturing which regions of space 
are occupied, our theory of space and shape must capture 
which regions are unoccupied. 



A suitable strategy for now is to make space empty by 
default. It's sufficient to apply this default just to the 
situation at time 0 - the common sense law of inertia will 
effectively carry it over to later times. The following axiom 
is required, which can be thought of as a common sense law 
oj spatial occupancy. 

AbSpace(w) ~ Initially(Location(w,p» (Ocl) 

The predicate AbSpace needs to be minimised, with 
Initially allowed to vary. 

Where previously we were interested in CIRC[N ; 
Happens), it's now convenient to split this circumscription 
into two, and to distribute Initially formulae in two places. 
Given, 

the conjunction 0 of Axioms (Spl) to (Sp8) with 
Axiom (Ocl). 

a conjunction M of Initially formulae which mention 
only the spatial fluents Location and Occupies , and 

a conjunction N of Happens formulae and Initially 
formulae which don't mention the spatial fluents 
Location and Occupies, and 

conjunctions E, T , R, U, and CEC as described in 
the last section. 

we are now interested in, 
CIRC [0 /\ M ; AbSpace; Initially) /\ 

CIRC[N ; Happens, 1\ 

CIRC[E ; Initiates, Terminates, Releases] /\ 
T 1\ R /\ U 1\ CEC. 

5 Sensors and Motors: The Theory I.E 

We now have the logical apparatus required to construct a 
formal theory of the relationship between a robot's motor 
activity. the world, and the robot's sensor data. For now we 
will assume perfect motors and perfect sensors. The issue 
of noise is dealt with in Section 7. 

The robot used as an example throughout the rest of the 
paper is one of the simplest and cheapest commerciaIly 
available mobile robotic platforms at the time of writing, 
namely the Rug Warrior described by Jones and Flynn 
[1993] (Figure 5a). This is a small, wheeled robot with a 
68000 series microprocessor plus 32K RAM on board. It 
has a very simple collection of sensors. These include three 
bump switches arranged around its circumference, which 
will be our main concern here. In particular, we wiIl 
confine our attention to the two forward bump switches, 
which, in combination, can deliver three possible values for 
the direction of a collision. 

Needless to say, each different kind of sensor gives rise 
to its own particular set of problems when it comes to 
constructing LE. The question of noise is largely irrelevant 
when it comes to bump sensors. With infra-red proximity 
detectors, noise plays a small part. With sonar, the 
significance of noise is much greater. The use of cameras 
gives rise to a whole set of issues which are beyond the 
scope of this paper. 
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The central idea of this paper is the assimilation of 
sensor data through abduction. This is in accordance with 
the principle, "prediction is deduction but explanation is 
abduction" [Shanahan, 1989]. To begin with, we'll be 
looking at the predictive capabilities of the framework 
described. The conjunction of our general theory of action, 
change, space, and shape with the theory LE, along with a 
description of the initial locations and shapes of objects in 
the world and a description of the robot's actions, should 
yield a description of the robot's expected sensory input. If 
prediction works properly using deduction in this way, the 
reverse operation of explaining a given stream of sensor 
data by hypothesising the locations and shapes of objects in 
the world is already defmed. It is simply abduction using 
the same logical framework. 

Switch3 

Figure Sa: 
The Rug Warrior Robot from Above 

In the caricature of the task of assimilating sensor data 
presented in Section 1, the realtionship between motor 
activity and sensor data was described by LE. In practice, 
this theory is split into parts and distributed across clifferent 
circumscriptions (see Section 3). 

First, we have a collection of formulae which are outside 
the scope of any circumscription. Let B be the conjunction 
of CEC with Axioms (B 1) to (B5) below. The robot is 
assumed to travel at a velocity of one unit of distance per 
unit of time. 

UNA [Occupies, Location, Facing, Moving) (B I) 

UNA [Rotate, Go, Stop] (B2) 

Trajectory(Moving,t,Location(Robot,(x2,y2»,d) ~ (B3) 
HoldsAt(Location(Robot,(xl ,yl) ).t) 1\ 

HoldsAt(Facing(r),t) 1\ 

x2 = xl + d.Sin(r) /\ y2 = yl + d.Cos(r) 

