From: AAAI Technical Report SS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

Learning Rules that Classify E-Mail

William W. Cohen
AT&T Laboratories
600 Mountain Avenue Murray Hill, NJ 07974
(908)-582-2092
wcohen@research.att.com

Abstract

Two methods for learning text classifiers are com-
pared on classification problems that might arise in
filtering and filing personal e-mail messages: a “tradi-
tional IR” method based on TF-IDF weighting, and
a new method for learning sets of “keyword-spotting
rules” based on the RIPPER rule learning algorithm.
It is demonstrated that both methods obtain signifi-
cant generalizations from a small number of examples;
that both methods are comparable in generalization
performance on problems of this type; and that both
methods are reasonably efficient, even with fairly large
training sets. However, the greater comprehensibility
of the rules may be advantageous in a system that
allows users to extend or otherwise modify a learned
classifier.

Introduction

Perhaps the most-discussed technical phenomenon
of recent years has been the rapid growth of the
Internet—or more generally, the rapid growth in the
number of on-line documents. This has led to increased
interest in intelligent methods for filtering and catego-
rizing documents. For example, there is now a great
deal of interest in systems that allow a technically naive
user to easily construct a personalized system for filter-
ing and classifying documents such as e-mail, netnews
articles, or Web pages.

This paper will compare methods for learning text
classifiers, focusing on the kinds of classification prob-
lems that might arise in filtering and filing personal
e-mail messages. A particular focus will be on learn-
ing plausible message categories from relatively small
sets of labeled messages.

The goal in performing this study is to determine
how “traditional” IR learning methods compare with
systems that learn concise and easily-interpreted clas-
sifiers; specifically, to compare traditional IR methods
with systems that learn sets of keyword-spotting rules.

In a “keyword-spotting” rule the primitive condi-
tions test to see if a word appears (or does not appear)
in a certain field of a mail message. An example of a
set of keyword-spotting rules is below.

18

cfp — “cfp” € subject, “95” € subject.
cfp «— “cfp” € subject, “1995” € subject.
cfp — “call” € body, “papers” € body.

This rule set states that an e-mail message will be clas-
sified as an instance of the class “cfp” (call for papers)
if it contains the tokens “cfp” and “95” in the subject
field, or the tokens “cfp” and “1995” in the subject
field, or if it contains the tokens “call” and “papers”
in the body of the message.!

The motivation for learning keyword-spotting rules
is based on first, a belief these rules will relatively easy
for end users to understand and modify, and second, a
suspicion that learning methods alone are not an ade-
quate solution for categorization problems of this type.
It seems likely that instead some mix of automatically
and manually constructed classifiers will be necessary
to account for the fact that both the user’s interests
and the distribution of messages change (sometimes
quite rapidly) over time. For instance, at the time of
this writing, the ruleset above may be accurate for mes-
sages I have received over the last few months; however,
at some point it will certainly become appropriate to
modify it by replacing “95” with “96” and “1995” with
“1996”.

Although keyword-spotting rulesets have the advan-
tage of comprehensibility, to my knowledge they have
not been extensively evaluated on text categorization
problems. It should be noted that these rulesets are
quite different from the classifiers constructed by more
common text categorization learning methods, such
as naive Bayes or term frequency/inverse document
frequency weighting (TF-IDF) (Salton 1991). Rather
than making decisions based on a weighted combina-
tion of all the words in a document, rules make de-
cisions based on a small number of keywords. Also,
keyword-spotting rules do not base classification deci-
sions on word frequency, only on the presence or ab-
sence of a word.

One goal of our evaluation is to determine how much

!The learning algorithm considered here does not as-
sume that keywords like “cfp” or “1995” are drawn from
some small set. Instead, any token appearing in any train-
ing example is a possible keyword.

accuracy (if any) is lost by using keyword-spotting
rules, relative to other classifiers. A second goal is to
determine how much CPU time is needed to learn ac-
curate rulesets on moderate-sized sets of examples—in
particular, whether it is reasonable to use rule learn-
ing as a component of an interactive message-filtering
system. A final goal is to gain some understanding
of the number of examples necessary to learn accurate
classifiers.

