
A Grammar Inference Algorithm for me World Wide Web

Terrance Goan
Stottler Henke Assoc., Inc.

2016 Belle Monti Ave
Belmont, CA 94002

goen~sirius, tom

Nels Benson Oren Etzioni
Department of Computer Science And Engineering

Un/versity of Washington
Seattle, WA 98105

{nels, etzioni } @cs.washington. edu

Abstract
The World Wide Web is a treasure trove of
information. The Web’s sheer scale m,l~.s automatic
location and extraction of information appealing.
However, much of the information lies bmied in
documents designed for human consumption, such as
home pages or product ~ta_Sogs. Before software
agents can extract nuggets of infonnmion fi’om Web
documents, they have to be able to recognize it
despite the multitude of formats in wh/ch it may
appear. In this paper, we take a machine learning
approach to the problem. We explain why existing
grammar inference techniques face difficulties in this
domain, present a new techn/que, and demonstrate its
success on examples drawn f~om the Web ranging
f~om CMU Tech Report codes to bus schedules. Our
algorithm is shown to learn target languages found
on the Web in si~mlfw.aufly fewer examples than
Inevious methods. In addition, our algmiH~n is
guaranteed to learn in the limit, and rims in time
OOS~, where ISI is the size of the sample.

Introduction

A tremendous amount of in’formation is stozed in human
readable documents on the World Wide Web. Before a
software agent, such as the Berpinl~der (Bargain-
/trader), can satisfy a goal such as "find the best Inice for
Michael Jackson’s recent CD" it has to be able to access
such decmnents and extract Inice information. Similarly,
the Interact so/tbct OEtzionl & Weld, 1994) has to extract
phone numbers and email adchesses fzom home pages and
personnel direct(hies. The dynamic nature and sheer size
of the Web ~.1~. automatic infmmafion extraction
appealing, if not vital. However, the lack of format~ng
standards for information such as addresses, phone
numbers, schedules, product catalog en~es and so on,
mai~-4 their automatic extraction f~om Web documents
difficult Additionally, it is impractical to expect the
users of softwsre agents to have the technical backsmund
mqulreA to maintain the agent’s parsing functions as
formats for catalog entries etc. change with time.

The problem of learning to n~.ooniT~ nuggets of
information on the Web can be decomposed

into the following sub-problems:

s D/scovery: find Web pages containing examples of
the target infommtlon.

¯ l~mctl0u: identify the location of an example on
the page and extract it.

¯ Grammar inference: given a set of examples, learn a
grammar characterizing such information.

¯ Incorporation: given a grammar, use it as part of
every day activities and refine it if necessary.

The discovery and extraction problems appear hard, and
may require human assistance. For example, a human
may have to collect and mark up a set of examples as gzist
for a grammar inference mill. However, tools can be
written to facilitate this process. In this paper, we focus
exclusively on the grammar inference problem, and leave
the others for furore work. To demonstrate that our
approach to grammar inference is viable, we focus on
stmctmml stnngs commonly found on the Web and test
Our algogithm on several O.t# sets drawn directly firom
Web pages. It is dlf~cult if not impo. ssible to argue that
our grammar inference algorithm handles the full
diversity of information found on the Web; instead we
demonstrate empixically that the algorithm is a significant
advance in the ~te of the art of grammar inference,
motivated by and tested on Web ,h,tl The performance
of our learning algorithm fonus a base line for furore
investigations in this domain.

Preliminaries

Grammar inference is defined as the task of learning a
grauunar f~m a set of example stings. Since providing
positive example slangs is much easier for users than
providing instructive negative examples (e.g. what is an
/nstruc~e negative example of an address?), we will
focus on learning f~m a positive sample done. For

From: AAAI Technical Report SS-96-05. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved.

tractabih’ty we restrict our search to mauler 8rammm (or
equivalently regular expressions or determlnlstic finite
automata (DFA)), which provide sufficient exlnessiveness
for our purposes. We can define the input and output of
our algorithm WIL (Web Information Learner) as follows:

A set of positive example stnnge S* = L(M)
where L(M) is the lugnage generated by some
automata M.