HoldsAt(Blocked(w 1, w2,r) ,t) H (B4) 
HoldsAt(Occupies(wl,gl),t) /\ 

HoldsAt(Occupies(w2,g2),t) 1\ wI ;r. w2 /\ 
HoldsAtCLocation(wl ,p l),t) 1\ 

--,3 zl [zl > 0 1\ \:j 72 [z2:<=; zl 1\ 

Bearing(p 1 ,p2,r) /\ Distance(p 1 ,p2,z2) ~ 
--, 3 p [p E g2 1\ P E Displace(g 1 ,p2)]]] 



HoidsAt(Touching(wI ,w2,p),t) H (B5) 
HoldsAt(Occupies(wI,gI),t) /\ 

HoldsAt(Occupies(w2,g2),t) /\ wI :t w2 /\ 
::3 P 1, p2 [p E Line(p 1 ,p2) /\ P :t pI /\ P :t p2 /\ 

'II p3 [[p3 E Line(pl ,p) /\ p3 :t p] ---7 

p3Egl]/\ 
'II p3 [[p3 E Line(p,p2) /\ p3 :t p] ---7 

p3 E g2]]. 
The fluent Blocked(w 1 ,w2,r) holds if object wI cannot 

move any distance at all in direction r without overlapping 
with another object. The fluent Touching(wl,w2,p) holds if 
wI and w2 are touching at point p. This is true if a straight 
line ~xists from pI to p2 at a bearing r which includes a 
point p3 such that every point between pI and p3 apart 
from p3 itself is in gi and every point from p2 to p3 apart 
from p3 itself is in g2. 

Next we have a collection of Initiates. Terminates, and 
Releases formulae. Let E be the conjunction of the 
following axioms (El) to (E6). A Bump event occurs when 
the robot collides with something. 

lnitiates(Rotate(rI ),Facing(rl +r2),t) f- (E 1) 
HoldsAt(Facing(r2),t) 

Releases(Rotate(rl ),Facing(r2),t) f-
HoldsAt(Facing(r2) ,t) /\ rl :t 0 

Initiates(Go,Moving,t) 

Releases( Go,Location(Robot,p). t) 

Terminates(a,Moving,t) f-
a = Stop v a = Bump v a = Rotate(r) 

Ini tiates(a,Location(Robot,p ),t) f-
[a = Stop v a = Bump] /\ 

HoldsAt(Location(Robot,p) ,t) 

(E2) 

(E3) 

(E4) 

CE5) 

(E6) 

Now we have a collection of formulae concerning the 
narrative of actions and events we're interested in. This 
collection has two parts. Let N be Nl /\ N2. The first 
component part concerns triggered events. The events 
Switch 1 and Switch2 occur when the robot's forward bump 
switches are tripped (see Figure Sa). Let Nl be the 
conjunction of Axioms (HI) to (H3) below. 1 

Happens(Bump,t) f- (HI) 
[HoldsAt(Moving,t) v Happens(Go,t)] /\ 

HoldsAt(Facing(r),t) /\ 
HoldsAt(BlockedCRobot, w ,r),t) 

Happens(S witch 1 ,t) f-
Happens(Bump,t) /\ HoldsAt(Facing(r),t) /\ 

HoldsAt(Location(Robot,pl) ,t) /\ 
HoldsAt(Touching(Robot,w,p2),t) /\ 

r-90 ~ Bearing(pI ,p2) < r+I2 

Happens(Switch2,t) f-
Happens(Bwnp,t) /\ HoldsAt(Facing(r) ,t) /\ 

HoldsAt(Location(Robot,p 1 ),t) /\ 
HoldsAt(Touching(Robot,w,p2),t) /\ 

r-12 ~ Bearing(pl,p2) < r+90 

(H2) 

(H3) 

1 Both forward bump switches are tripped if the collision point IS 

within approximately 120 of the robot's bearing. 
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Note that Axiom (HI) caters for occasions on which the 
robot attempts to move when it is already blocked. as well 
as for occasions on which the robot's motion causes it to 
collide with something. In the former case, an immediate 
Bump event occurs, and the robot accordingly moves no 
distance at all. 

For present purposes, the Bump event is somewhat 
redundant. In Axioms (E5) and (E6) it could be replaced by 
Switch1 and Switch2 events, and in Axioms (H2) and (H3) 
it could be simplified away. One reason not to abolish the 
Bump event is that, in principle, a collision could occur 
without the attendant sensor event - if one of the bump 
switches were broken, say. Similarly, a sensor event could 
occur without a collision as its cause - if a rain drop were 
to momentarily short a connection, for example. 