Learning algorithms

Two text categorization algorithms will be compared.
The first uses TF-IDF weighting (Salton 1991). The
implementation used here follows Ittner et al. (1995),
who adapt Rocchio’s relevance feedback algorithm
(Rocchio 1971) to classification. Briefly, each docu-
ment is represented as a vector, the components of
which correspond to the words that appear in the train-
ing corpus. For a document d, the value of the compo-
nent for the word w; depends on the frequency of wj;
in d, the inverse frequency of w; in the corpus, and the
length of d. Learning is done by adding up the vectors
corresponding to the positive examples of a class C
and subtracting the vectors corresponding to the neg-
ative examples of C, yielding a “prototypical vector”
for class C. Document vectors can then be ranked ac-
cording to their distance to the prototype. A novel
document will be classified as positive if this distance
i8 less than some threshold tc, which can be chosen so
a8 to balance recall and precision in some set manner.
In our experiments, {c was chosen to minimize error
on the training set.

The second algorithm is an extension of the rule
learning algorithm RIPPER, which is described in de-
tail elsewhere (Cohen 1995a). Briefly, RIPPER builds
a ruleset by repeatedly adding rules to an empty rule-
set until all positive examples are covered. Rules are
formed by greedily adding conditions to the antecedent
of a rule (starting with an empty antecedent) until
no negative examples are covered. After a ruleset
is constructed, a optimization postpass massages the
ruleset so as to reduce its size and improve its fit to
the training data. A combination of cross-validation
and minimum-description length techniques are used
to prevent overfitting. In previous experiments, RIP-
PER was shown to be comparable to C4.5rules (Quin-
lan 1994) in terms of generalization accuracy, but much
faster for large noisy datasets.

Before running these experiments, RIPPER was
modified so as to be more efficient for text categoriza-
tion problems. In the initial implementation of RIP-
PER, examples were represented as feature vectors.
This implementation could be used to learn keyword-
spotting rules; however, it would be necessary to con-
struct a boolean feature for each possible condition of
the form “w; € field”, and then to represent each doc-
ument as a vector of these boolean features. This is
rather inefficient since even a moderately large corpus

19

will contain hundreds or thousand of words.

One common way of avoiding this problem is to re-
strict the vocabulary, for example by only considering
frequent words or highly informative words. I chose
instead to extend RIPPER to allow the value of an
attribute to be a set of symbols (as well as single sym-
bolic value or a number). This means that a structured
document can be easily and naturally represented. For
example, an e-mail message is represented with four at-
tributes, from, to, subject, and body. The value of
each attribute is the set of all words that appear in the
corresponding section of the mail message.

The primitive tests on a set-valued attribute a (i.e.,
the tests which are allowed in rules) are of the form
“w; € a” or “w; ¢ field”. When constructing a rule,
RIPPER finds the test that maximizes information
gain for a set of examples S efficiently, making only
one pass over S for each attribute. All words w; that
appear as elements of attribute a for some training ex-
ample are considered by RIPPER.

Using set-valued attributes allows one to represent
a set of documents easily and naturally. It is arguably
more elegant and potentially more robust than us-
ing, say, entropy-based feature selection (Lewis and
Ringuette 1994; Apté et al. 1994) to derive a small
of features. This representation also simplifies the
preprocessing of examples—a worthwhile aim if one’s
eventual goal is integration of the learner into an in-
teractive system. Set-valued attributes are discussed
in more detail elsewhere (Cohen 1996a).

A second extension to RIPPER, also motivated by
text categorization problems, allows the user to specify
a loss ratio (Lewis and Catlett 1994). A loss ratio
indicates the ratio of the cost of a false negative to
the cost of a false positive; the goal of learning is to
minimize misclassification cost on unseen data. Loss
ratios in RIPPER are implemented by changing the
weights given to false positive errors and false negative
errors in the pruning and optimization stages of the
learning algorithm.

Recall that the TF-IDF learning algorithm can trade
off recall for precision by making an appropriate choice
of its similarity threshold ¢¢. By using an appropri-
ate loss ratio RIPPER can also make this trade-off.
The experimental comparisons discussed below, how-
ever, focus on classifier error; unless otherwise stated
a loss ratio of 1 was used.

In all of the experiments described below, messages
were parsed into a header and body. All words from
the from, to, and subject fields were extracted from
the header, and the first 100 words were extracted from
the body. (A word is any maximal-length sequence of
alphanumeric characters, normalized by converting up-
percase to lower-case characters.) For RIPPER, exam-
ples were represented by four set-valued attributes. For
TF-IDF, examples are represented by a set of tokens
of the form f_w, where w is a word and f is the field w
appeared in; for instance the word call appearing in

FOIL(rel) —— |
FOIL (prop) -+
RIPPER - -

C4.5 —«—
Prob. -+-]

precision

© O 0 ©0 0 © O 0o ©

.