Output: A finite state automata M’ that approximates M.

We timber stipulate that the automata M and M’ ate
stochastic, meaning:

¯ each arc a leaving a node n in M or M’ has an
associated pmhahility P.(a)

¯ each node n in M and I~ also has an associated
termln~on probability P,(n)

¯ P,(n) + I: P.(a) : 1 for nodes in machine
(approximately equal to I for nodes in M’)

¯ S* is generated stochast/cally from M

Stochastic grammars are well suited to our task because
many real world examples aze best seen as being
generated by a stoclmtic process. Purther, stochast/c
grmmmJtql pgovid6 infOElllation aa to the lik~h’hood ~ a
suing was genermed by a particular machine. This
prope~ my prove useful in determining the most likely
type of a parsed slzing.

Previous Work

Over the past four decades much work has been done in
the area of wgn]ar grammar induction. A number of
d~/cal results have shown it to be a challenging task.
For example, Gold (Gold 1978) showed that the
identification of arbitrary regular languages from positive
examples is undecidable. Despite this, research has
continued in a number of directions.

One path can be described broadly as beuristic methods
(e.g. Biennann & Feldman 1972; Fu 1982; Gonzalez
Thomason 1978; Miclet 1986). Algorithms of this type
gnaraumee that the output will be a regular grammar, but
do not guarantee that the target grammar will be
converged upon. Anotber sinifkumt group of alSc~thm~
descnl~ed by Anglein (Angluin & Smith 1983)
"charactefizable" (e.g. Angluin 1982; Gax¢ia & Vidal
1990;, Schl/mmer & Hermens 1993), can in fact gnarantee
convergence in the limit from positive examples alone.
These algo~a~n, focus on special classes of languages
such as Angluin’s k-reversible languages (Angluin 1982),

and guarantee that if the target language is a member of
that pm’ticular class of languages, the algorithm will
converge to the target in the limit. Unfo~mnetely, this
approach is also ill suited to our goals, because we simply
do not know what class the target languages will be before
hand. For example, if we choose Ansluin’s k-revem~ole
language learning algmithm to learn phone nnmhers, the
results ate quite poor because the phone number language
is not k-reversible (for any constant k that would yield
generalization).

Another sinificant problem with the above alsorlthm~ is
that they do not take into consideration the f~equency of
stings in the sample. The sinificance of this is best
illustrated with an example. Consider the training sample
{aa, uu A,,~ ~,,,}. It would be reasonable to
conclude from the d~,~ that the tareet mmnmar would
acce~a*. But, if the sample was-aaI~,{ nHI®, aaa’®,
m,,aa~ } (where aa’® means 100 occurrences of the suing
aa), a" would be a far less appealing hypothesis.

Actually, by assnmlng the 4~tn is stochastically generated
we can use observed frequencies to learn SRL’s
(stochastic regn]ar languages) in the limit. These
languages fit our needs well (as memioned above) and
allow us to wock within a larger hypothesis space while
retaining convergence in the limit. Several approaches
have been devised to learn SRL’s, some of which proved
too inefficient to be practical (Wartous and Kuhn 1992,
van der Mude 1977), while others based on Bayesian
criteria (Stolcke and Omohundro 1994) require the
spe~fication of prior probabilities of grammm’B.

Cammco and Oncina (Caxrasco and Oncine 1994) devised
a relatively simple algmithm which provably learns in the
limit, and generates stochastic regular grammars in O(ISI~)

time where ISI is the size of the sample. Their algorithm
(Algeria) is based on the state-merging method (used
Angluin 1982; Stolcke 1994). At a high level, such
algofithma staxt with a DFA called a prefix tree that
represents ~ tl~ining sample and nothlng more. The
state merging method then searches by some heuristic for
equivalence classes of nodes. These classes are then
merged, generalizing the DFA by creating new paths from
the start node to final states.