Another reason is that abolishing the Bump event would 
violate a basic principle of the present approach, according 
to which the assumption of an external world governed by 
certain physical laws, a world to which its sensors have 
imperfect access. is built in to the robot. The robot 's task is 
to do its best to explain its sensor data in term s of a model 
of the physics governing that world. In any such model, 
incoming sensor data is the end of the line. causally 
speaking. In the physical world, it's not a sensor event that 
stops the robot but a collision with a solid object. 

The second component of N is a description of the 
robot's actions. Suppose the robot hehaves as illustrated in 
Figure 5b. Let N2 be the conjunction of the following 
formulae, which represent the robot 's actions up to the 
moment when it bumps into obstacle A. 

Happens(Go,O) (5.1) 

Happens(Stop,2·8) 

Happens(Rotate( -90),3·3) 

Happens(Go,3·8) 

(5.2) 

(5.3) 

(5.4) 

The final component of our theory is 0 /\ M, where M is 
a map of the robot's world and 0 is the conjunction of 
Axioms (SpI) to (Sp8) with Axiom (Oc1). Like N, M is 
conveniently divided into two parts. Let M be Ml /\ M2, 
where Ml is a description of the initial locations, shapes , 
and orientations (where applicable) of known objects, 
including the robot itself. For the example of Figure 5b, Ml 
would be the conjunction of the following formulae. 

Initially(Facing(80» (5.5) 

Initially(Location(Robot,( 1,1 ») 

Shape(Robot) = Disc(0·5) 

(5 .6) 

(5.7) 
The form of M2 is the same as that of MI. However. 

when assimilating sensor data , M2 is supplied by 
abduction. For now though, let's look at the predictive 
capabilities of this framework, and supply M2 directly. Let 
M2 be the following formula, which describes the obstacle 
in Figure 5b. 

Initially(Location(A,(2,4») /\ (5.8) 
'II x, y [(x,y) E Shape(A) H -1 < x < 1 /\ 

-0·5 < y < 0·5] 
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Figure 5b: A Sequence of Robot Actions 

The following proposition says that, according to the 
formalisation, bump switch two is tripped at approximately 
time 5·5 (owing to a collision with obstacle A), and that the 
bump switches are not tripped at any other time. 
Proposition 5.9. 

CIRC lO /\ Ml /\ M2; AbSpace; Initially] /\ 
CIRC[NI /\ N2 ; Happens] /\ 

CIRC[E ; Initiates, Terminates, Releases] /\ B F 
Happens(Switchl,Tbump) /\ 

Happens(Switch2,Tbump) /\ 
[[Happens(Switch I ,t) v 

Happens(Switch2,t)] -7 t = Tbump] 

_ 2·5 + 2·8.Cos(80) 
where Tbump - Cos(-lO) + 3·8. 

Proof. See Appendix. 0 
The process of assimilating sensor data is the reverse of 

that of predicting sensor data. As outlined in Section 1, the 
task is to postulate the existence, location, and shape of a 
collection of objects which would explain the robot's 
sensor data, given its motor activity) 

Let'P be the conjunction of a set of formulae of the form 
Happens(Switchl,1:) or Happens(Switch2,1:) where 1: is a 
time point. What we want to explain is the partial 
completion of this formula, for reasons that will be made 
clear shortly. The only-if half of this completion is defined 
as follows. 
Definition 5.10. 

COMP['P] =def 
[Happens(a,t) /\ [a = Switchl v a = Switch2]] -7 

1 In the present paper, it is assumed that all sensor data require 
explanation . To take account of glitches (as opposed to just 
noise) , this requirement can be relaxed. 
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V [a = a /\ t = 1:] 
(a,1:)E [' 

where 1= ((a,1:) I Happens(a,1:) E 'P}. o 
Given 'P, we ' re interested in fmding conjunctions M2 of 

formulae in which each conjunct has the form, 

Initially(Location(O),p» /\ '<j P [p E Shape(O) H TI] 
where p is a point constant, 0) is an object constant, and TI 
is any formula in which p is free, such that 0 /\ Ml /\ M2 is 
consistent and, 

ClRC[O /\ MI/\ M2 ; AbSpace; Initially] /\ 
CIRC[N 1 /\ N2 ; Happens] /\ 

CIRC[E ; Initiates, Terminates, Releases] /\ B F 
'P /\ COMP['P]. 