N W e 1 A d D WV
T T T T v T T T

0.10.20.3 0.40.50.60.70.80.9 1
recall

Figure 1: AP problems with uncertainty samples

the subject field would be encoded as subject_call.
Header fields other than “to”, “from”, and “subject”
were discarded. Any random sample that contained
no positive examples of the concept to be learned was
discarded.

The decision to limit the size of an example by using
only the first 100 words in a message body was driven
by efficiency considerations; absent this restriction, the
occasional very long message (e.g., Postscript source
for a journal paper) would make learning much more
expensive. Using the first 100 words in the body of a
document is also a sort of feature selection since usually
the first few sentences in an e-mail message indicate the
message’s general content.

Experiments
Preliminary experiments on text

The text version of RIPPER has been tested on a num-
ber of categorization problems. Figure 1 gives a flavor
for one of these comparisons. This graph summarizes
RIPPER’s performance, as measured by recall and pre-
cision, on a corpus of AP newswire headlines (Lewis
and Gale 1994). All statistics are averaged across 10
categories (equally weighted). The various points on
the precision-recall curve were generated by varying
RIPPER'’s loss ratio. All training is done on 999-
example samples selected by a procedure called “un-
certainty sampling” (Lewis and Gale 1994). RIPPER’s
average performance is comparable or superior to the
systems previously applied to this problem, namely
C4.5 (Quinlan 1994), a probabilistic Bayesian classi-
fier (Lewis and Gale 1994) and FOIL (Quinlan 1990).2
I have also obtained similarly encouraging results on
the Reuters-22173 corpus (Lewis 1992), another set of
news story classification problems (Cohen 1996b).

2Two encodings were used with FOIL, a “propositional”
encoding which supports rules similar to the rules con-
structed by RIPPER, and a “relational” encoding which
also supports rules containing some types of phrases. For
details see Cohen (1995b).

20

None of these problems, however, are particularly
representative of the categorization problems likely to
arise in processing e-mail. One obvious difference is
the amount of training data; the examples for the AP
titles, for instance, were selected from a total set of
over 300,000, far more than could be expected to be
available for construction of a personalized e-mail filter.
However, there are subtler issues as well. For the AP
titles, for instance, the documents are generally much
shorter than a typical e-mail message (a little over nine
words in length, on average). Also, for both the AP ti-
tles and the Reuters-22173 documents, the documents
being classified have been written by professionals with
the goal of making their subject immediately apparent
to a newspaper reader. Finally, the topics, which are
generally based on relatively broad semantic categories
like “nielsens ratings” or “wheat”, are perhaps atypi-
cal of the categories of interest in processing e-mail.
Elsewhere it has been noted that in the Reuters-22173
data there is considerable variation among topics in
the relative performance of different classifiers (Wiener
et al. 1995); hence it is important to evaluate learning
methods on problems that will be representative of the
problems actually encountered in practise.

Other researchers (Lang 1995; Armstrong et al.
1995) have noted that learning methods based on TF-
IDF often perform quite well, even relative to more
complex learning learning methods, and my experi-
ments with RIPPER on the AP titles dataset and
Reuters-22173 tended to confirm this observation. Fur-
ther comparisons in this paper will focus on TF-IDF
and RIPPER.

Recognizing talk announcements

The category of “talk announcements” was chosen as a
more representative test case. A corpus was assembled
of all 818 messages posted to a center-wide general-
interest electronic bulletin over a 4-year period. All
messages were manually labeled as to whether they
were talk announcements. I also partitioned the corpus
chronologically? into a training set of 491 messages and
a test set of 325 messages.

TF-IDF and RIPPER were compared on different
sized subsets of the training data. The results, aver-
aged over 25 trials, are summarized in the upper left-
hand graph of Figure 2. Generally speaking, RIPPER
does better than TF-IDF, particularly for small num-
bers of examples.

The difference is frequently statistically significant.
After training on each subsample, a paired test was
performed comparing RIPPER and TF-IDF’s hy-
potheses on the test data. In 70 of 175 paired tests,
RIPPER’s hypothesis was statistically significantly su-
perior, and in only three trials was TF-IDF’s hypothe-
sis statistically significantly superior. In the remaining
trials the difference was not statistically significant.