While Algeria does quite well on signal processing type
data, we have found it to perfonn poorly on the web
domains we are interested in. In this paper we
demonstrate why a different approach is required for
learning the languages of common tlat~ types on the Web.
We make use of the following ideas:

.
Often the alphabet of a language is made up of
several different types (e.g. numerals, delimiters).
known, this information can help guide
generalization decisions.

.
More-,4-3~-first generalization: We order
generalization decisions by the number of examples
supporting the decision. By making better supported
decisions first, we increa~ the lii~h’hoed they are
c, onect.

Since we share many of the same motivations as C.anmco
and Oncina (Caxraaco ud Oncina 1994) and our
algorithm WIL was based in pext on their algorithm: we
describe Algeria in the next section. We will then p~sent
our method and contrast the two approaches showing how
the differences yield a substantial improvement in
per~ormanoe.

Briefly ~_~_t~_, the Algeria algorithm starts from a prefix
tree representing the mining set, and compares pairs of
nodes (i, j) in a lexicogeaphical order. Nodes i and j are
merged ff they are judged to be equivalent by the
following measure:

.
The observed outgoing transition frequencies for
each symbol a G ~ are equivalent (as measured by
the Hoeffding bound (see definition 1)),

.
the nodes tnmsifioned to from nodes i and j on a
particular symbol a ~ Y, (8(i, a), 8(j, respectively)
are also judged equivalent (recundvely) by this
ine.4wtn~.

If
f y t 2 t 1

then observed fiequancies/-,, sf-- me equivalent

n,n;- # of strlna, s passing through each node
f,f: # of strings following a given arc
et- 1: confidence

Definition 1. Hoeffding Bound

Aa we stated in the previous section, Algeria does poorly
on domains of interest to us. These domains include such
things as: phone numbers, addresses, bibliographic
enUies, h’brm7 of congress call numbers, etc. All these
example domains have the common characteristic that
they generate what we call "bushy" prefix trees. For
example, when learning a DFA such as that in Figure I,
prefix trees can contain hundreds of thousands of nodes,
~eating ample oppommity for faulty generalization.

In order to tacHe such grammar induction tasks we need
to make better use of the information provided in training
examples. Additionally, the search for compaffole nodes
can be done in a more intelligent manner while
maintaining a relatively efficient running time of O([S[’).

2 2

0
0

N

Figure 1. Auburn, Washington phone number DF,~
(where sp is a space and N represents 10 arcs
labeled 0 to 9)

Getting More Out of Examples

It is often the case that the alphabet of a language being
learned can be broken into groups of similar type. Some
examples include numerals (0-9), Roman alphabet letters
(a-z), and delimiters (SUC, I1 as "," ,,;t, ,,_,,). Ufili~ng
infonnation allows for more informed decisions about the
equality of two states. For example, the mot nodes in
Figures 2a and 2b could be deemed equivalent by Algeria
(depending on the confidence level used and the number
of examples). This is because the differences in observed
fiequencies of output transition symbols are small (D-
~251). Although the strings generated are of different
lengths, this is ignored by Algeria because the root nodes
do not share any output symbols. But, ff the outputs are
viewed by their structure, (see F/gures 3a and 3b) we can
avoid this merging. We define structure as a list of type
names descn’bing a string. For example, the string "754-
1212" has the structure (n n n d n n n n) where n ffi number
and d = delimiter.

43

(a)

d

b b

Figm~ 2. Two prefix trees wh/ch can be mistakenly
n~.~pfized as equivalont by Algeria (Assume equal
fn~queneies for strings).

©
(a) (b)

Figure 3. A structural view of the trees in Figure 2.
Based on this view, the trees appear much less
similar.

Structural information can also be used to uncover valid
merges, because strings often look more slmil~ if you
focus on their stmcm~. By viewing strings at two levels
of abstraction (symbol value and symbol type) we can
make better geuernli,,,~on decisions. WIL merges two
nodes if they are close based on one measu~ and not too
distant, on the other measure.

Another way in wifich stmcto~ can be useful is when all
outputs of a node have the same type description. This is
a common occunenee in a wide variety of domains and
offers the oppommity to base genev.H~.~on decisions on
the ~et, passing through multiple levels (see Figure 4).
When we find a node with all outgoing types being the
same, we check each level of nodes below it, merging the
nodes if and only if they are all found to be equivalent
(we call this "level checking"). "I’uis beufistic proves
helpful in finding valid merges more quickly (reducing
the oppummity for poorly informed merges).