The partially completed form of the Happens formula on 
the right-hand-side of the turnstile eliminates anomalous 
explanations in which, for example, the robot encounters a 
phantom extra obstacle before the time of the first event in 
'P. If 'P on its own were used instead of this partiaJly 
completed formu la, it would be possible to construct such 
explanations by shifting all the obstacles that appear in a 
proper explanation into new positions which take account 
of the premature interuption in the robot's path caused by 
the phantom obstacle. 

Clearly, from Proposition 5.9, if 'l' is, 

Happens(Switch 1 ,Tbump) /\ Happens(Switch2,Tbump) 

then (5.8) is an explanation that meets this specification.2 

Note that the symbol A in (5.8) (or rather its computational 
counterpart in the actual robot), when generated through 
the abductive assimilation of sensor data, is grounded in 
Harnad's sense of the term [Hamad, 1990], at the same 
time as acquiring meaning through the theory. 
Furthermore, the theoretical framework within which such 
explanations are understood , 

Links the symbols that appear in them directly to a 
level of representation at which high-level reasoning 
tasks can be performed, and 

Licenses an account of the robot's success (or 
otherwise) at performing its tasks which appeals to 
the correctness of its representations and its 
reasoning processes. 

However, (5.8) is just one among infinitely many 
possible explanations of this 'P of the required form. A 
bizarre example of an alternative explanation would be that 
the whole of space was occupied by a single object with a 
tunnel bored in it whose shape exactly matched that of the 
robot' s path up to time Tbump. 

In the specification of an abductive task like this, the set 
of explanations of the required form will be referred to as 
the hypothesis space. It's clear, in the present case, that 
some constraints must be imposed on the hypothesis space 
to eliminate bizarre explanations. Furthermore, the set of 
all explanations of the suggested form for a given stream of 

2 It is assumed that our language includes an arbitrarily large se t 

of unused constant symbols, from which (J) is drawn . 



sensor data is hard to reason about, and computing a useful 
representation of such a set is infeasible. This problem is 
tackled in the full paper by adopting a boundary-based 
representation of shape (see (Davis. 1990. Chapter 6]). 
Space limitations preclude further discussion of this topic 
nere. 

6 Noise 

The hallmark of the common sense informatic situation for 
a mobile robot is incomplete and uncertain knowledge of a 
spatially extended world of middle-sized objects. 
Incompleteness is a consequence of the robot's limited 
window on the world, and uncertainty results from noise in 
its sensors and actuators. This section deals with noise. 

Both noisy sensors and noisy actuators can be captured 
using non-determinism. (An aitemative is to use probability 
fBacchus, el al., I995J). Here we'll only look at the 
uncertainty in the robot's location that results from its 
noisy motors. The robot ' s motors are "noisy" for various 
reasons. For example, the two wheels might rotate at 
slightly different speeds when the robot is trying to travel 
in a straight line, or the robot might be moving on a slope 
or a slippery surface. Motor noise of this kind can be 
captured using a non-deterministic Trajectory formula. 
such as the following replacement for Axiom (83).1 

::3 x I, Y 1 [Trajectory(Moving,t, (B6) 
Location(Robot,(xl,yl»,d) /\ 

Distance«xI,yl),(x2,y2»::; d.£] (­
HoldsAt(Location(Robot,(x3.y3»,t) /\ 

HoldsAt(Facing(r),t) /\ 
x2 = x3 + d.SinCr) /\ y2 = y3 + d.Cos(r) 

In effect, Axiom (B6) constrains the robot's location to 
be within an ever-expanding circle of uncertainty centred 
on the location it would be in if its motors weren't noisy.2 
The constant £ determines the rate at which this circle 
grows. Axiom (87) below ensures that there are no 
discominuities in the robot 's trajectory. Without this axiom 
the robot would be able to leap over any obstacle which 
didn't completely cover the circle of uncertainty for its 
location. The term Abs(d) denotes the absolute value of d. 

Trajectory(f,t,Location(x,pI),dl) -7 (B7) 
'v' z [z > 0 -7 ::3 d 'v' d2, p2 [[d2> 0 /\ 

Abs(d2-dI) < d /\ 
Trajectory(f,t,Location(x,p2).d2)] -7 

Distance(pl,p2) < z]] 

Figure 6a shows the robot exploring the corner of an 
obstacle. Figure 6b shows the evolution of the 
corresponding circle of uncertainty, highlighting the points 
where the robot changes direction. 