3I.e., every message in the test set was posted after the
latest message in the training set.

talk announcements
24 T T T v

A2 TP-IDF —~—
20 N\

18 N

16 |
ut
12 |
10 \,

exror rate

RIPPER —— |

0 S0 100 150 200 250 300 350 400

#training examples

JAIR folders

[y
o

T

error rate
~
[T I R ST I T I ST IY- I |
— T

RIPPER —~— |
N TF-IDF ——

100 150 200 250
#training examples

0 50

erxror rate

error rate

Sydney Uni folders

-

Y T
€5 1\ TFoIDF ~— |
4t
3.5
3t
2.5 |
2
1.5}
1

20 40 60 80 100 120 140 160 180 200
#training examples

ML94 folders

1 RIPPER —~—
TF-IDF —— -

2.5 L L) . " L . R)
0 200 400 600 800 100012001400160018002000
#training examples

Figure 2: Error rates for various problems

E-malil folders

I also looked at a number of categories which reflect
how I file my own mail. My filing system for e-mail
messages is currently completely manual and some-
what haphazard, and I am reluctant to use most of the
categories of the form “messages to be filed in folder
foo” as exemplary of useful and/or natural classes.
However, some filing subtasks seemed to be reason-
able categories to experiment with. I decided to use
the following corpora and categories.

Sydney University folders This is a corpus of 269
messages, saved in 38 folders, that were received in
September and October of 1995, during a visit to the
Basser Department of Computer Science at Sydney
University. Many of the folders explicitly correspond
to messages from a single sender, or else are highly
correlated with the sender. One class was generated
for each folder—the messages filed in that folder be-
ing positive examples, and the messages filed in other
folders being negative examples.

21

The results, averaged over 25 trials per class and
38 classes, are summarized in the upper right-hand
graph of Figure 2. RIPPER, performs slightly bet-
ter than TF-IDF on average, but the comparison is
not nearly so one-sided as on the talk announcement
problem; it is probably most accurate to say that
one these problems the performance of RIPPER and
TF-IDF is about the same. In the paired tests, for
instance, RIPPER was statistically significantly bet-
ter than TF-IDF 68 times, statistically significantly
worse 52 times, and is statistically indistinguishable
on the remainder of the 3013 trials.

JAIR folders This is a corpus of 397 messages, saved

in 11 folders, pertaining to my duties as editor of the
Journal of AI Research (JAIR). One class was gen-
erated for each folder. In contrast to the Sydney
University folders, all of these folders are semanti-
cally defined. Most of them contain correspondence
connected with a single JAIR submission.

The results, averaged over 25 trials per class and 11
classes, are summarized in the lower left-hand graph
of Figure 2. Again, the two algorithms are roughly
comparable. On average, RIPPER gets a slightly
lower error rate with many training examples, and
TF-IDF gets a slightly lower error rate with fewer
training examples. In the paired tests RIPPER is
statistically significantly superior 161 times, statis-
tically significantly worse 184 times, and indistin-
guishable the remaining 547 times.

ML94 folders This is a corpus of 2162 messages,
saved in 71 folders, pertaining to my duties as co-
chair of the 1994 Machine Learning Conference. One
class was generated for each folder that contained at
least 22 messages (i.e., more than 1% of the total),
for a total of 21 classes.

These folders are a mixed lot. Most are semantically
defined (e.g. “budget”) but a few are associated with
a particular person. Many of the classes are not
completely disjoint, and hence a number of messages
were filed in multiple folders. The dataset should
thus appear noisy to the learning algorithms, which
assume the classes to be disjoint.

The results, averaged over 10 trials per class and
21 classes, are summarized in the lower right-hand
graph of Figure 2. On these problems the two sys-
tems are again comparable in performance, although
TF-IDF has a slight edge for most sample sizes. In
the paired tests RIPPER is statistically significantly
superior 146 times, statistically significantly worse
355 times, and indistinguishable the remaining 993
times. Regardless of statistical significance, how-
ever the absolute differences between the two algo-
rithms is small—on average their hypotheses agree
on nearly 98% of the test cases.

E-mail filters

In this section I will consider another type of message
category—categories useful for filtering or prioritizing
unread mail.