There is yet one more use for type information. It is
COmmon in many languages to have locations where any
value of a certain type will do ("wildcard" values). For
example, the last four digits in a US phone number are
wildcmd values (0...9). Therefore, it is useful to scan over
a DFA after learning and see if there are places where the

outgoing arcs are approximately evenly distributed over
the range of some type (using the Hoeffding bound again.)
If so, then simply fill in the miRs~ng arcs, giving each a
probability equal to the average of the existing arcs.

Figun- 4. The groups of nodes compared in "level-
checking"

More-Data-First Search
Centnd to many grammar induction algofithmn, including
Algsfia and our algorithm: is the order in which pairs of
nodes are compared. We have already described one way
in which our search method differ, from Algeria (level
checking). Another significant difference is our node
ordering metho& That is, while Algeria maims use of an
arbitrary lexicographical ordering of nodes, we take steps
to avoid poorly informed merges by focusing our search
first among nodes with a higher number of examples
passing through them We call this a more-data-first
order.

Order node i before node j if:

I. the number of examples passing through node
i > number of examples passing through j, or

2. depth03 < depth(/’) and number of examples
passing through i andj are equal.

This difference in ordering can have a dramatic effect on
the accuracy of the learned grammar, and maintains the
computational benefits offew~ by a lexicographical
ordering (see the next section).

44

WIL (Web Informstion Learner)
Algorit.hm WIL (S alpha beta gamma)
; S -> sample set
; alpha -> 1 - confidence level (first)
; beta -> 1 - confidence level (second)
; gamma -> 1 - confidence level (wildcard)

T - stochastic prefix tree ordered by
more-data-first (

for (k - 0 to last-id)
if (single-type (node k))

level-check (node k)
ond-£f

end-for

for (j - 1 tO last-id)
for (i = 0 to j - i)

if (oz equivalent ((node
(node j) alpha beta)

equivalent ((node
(node j) beta alpha)

merge ((node i) (node
determinize (node i)
m~4t (i-loop)

ema-lf
~-fo:

end-fo:

for (x - 0 tO last-id)
£f (wildcard? ((node

make-wildcard (node x)
ond-for

ga.~a)

The above algorithm can be broken into three simple
steps. First, all nodes are checked to see if the examples
paasing threeshtbem are all ofthe same type. If so, tben
check each level below that node for equivalence (level
choking). Second, examine paL, s of nodes in the more-
4*3__--first order and merge any equivalent states (as
measured by the Hoeffding bound). ~ check the
outputs of each state for the posml~iIity that it is equivalent
(by Hoeffding bound) to the wildcard value for a given
alphabetic type. For this last genendization step to
su~eed, all output values of the type being checked must
share the same destination node.

mdency
WIL is gum~teed to genentte a determiniqtic stochastic
automata and the computational lime for this precis can
be bound by OOS~). The proof of this is stmighfforwa~
First note that the number of nodes which will be

compared is at most 13(C2~))= O(ISI~). For each such pair

(n, n3 we will:

.
compare output probabilities of at most OOY.I)
(where I~1 is the size of the alphabet) arcs, because
determinlmnm is maintained throughout.

2. compare output probabilities of at most OOSI)
mucnue-description outputs)

3 compare O(IZI) puirs of children nodes (of n and
for equivalence.

Step 3 is the recursive step. The use of the more-data-fumt
order~g guarantees that the graph rooted at least one of n
or n’ will be acyclical (call this the acyclic node).
follows that at most O(ISI) pairs of nodes in total will be
examined du~ug the comparison of n and n’, because the
number of paths (of output values) leaving the acyclic
node is bound by the size of the input O(ISI). Therefore,
we have O(ISI + IEI) work to do for each of O(]SI)
equivalence checks of the descendants of n and n’. Now,
the mntime of steps 1-3 can be bound by OOSI2) * O(ISI)
oos, + iz,) = o(,s~.