Figure 6b is somewhat misleading, however. Consider 
Figure 6c. On the top left, the evolution of the circle of 

1 The Rotate action could also be made non-deterministic. 

2 Note that, while objects occupy open subsets of /R2, regiuns uf 
uncertainty are closed. 

uncertainty for the robot's location is shown. To the right, 
three potential locations are shown for the three changes of 
direction, Although these locations all fall within the 
relevant circles of uncertainty, the robot could never get to 
the third location from the second. This is because, as 
depicted at the bottom of the figure, in any given model the 
circle of uncertainty for the robot's location at the end of a 
period of continuous motion can only be defined relative to 
its actual location at the start of that period. This can be 
verified by inspecting Axioms (86) and (B7). 

The relative nature of the evolution of the circle of 
uncertainty means that the robot can acquire a detailed 
knowledge of some area Al of its environment, then move 
to another area A2 which is some distance from A I, and 
acquire an equally detailed knowledge of A2. The 
accumulated uncertainty entails only that the robot is 
Jncertain of where Al is relative to A2. This TlaturaJ 
feature of the formalisation conforms with what we would 
intuitively expect given the robot's informatic situation. 

Figure 6a: The Robot Explores a Corner 
Non-determinism is a potential source of difficulty for 

the abductive approach to explanation. Even with a precise 
and complete description of the initiaJ state of the world, 
including all its objects and their shapes, a non­
deterministic theory incorporating a formula like the one 
above will not yield the exact times at which collision 
events occur. Yet the sensor data that has to be assimilated 
has precise times attached to it. Fortunately we can recast 
the task of assim i tati ng sensor data as a form of weak 
abduction so that it yields the required results. Intuitively 
what we want to capture is the fact that without the 
hypothesised objects, the sensor data could not have been 
received. This is analogous to the consistency-based 
approach to diagnosis proposed by Reiter [1987]. 
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Figure 6b: 
The Evolution of the Circle of Uncertainty 

Figure 6c: 
The Circle of Uncertainty Is Relative 

Not Absolute 
Definition 6.1. Given, 

the conjunction B of CEC with Axioms (Bl), (B2), 
and (B4) to (B7), 

the conjunction E of Axioms (E1) to (E6), 

the conjunction 0 of Axioms (SpI) to (Sp8) with 
Axiom (Ocl), 
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a conjunction M1 of Initially and Shape formulae 
describing th e initial location s, shapes, and 
orientations of known objects, including the robot 
itself. 

the conjunction NI of Axioms (HI) to (H3), 

a conjunction N2 of Happens formulae describing 
the robot's actions, and 

a conjunction '¥ of formulae of the form 
Happens(Switch 1 ,'C) or Happens(Switch2,'C), 

an explanation of '¥ is a conjunction M2 of formulae in 
which each conjunct ha~ the form, 

Initially(Location(co,p» /\ '\j P [p E Shape(co) H TI] 
where p is a point constant. co is an object constant, and TI 
is any formula in which p is free, such that 0/\ Ml /\ M2 is 
consistent, and , 

CIRC[O /\ MI /\ M2 ; AbSpace; Initially] /\ 
ClRC[NI /\ N2 ; Happens] /\ 

ClRC[E ; Initiates, Terminates, Releases) /\ B 
I;t --, ['¥ /\ COMP['¥JJ. 0 

There will , naturally , be many explanations for any 
given '¥ which meet this definition, even using the 
boundary-based representation of shape adopted in the full 
version of the Daper. A standard way to treat multiple 
explanations in abductive knowledge assimilation is to 
adopt their disjunction. This has the effect of smothering 
any explanations which are stronger than necessary, such 
as those which postulate superfluous obstacles. The 
disjunction of all explanations of '¥ is the cautious 
explanation of '¥. 

A variety of preference relations over explanations can 
also be introduced. For example, it might be reasonable to 
assume that nearby collision points indicate the presence of 
a single object. Such preference relations are a topic for 
further study. 

The following theorem establishes that the above 
definition of an explanation is equivalent to the 
deterministic specification offered in the last section when 
£ is O. Let Bdet be the conjunction of CEC with Axioms 
(B 1) to (BS). 
Definition 6.2. A formula M is a comp lete spatial 
description if the location and shape of every object 
mentioned in M is the same in every model of, 

ClRC[O /\ M ; AbSpace; Initially). 0 

Theorem 6.3. If £ = 0 and M1 is a complete spatial 
description, then M2 is an explanation of '¥ if and only if 0 
/\ Ml /\ M2 is consistent and, 

CIRC[O /\ MI/\ M2 ; AbSpace ; Initially] /\ 
CIRC[NI/\ N2 ; Happens) /\ 

ClRC[E ; Initiates, Terminates, Releases) /\ Bdet 1= 
'¥ /\ COMP['¥). 