The categories I considered were obtained as follows.
Recently some colleagues implemented a customizable
e-mail reader called Ishmail (Helfman and Isbell 1995).
This mail reader allows a user to define an ordered list
of mailbozes, each of which has an associated classifi-
cation rule. By convention the last mailbox in the list
is called misc, and is associated with a classification
rule that always succeeds. Before it is read, any in-
coming e-mail messages is placed in the first mailbox
with a rule that “accepts” the message (i.e. classifies
the message as positive). The classification rules used
by Ishmail are boolean combinations of substring and
regular expression matches—a language that includes
the keyword-spotting rulesets considered above—and,
in the current implementation, must be explicitly pro-
grammed by the user.

Ishmail allows a number of other properties to be as-
sociated with a mailbox. For instance, user can request

22

User Problem #positive | #negative
Name examples | examples
userl software 11 256
conferences 15 256
talks 87 256
user2 associationl 344 3782
taskl 54 3782
localtalks 81 3782
subjectl 62 3782
userd subjectl 206 1763
personal 575 1763
associationl 107 1763
todo 12 1763

Table 1: Summary of the e-mail filtering problems

that the messages placed in a mailbox be automatically
archived at set intervals (e.g. weekly). A user can also
ask to be alerted only when a mailbox has at least & un-
read messages, or when the oldest unread message is at
least d days old; thus Ishmail can be used to prioritize
unread mail. One typical use of Ishmail is to put com-
mon types of electronic “junk” mail into special mail-
boxes, which are then given appropriate alerting and
archiving policies. Many of these messages—notably
messages from specific mailing lists—can be detected
reliably by looking only at the sender.

I interviewed a number of Ishmail users and found
that several users were employing the system in the fol-
lowing intriguing way. These users defined mailboxes
corresponding to particular message categories of inter-
est, but gave these mailboxes either vacuous classifica-
tion rules, or else highly approximate rules. Messages
were then manually moved from the misc mailbox (or
wherever else they wound up) into the semantically ap-
propriate mailbox. The reason for doing this was usu-
ally to take advantage of Ishmail’s automatic archiving
features on message categories for which it was difficult
to write accurate classification rules.

I realized that, in manually correcting missing or
erroneous classification rules, and also automatically
archiving the results of these actions, these users had
been unknowingly providing training data for a learn-
ing system. In each case, the messages manually placed -
into a mailbox are positive examples of the associated
classification rule, and messages placed in later mail-
boxes are negative examples.

It should be noted that all of these users were com-
puter scientists—one a researcher in the area of com-
putational linguistics—and all had written some clas-
sification rules by hand. It seems likely, therefore, that
these categories are relatively difficult to explicitly pro-
gram; this makes these categories are particularly in-
teresting as targets for learning.

I assembled eleven datasets of this sort from three
different users. The characteristics of these problems
are summarized in Table 1. (In the interests of pri-
vacy I have replaced the actual user names and mail-

box names with rather generic terms.) These datasets
represent several months worth of mail, and two of
the users had used very complete archiving strategies;
hence the datasets are rather large. In each case, I sim-
plified the problem slightly by using only the default
“‘misc” mailbox as a source of negative examples. Two
of the eleven categories were sets of talk announce-
ments, providing a nice confirmation of the typicality
of the first problem I selected for study.

Figure 3 shows average error rates on these prob-
lems. I followed a methodology similar to that
used above, training the two learning algorithms on
different-sized subsets of the total data, and then mea-
suring the error rates on the remaining data; however,
since the sizes of these datasets are different, [used a
range of percentages of the whole dataset, rather than
a range of absolute sizes for the training set.

Overall RIPPER performs better on these problems.
In paired tests, RIPPER is statistically significantly
superior 132 times, statistically significantly worse 21
times, and indistinguishable the remaining 331 times.

As an additional (and perhaps more easily inter-
preted) point of comparison, I also measured the error
rates of the two systems on these problems with 10-fold
cross validation. The results are summarized in Ta-
ble 2, with statistically significant differences marked
with an asterisk (*). RIPPER’s error rate is slightly
higher on three of the eleven problems, and lower on
the remaining eight. On six of these problems RIP-
PER’s error rate is dramatically lower—less than half
of TF-IDF’s error rate—and RIPPER is never statis-
tically significantly worse.