The remaining sinificant computation is done in the level
checking step. Tbere are O(ISI) nodes (i.e., each node
the prefix tree) for which this computation is done. For
each of these nodes there ate at most O(ISI) descendant
nodes in total. Since the structure of all nodes on a
particular level is the same, tbere is no need to do further
strdctme checking. Therefore, following the above
argument, we can place an upper bound of O(ISIs) on the
time needed to compare those O(ISI) nodes. Hence, the
cost of the level checking step is O(ISl) * O(]SI5) = o~sr*).
Finally, the total nmtime cost of the entire algorithm can
then be bounded by O0S~) + O(B~) = o(Br%

Learning in the Limit
As pointed out by (Cauasco and Oneina 1994) grammar
inference by state merging can be framed aa a problem of
finding equivalence classes of nodes in a prefix tree
acceptor. 2~erefore, we can show WIL learns in the limit
aa defined by (Gold 1978) by showing the following:

.
The probability that WIL will mistakenly merge two
non-equivalent nodes of a Inefix tree acceptor
vanishes in the limit.

.
The probability that WIL will mistakenly generalize
the output values of a node to a wildcard value
vanishes in the limit.

CAtuaw~ and Oneina proved (1) holds for their algorithm
Algeria. It is sufficient then to show that our algorithm
will never merge two nodes unless Algeria would also.
This statement is in fact true, because our test for uode
equivalence is at least u restrictive as Algeria’s due to the
addition of stmctme che~ks (assnming Algeria’s
confidence level is at least aa great as WlL’s two
confidence levels). Therefore, (1) holds.

The other concern is the wildcard generalization step.
Clearly, if generalizing to a wildcard value is

45

inappropzinte, the difference between the observed output
fi~luencies and the uniformly dislrt’buted wildcard outputs
will exceed (in the limit) the COlxfidellce ganges desc£ibed
by the Hoeffding bound. Therefore, (2) holds, and WIL
learns in the limit.

Results and Discussion
To evaluate our ideas we tested WIL on a number of
domains and compared the results with those achieved by
Alge~a. We were psrficulady interested in learning
languages encountet~ on the Web, but we also wanted to
t~Aain the ability to learn pattern recognition domains on
which other grammar inference algodthm~ were shown to
do well. ~ tests included:

A. Phone numbers with a variety of formats from
Auburn, Washington (NTC). Figure

B. Lt~m7 of Congress call numbers for AI books aa
defined in (Scott 1993). Figure 6.

Co The Reber grammar, as defined in (Reber 1967), and
used in the tearing of Algeria (Camtsco and Oncina
1994). Figure 7.

D. AT&Ts 800 phone numbers (ATF-800). Figure

E. CMUtschreportcodes(CMU). Figtue9.

F. Bus schedule times (BUS). Figure I0.

The testing procedure commonly utilized by grammar
inference resea.~ (e.g., Stolcke & Omohundro 1994)
can be dsscn’bed as follows:

1. Generate a set of training examples using the hand-
crafted target automata M.

2. Induce a DFA M’ f~om the training examples.

3. Test for overgeneralization by parsing a set of strings
generated by M’ with grammar M.

4. Test for ovenpecificity by parsing additional strings
generated by M with grammar M’.

.
The accuracy measurement is taken to be the
average of the accuracy levels found in steps 3 and
4.

This is a very good experlrrmutal methodology when the
goal is to test an algorithm’s ability to learn a known
abstract automata. We adopted this procedme in tests A,
B, and C because it provides for a strJi~htforward
compcnison of algorithm,, and in particular, a clear test
for overgenend hypotheses.

To very that our method would wozk on real Web data,
we condncted tests D, E, and F using data collected
dhectly from Web sites. This data was used to induce
automata as well as test for overspec/fic/ty. But, using
real data inesents a problem with regard to testing for
overgeneral hypotheses. The question that arises is "what
is a negative example of a phone number?" Clearly every
st~ng in ~:" which is not a phone number could be used as
a negative example, but this approach does not mnl~. for a
very informative test. Therefore, for this second set of
tests (D, E, and F) we opted to handcza/t automata
generate negative examples wh/ch are somewhat srimilar
to, but not members of, the target class. For example, in
the case of the AT&T 800 number domain, negative
examples were either missing the "800" prefix or had
some other three digit prefix, and had five to seven digit
suffixes.