Proof. See Appendix. C 
A considerable amount of further work has been carried 

out, which is reported in the full version of the paper, but 
which it is only possible to present in outline here. Two 



further theorems have been established which characterise 
the abductive explanations defined above in terms which 
appeal more directly to the information available to any 
map-building algorithm which might be executed on board 
the robot. These theorems have been used to prove the 
correctness, with respect to the abductive specification 
given, of an algorithm for sensor data assimilation which 
constructs an occupancy array [Davis, 1990, Section 
6.2.1J. 

This algorithm forms the core of an implementation in C, 
which runs on data acquired by the robot in the real world. 
Some preliminary experiments have been conducted in 
which the robot, under the control of a behaviour-based 
architecture [Brooks, 1986J, explores an enclosure, and 
makes a record of its actions and sensor data for subsequent 
processing using the algorithm. 

Concluding Remarks 

In the paper accompanying his 1991 Computers and 
Thought Award Lecture, Brooks remarked that, 

[The field of Knowiedge Representation] concentrates 
much of its energies on anomalies within formal 
systems which are never used for any practical task. 

[Brooks, 1991, page 578] 

This paper should be conSU1Jed as an answer to Brooks. 
According to the logical account given in this paper, a 
robot's incoming sensor data is filtered through an 
abductive process based on a framework of innate 
concepts , namely space, time, and causality. The 
development of a rigorous, formal account of this process 
bridges the gap between theoretical work in Knowledge 
Representation and practical work in robotics, and opens 
up a great many possibilities for further research. The 
following three issues are particularly pressing. 

The assimilation of sensor data from moving 
objects, such as humans, animals, or other robots. 
Movable obstacles should also be on the agenda. 

The assimilation of richer sensor data than that 
supplied by the Rug Warrior's simple bump 
switches. 

The control of the robot via the model of the world 
it acquires through abduction. Existing work in the 
Cognitive Robotics vein is likely to be influential 
here [Lesperance, et aI, 1994], [Kowalski, 1995] , 
[Poole, 1995J. 
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Appendix A: Proofs 

Proof of Proposition 2.8. From CLRC[N ; Happens), we 
get, 

Happens(a.t) H [A.l] 
[[a = Rotate(90) /\ t = 10] v 

[a = Rotate(-180) /\ t = 20]). 

From CIRC[E ; Initiates , Terminates, Releases], we get, 
Initiates(a,f,t) H [A.2] 

a = Rotate(rl) /\ f = Facing(r2) /\ 
HoldsAt(Facing(r3),t) /\ r2 = r3 + r1 

Terminates(a,f,t) H [A.3] 
a = Rotate(rl) /\ f = Facing(r2) /\ 

HoldsAt(Facing(r2) ,t) /\ r1 :F- 0 

-, j a,f,t [Releases(a,f,t)]. [A A] 

From [A.l] and (EC4), we get, 
-, Clipped(O,Facing(O),t) ~ 0 :=:; t:=:; 10 

which, given (ECI) and (2.3), yields, 
HoldsAt(Facing(O),t) ~ O:=:; t :=:; 10. [A.S] 

From [A.21 and [A.S], we get, 

Initiates(Rotate(90),Facing(90),1 0). [A.6) 
From [A.]] and (EC4), we get, 

-, Clipped(1O,Facing(90),t) ~ 10 < t:=:; 20 
which , given [A.I], [A .6] and (EC2), yields, 

HoldsAt(Facing(90),t) ~ O:=:; t:=:; 10. [A.7] 
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From [A.2] and [A.5], we get, 

Initiates(Rotate( -180) ,Faci ng(270),20) . [A.8] 

From [A.I] and (EC4), we get, 

-, Clipped(20,Facing(270),t) ~ 20 < t 

which, given [A.I], [A.8] and (EC2) , yields, 

HOldsAt(Facing(270),t) ~ 20 < t. [A.9] 

The proposition follows from [A.S] , [A.7], and [A.9]. 0 
Proof of Proposition 3.13. From CIRC[N ; Happens], we 
get, 

Happens(a ,t) H [A.I 0] 
[[a = Go /\ t = 10] v [a = Stop /\ t = 20)). 