I will conclude with a few general comments. First,
on almost all of problems, RIPPER does somewhat
better than TF-IDF, if given a sufficiently large num-
ber of training examples. Compared to RIPPER, TF-
IDF seems to perform best when there is little train-
ing data, and particularly when there are few positive
examples. Second, while the performance of the learn-
ers with a very small number of training examples is
roughly the performance of the default classifier, this
performance seems to improve quite rapidly. In the
talk announcement problem and the folder problems,
for example, there is a noticeable and significant re-
duction in error with even 100 training examples.

Run-time performance

TF-IDF’s run-time performance is relatively well-
understood; an efficient implementation requires only a
small number of passes over the corpus, leading to lin-
ear run-time with a low constant. RIPPER’s run-time
performance, on the other hand, has been evaluated
mostly on very large noisy datasets, and the efficiency
of the extension to set-valued attributes has not been
previously investigated.

In brief, RIPPER seems to be reasonably efficient
for problems of this sort, although perhaps not quite
fast enough to be used in an interactive system on cur-

rent hardware. In learning from the complete set of
491 talk announcement examples, a corpus containing
9760 distinct words and a total of almost 80,000 words,
RIPPER requires 43 seconds on a Sun 20/60. About
14 seconds of this time is spent reading in the dataset.
(For comparison, TF-IDF takes about 17 seconds on
the talk announcement problem, and most of this time
is reading in the data.) RIPPER’s performance on the
2000-example samples of the ML94 folder concepts is
comparable: RIPPER takes an average of 42 seconds
to construct a ruleset.

Related work

In a previous related study, the rule learning system
SWAP1 was compared to other learned classifiers on
the Reuters-22173 dataset (Lewis 1992), a corpus con-
taining 22,173 documents that have been classified into
135 different categories (Apté et al. 1994). The doc-
uments in the Reuters-22173 collection are all news
stories, averaging around 80 words in length, and the
training sets used were large—on the order of 10,000
labeled examples.

The focus of this comparison is on text categoriza-
tion problems that are representative of those that
arise in handling e-mail correspondence. As noted
above, there is substantial variation even among the
different Reuters categories, and little reason to sup-
pose that they would be typical of e-mail categorization
problems.

Another technical difference in these two studies is
that the text categorization rules learned by Apte et al.
contained primitive tests that compare word frequency
with a fixed threshold, rather than simply checking for
the presence or absence of a word. This representation
is presumably more accurate but less comprehensible
than keyword-spotting rules.

We are currently conducting further studies with the
Reuters-22173 collection. One goal of these studies is
to compare the performance of RIPPER and SWAP1.

Conclusions

Motivated by an interest in learning classifiers for text
that are easy for end users to understand and mod-
ify, this paper has compared an extension of the RIP-
PER rule learning method and TF-IDF on a number
of text categorization problems. The benchmark prob-
lems used are problems that might plausibly arise in
filing and filtering personal e-mail.

One encouraging result of the study is that both
methods have fairly steep learning curves; i.e., sig-
nificant amounts of generalization are obtained with
a relatively small number of examples. In each of
the graphs in Figure 2, for instance, a significant re-
duction in the error rate occurs with only 100 exam-
ples, and much of the learning takes place with around
200 examples—for many users, only a few days worth
of mail. I found this rapid learning rate somewhat
surprising—since many of the categories are relatively

exrror rate

.16

Average of filtering problems

.15 |
14 |
13 ¢
12 ¢
11 f
0.1
0.09
0.08 |
0.07 ¢t
0.06
0.05

o0 0o o0coo

RIPPER —— -
TF-IDF —~— |

0 10 20 30 40 50 60 70 80

$ of data used for training

Figure 3: Error rate averaged over the filtering problems

User Problem % Error)
RIPPER (s¢) | TF-IDF (se)
userl software 4.53 (1.02) 4.15 (1.28)
conferences 7.02 (1.48) 5.53 (1.67)
talks *8.16 (1.37) 20.08 (2.02)
user2 associationl *2.84 (0.24) 6.79 (0.38)
task1 £0.65 (0.11) 1.38 (0.22)
localtalks *0.93 (0.10) 1.89 (0.14)
subject1 148 (0.31) 1.87 (0.26)
userd subjectl *3.60 (0.31) 9.40 (0.78)
personal *21.00 (0.79) 23.86 (0.69)
associationl *0.91 (0.27) 444 (0.45)
todo 0.73 (0.15) 0.67 (0.15)

Table 2: Performance on e-mail filtering problems (10-CV)

infrequent, one would expect to see only a handful of
positive examples in a training set of this size.