1
0.9
0,8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

o
20O 4OO 600

lqmhtr aglh~l~,

Figure 5. Auburn Phone Numbers

800

0.9
0.8
0.7
0.6
0.5 ~’~ ~’
0.4 ,,~,’" ’" "" -~

~

~ ~nt~ii~

0.3
0.2
0.1)

0 ~ I

0 2oo 4oo 6o0
Numi~- dg~i/m

Figure 6. Call Number~

80O

46

Figure 7. Reber Grammar

In order to thoroughly compare the two algmitlnnR, we
conducted tests of Algmia with throe different confidence
levels in each domain: one with a confidence level equal
to WIL’s a value, anotber with WIL’s ~ value, and a third
with the average of a and ~. As Figmes 5 and 6
demunsln~e, WIL learns the target automata for the phone
number domains and the call number domain in
considerably fewer Wining examples than Algeria. While
the rate of improvement for both algo~thm~ starts to taper
off at about the same point in each domain, WIL’s level
of accuracy is double or triple the accmacy of Algena at
that poinL Although time did not pennit us to ca~y the
tests out ~, the shape of the curves suggests that
Algeria would take a cons/derable number of additional
examples to catch up. Additionally, test C (’Figure 7)
showed that WIL retains the ability to learn other pattern
n~ogeitlun domains such as the Reber grammar as well as
Algeria does.

Using our second experin~atal methodology (using
training data fxom the Web) we found ~;milar results. As
fiSums 8, 9, and 10 show, WIL maintains subsumtiaily
better accuracy levels in each of the domains.

1 ..~-~
o.g

j/~, ~.0.8
0.7 m-~-’T..’~ . ~’~’~"

I
0.4 ¯ /.

...~0.3 ;~---" #
0.2 /<"" ---41----~ mu~ ~a)
0.1 .~ ~i ...x /4,:....~.eiR~)

0 : :
0 20 40 60 80 100

N~iaHtI~I~

Figure 8. 800 Nnmhers

1
0.9
0.8
0.7

i 0.6
0.5
0.4
0.3
0.2
0.1
0

1.g?~ ...-~ :,.,:. ̄

/

Jl

~ J ::k’ .q.OERIACZW)

: i , J ~.-.~.~m~)
20 40 60 80 100

N~Imr ~rg~ilm

Figure 9. CMU tech report codes

0 20 40 60 80 100

Figure 10. Bus schedule times

On the whole we found structural comparisons, level
checking, and wiidcaxd gener~,lJ-~,t;on to be quite helpful.
Each of these techniques was found to be beneficial when
used independently of the others. We also found that
these benefits were generally additive. For example, at
sample size 100, WIL had an accuracy of 69% on Auburn
numbers. When we replaced the more-data-first ordering
with a lexicographical ordering, the accuracy fell to 62%.
When we further removed the structural comparisons, the
accuracy fell to ~. And finally, removing level
checking reduced the accuracy to a mere 26%.

We did however notice that there is a sign/ficant danger
of overgenendizing through the use of wildcard
genernli.~,tlon if the initial state merging goes awry. We
therefore used wildcmd genendization in a fa~ly
conservative manner (i.e., we used a low confidence
level). While this conservative approach offered little
benefit when the number of examples was large, it was
quite helpful earlier in leamin8. For example, the
accuracy of WIL on 800 numbers with 20 training
examples dropped fxom 90% to 43% without wildcazd.

Future Work

As other experlmeuts demonstrate, WIL appears to be
adeq,_,A~ for learning to recognize many different kinds of
slzuctured stings commonly found on the Web.