From CIRC[E ; Initiates, Terminates, Releases], we get, 

Initiates(a,f,t) H [A. 1 I] 
[a = Go /\ f = Moving] v 

[a = Stop /\ f = Location(RoboL,p) /\ 
HoldsAt(Localion(Robot,p) ,t)] 

Terminates(a,f,t) H a = Stop /\ f = Moving [A.12) 

Releases(a,f,t) H [A.13) 
a = Go /\ f = Location(Robot,p). 

From [A.lO] and (EC4), we get, 
-, Clipped(O,Location(Robot,(O.O»,t) ~ 0 :=:; L :=:; 10 

which, from (ECI) and (3.9), yields, 

HoldsAt(Location(Robot,(O,O»,t) ~ O:=:; t:=:; 10. r A.14] 

Similarly, we can show, 
HoldsAt(Facing(90),1 0). [A.15] 

From [A.ll] we have, 
Initiates(Go,Moving,10). [A.16) 

From [A. 10] and (EC4), we get, 
-, CJipped(lO,Moving,t) ~ 10 < t:=:; 20. [AJ7] 

From [A.l4], [A.l5], and (3.5), we get, 

Trajectory(Moving, I O,Location(Robot,(x ,0) ),d) ~ 
x = V.d 

which, given [A. 10], [A .1 6J, [A.17] and (EC6), yields , 

HoldsAt(Location(Robot,(x,O»,t) ~ [A.18] 
10< t :=:; 20 /\ X = V .(t - 10). 

From [A.II] and [A.18], we have, 

lnitiates(Stop,LocaLion(Robot,(x ,0»,20) ~ [A.l9) 
x = V.lO. 

From [A. 10] and (EC4) , we get, 

-, Clipped(20,Localion(Robot,(x,O» ,t) ~ 
20 < t /\ X = V. 10 

which, given [A.lOJ, [A.l8J, [A.19J and (EC2), yields, 
HoldsAt(Location(Robot,(x,O».t) ~ [A.20] 

20<I/\x=V.1O. 
From [A.14], [A.l~] and [A.20J, we arrive at, 

HoldsAt(Localion(Robot,(x ,y» ,t) ~ 
[0 :=:; t :=:; 10 /\ X = 0 /\ Y = 0] v 

[10 < t:=:; 20 /\ X = V.(t - 10) /\ Y = OJ v 
[20 < t /\ X = V.lO /\ Y = OJ . 

The proposition follows from this and the domain 
constraint (3.6). 0 



Proof of Proposition 5.9. From CIRC[NI /\ N2 ; 
Happens] , we get, 

Happens(a,t) H [A.21] 
Hl (a,t) v H2(a,t) v H3(a,t) v H4(a,l) 

where, 

.i-tl(a,t) =def 
[a = Go /\ t = 0] v [a = Stop /\ t = 2·8] v 

[a = ROlate( -90) /\ t = 3·3] v [a = Go /\ t = 3·8] 

H2(a,t) =def 
::3 w.r [a = Bump /\ [HoldsAt(Moving,t) v t = 3·8] /\ 

HoldsAt(Facing(r),t) /\ 
HoldsAt(Blocked(Robot, w ,r) ,t)] 

H3(a,t) =def 
:J w.r [a = Switch 1 /\ [HoidsAt(Moving,t) v t = 3·8] /\ 

HoldsAt(Facing(r) ,t) /\ 
HoldsAt(Location(Robot,p 1 ),t) /\ 

HoldsAt(Touching(Robot,w,p2),t) /\ 
r-lS0 < Bearing(pl,p2) < r+30] 

H4(a,t) =def 
::3 w.r [a = Switch2 /\ [HoldsAt(Moving,t) v t = 3·8] /\ 

HoldsAt(Facing(r),t) /\ 
HoldsAt(Location(Robot,p 1 ),t) /\ 

HoldsAt(Touching(Robot,w ,p2),t) /\ 
r-30 < Bearing(pl,p2) < r+ISOJ. 

From CIRC[E ; Initiates, Terminates, Releases] , we get, 
Initiates(a,f,t) H [A.22] 

[a = Rotate(rl) /\ f = Facing(rl H2) /\ 
HoldsAt(Facing(r2),t)] v [a = Go /\ f = Moving] v 

[[a = Stop va = Bump(r)] /\ 
f = Location(Robot,p) /\ 

HoldsAt(Location(Robot,p) ,r)] 

Terminates(a,f,t) H [A.23] 
[a = Stop v a = Bump(r) v a = Rotate(r)] /\ 

f= Moving 

Releases(a,f,t) H [A.24] 
a = Go /\ f = Location(Robot,p). 