Although more work clearly needs to be done, the
experiments also shed some light on the relative per-
formance of rule learning methods and traditional IR
methods. A priori, one might expect rule induction
methods to work well when there is a concise keyword-
based description of a category, and work poorly in
other cases. In filtering e-mail, of course, a number
of arguably natural types of categories do have simple
rulesets. One example is categories that are associ-
ated with a single unique sender; for instance, mes-
sages from a particular mailing list. Another exam-
ple is categories distinguished by salient, attention-
grabbing keywords; the “talk announcements” cate-
gory is an instance of this sort of category. (Most talk
announcements include a number of salient keywords,
such as “talk”, “abstract”, and “speaker”.) However,
the experiments of this paper suggest that induction
of keyword-spotting rulesets is competitive with tradi-
tional IR learning methods on a relatively broad class
of text categorization problems. In particular, the rule
methods are competitive even in situations in which all
or most of the categories are semantically defined.

24

This suggests that a system which combines user-
constructed and learned keyword-spotting rules may
indeed be a viable architecture for a personalized e-
mail filtering system.

References

Chidanand Apté, Fred Damerau, and Sholom M.
Weiss. Automated learning of decision rules for text
categorization. ACM Transactions on Information
Systems, 12(3):233-251, 1994.

R. Armstrong, D. Frietag, T. Joachims, and T. M.
Mitchell. WebWatcher: a learning apprentice for the
world wide web. In Proceedings of the 1995 AAAI
Spring Symposium on Information Gathering from
Heterogeneous, Distributed Environments, Stanford,
CA, 1995. AAAI Press.

William W. Cohen. Fast effective rule induction. In
Machine Learning: Proceedings of the Twelfth In-
ternational Conference, Lake Taho, California, 1995.
Morgan Kaufmann.

William W. Cohen. Text categorization and relational
learning. In Machine Learning: Proceedings of the

Twelfth International Conference, Lake Taho, Cali-
fornia, 1995. Morgan Kaufmann.

William W. Cohen. Learning with set-valued features.
Submitted to AAAI-96, 1996.

William W. Cohen. Some experiments in text cate-
gorization using rules. In preparation, 1996.

Jonathan Isaac Helfman and Charles Lee Isbell. Ish-
mail: Immediate identification of important informa-
tion. Submitted to CHI-96, 1995.

David J. Ittner, David D. Lewis, and David D. Ahn.
Text categorization of low quality images. In Sym-
posium on Document Analysis and Information Re-
trieval, pages 301-315, Las Vegas, NV, 1995. ISRI;
Univ. of Nevada, Las Vegas.

Ken Lang. NewsWeeder: Learning to filter netnews.
In Machine Learning: Proceedings of the Twelfth In-
ternational Conference, Lake Taho, California, 1995.
Morgan Kaufmann.

David Lewis and Jason Catlett. Heterogeneous uncer-
tainty sampling for supervised learning. In Machine
Learning: Proceedings of the Eleventh Annual Con-
ference, New Brunswick, New Jersey, 1994. Morgan
Kaufmann.

David Lewis and William Gale. Training text classi-
fiers by uncertainty sampling. In Seventeenth Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, 1994.

David Lewis and Mark Ringuette. A comparison of
two learning algorithms for text categorization. In
Symposium on Document Analysis and Information
Retrieval, Las Vegas, Nevada, 1994.

David Lewis. Representation and learning in informa-
tion retrieval. Technical Report 91-93, Computer Sci-
ence Dept., University of Massachusetts at Ambherst,
1992. PhD Thesis.

J. Ross Quinlan. Learning logical definitions from
relations. Machine Learning, 5(3), 1990.

J. Ross Quinlan. C4.5: programs for machine learn-
ing. Morgan Kaufmann, 1994.

J. Rocchio. Relevance feedback information re-
trieval. In Gerard Salton, editor, The Smart retrieval
system—ezperiments in automatic document process-
ing, pages 313-323. Prentice-Hall, Englewood Cliffs,
NJ, 1971.

Gerard Salton. Developments in automatic text re-
trieval. Science, 253:974-980, 1991.

E. Wiener, J. O. Pederson, and A. S. Wiegend. A
neural network approach to topic spotting. In Sym-

posium on Document Analysis and Information Re-
trieval, pages 317-332, Las Vegas, Nevada, 1995.

25