However, there is much more work to be done on
improving its peffonnance. One path we are pursuing is
the use of more complex type and stmctural information.
Using hiemw~cal type information and more
soph/sficated node comperison techniques may yield
much better perfonnanco. These s~uctund cues may also
provide a more intelligent search method for equivalent
nodes¯ It may also help to integrate the goal of finding
wildcani values with the state merging process, thus
allowing better informed decisions.

Condndon

Tlzroush the use of type information and more-A-t~-ftrst
generalization, we have devised a grammar inference
technique that appears to be adequate for d~t~ commonly
found on the web; we have shown our algorithm to be a
great improvement over its closest competitor (Algeria)¯
In addition, we have shown our algorithm to run in
polynomial lime in the size of the sample and have shown
that it learns to recognize stochastic regular languages in
the limit. Vc’hi]e Vt/IL advances the state of the art in
grammar inference for the Web, it is only a first step
towards the task of learning to reconi,~ information on
the Web; the problems of discovery, extraction and
~on remain open.

ATT-800.
http : //www. yahoo, com/Business_and_Econo
my/Companies / Telecommunicat ions/AT_T/AT
_T_8 0 0_Directory

Angluin, D. 1982. Inference of revem’ble languages. In
Journal of the ACM, 29(3):741-765.

Angluin, D., and Smith, C. 1983. Inductive Inference:
Theory and Methods. Comput/ng Surveys, Vol. 15 No. 3.

BargeinFmder.
http://bf.cstar.ac.com/bf/

Biennann, A. W., and Feldman, J. A. 1972¯ On the
synthesis of finite state machines from samples of their
behavior. In IEEE Transactions on Computers, C-2h592-
597¯

BUS.
http://transit.metrokc.gov/bus/
area_jnaps/regional.html

Cammco, It C., and Oncina, J. 1994¯ Learning s~r.ha~ic
regular grammm by means of a state merging method.
Second Intermuional Colloquium, ICGI-94 Proceedings.
106-118.

CMU.

http: //www. cs. cmu. edu/Web/Reports / index
¯ html

Etzioui, O., and Weld, D. 1994. A softbot-bas~ interface
to the interact. CACM. 37(7):72-76.

Fu, KS. 1982. Syntactic Pattern Recosnition and
Applications. Prentice-Hall, Englewood Cliffs.

Gold, E. M. 1978. Complexity of Automaton
Identification from Given Data. Information and Control.
37:302-320.

Gonzalez, 17,. C., and Thomamn, kL G. 1978. Syntactic
Pattern Reco~m/t/on." An Intmduc6on. Massachusetts:
Addision-Wesley, Reading.

P., and Vidal, E. 1990. Inference of k-testable
languages in the st~ct sense and applic~uion to syntactic
pa~em recognition. In IEEE Transactions on Pat~rn
Analysis and Machine Intelligence. PAMI-12(9):920-925.

Hoeffding, W. Probability inequalities for sums of
bounded random variables. In American Stat/s6ca/
Association Journal 58:13-30.

Miclet, L. 1986¯ Structural Methods in Pattern
Recognitio~t Spdnger-Verlag.

NTC.

http : //www. natltele, com/form, html

Reber, A. S. 1967. Implicit Learning of Artificial
Grammars. In Journal of Verbal Leaming and Verbal
Behat~ur. 6:855-863.

Sehllmm~r, J., and I-lennens, I~ 1993. Software Agents:
Completing Patterns and Constructing User Interfaces.
Journal of Artificial Intelligence Research. 1 (61-89).

Scott, M. 1993. Com, ersion tables: LC-Dewey, Dewey-
LC. Libraries Unlimited, Englewood, CO.

Stolcke, A., and Omohundro, S. 1994. Inducing
probab/listic grammars by Bayesian model merging.
Second International Colloquiunt ICGI-94 Proceedings.
106-118.

van der Mude, A., and Booth, T. L. 1977. Inference of
Finite-State Probabilistic Grammars. In Information and
Contro/. 38:310-329.

W~ous, It L, and Kuha, G. M. 1992. Induction of
l~inlte-state Languages Using Second-Order Recunent
Networks. Neural ComputatiotL 4:406-414.

48