From CIRC [0 /\ Ml /\ M2; AbSpace; Initially] we get, 
Initially(Location(x,p» --7 x = A v x = Robot. [A.2S] 

It can easily be shown that A retains its initial location for 
all time. Let Xturn = 1 + 2·8.Sin(80), Yturn = I + 
2·8 .Cos(80). From [A.2S] and (S.8), using Axioms (Sp7) , 
(Sp8) and (B4) , it can be confirmed that, 

--, HoldsAt(Blocked(Robot,w,r),I) f-- [A. 26] 
HoldsAt(Location(Robot,(x,y»,t) /\ 

::3 d [[0 ~ d ~ 2·8 /\ x = 1 + d.Sin(80) /\ 
y = I + d.Cos(80)] v 

[3·8 < d < Tbump /\ 
x = Xturn + (d - 3·8).Sin(-1O) /\ 

y = Ytum + (d - 3·8).Cos(-IO)]] . 

It can similarly be confirmed that, 
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--, HoldsAt(Touching(Robot,w,p) ,t) f-- [A.27] 
HoldsAt(Location(Robot,(x ,y»,t) /\ 

::3 d [[0 ~ d ~ 2·8 /\ x = 1 + d.Sin(80) /\ 
y = 1 + d.Cos(80)] v 

[3·8 < d < Tbump /\ 
x = Xturn + (d - 3·8).Sin(-IO) /\ 

y = Yturn + (d - 3·8).Cos(-IO)]]. 

Given [A.26], from [A .21] to [A.24], using a similar 
procedure to that employed in the moof of Proposition 
3.13, we can show, 

HoidsAt(Location(Robot,(x,y»,t) f-- [A.28 ] 
[0 ~ t ~ 2·8 /\ x = 1 + t.Sin(80) /\ 

y = 1 + r.Cos(80)] v 
r2·8 < t ~ 3.8 /\ x = Xturn /\ Y = Y turn] v 

[3·8 < t ~ Tbump /\ 
x = Xturn + (t - 3·8).Sin(-IO) /\ 

y = Yturn + (t- 3·8).Cos(-10)] . 

Given that A retains its initial location, from [A.28], [A .2S] 
and (S.8), using Axioms (Sp7) and (Sp8), we can show, 

HoldsAt(Blocked(Robot,A,-lO),Thump). [A.29] 

We can also show, 

HoldsAt(Facing( -1 O),Tbump) . [A.30] 

From [A.29] and [A.30], using Axiom (B4) , we get. 

Happens(Bump,Tbump). LA .3 1] 

Given that A retains its initial location , from [A.28], [A.2S] 
and (S.8) , using Axioms (Sp7) and (Sp8) , we can show, 

::3pl , p2[ [A.32] 
HoldsAt(Touching(Robot,A,p 1),Tbump) /\ 

HoldsAt(Location(Robot,p2),Tbump) /\ 
Bearing(pl,p2) = 0]. 

From [A.2I] and [AJO] to [A.32] we get, 

Happens(Switch 1 ,Tbump) /\ [A.3 3] 
Happens(Switch2,Tbump). 

From [A.21J, [A.27] and Axiom CBS) we get, 
[Happens(Switch l,t) v Happens(Switch2,t)) --7 [A.34] 

t = Tbump. 
The proposition follows directly from [A.33] and [A.34]. C 
Proof' of Theorem 7.5. We only need to consider 'P since 
the definition of an explanation caters for COMP['P] 
automatically. The theorem follows from the fact that 
Axioms (B3) and (BS) are equivalent if £ is 0, and the fact 
that (B3) ensures that the robot 's path is deterministic in 
the sense that at any given time its location is the same in 
every model of, 

CIRcrO /\ Ml /\ M2 ; AbSpace ; Initially] /\ 
CIRC[Nl /\ N2 ; Happens] /\ 

CIRC[E ; Initiates, Terminates, Releases] /\ Bdl:t. 

To see that the theorem follows, consider that, if the robot 's 
path is deterministic according to a formula r and the 
locations and shapes of objects are the same in every model 
of r (as they must be in the above formula since Ml and 
M2 are complew spatial descriptions), then r It --, 'P if and 
only if r 1= 'P. 0 




