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Abstract

The World Wide Web is a treasure trove of
information. The Web's sheer scale makes automatic
location and extraction of information appealing.
However, much of the information lies buried in
documents designed for human consumption, such as
home pages or product catalogs. Before software
agents can extract nuggets of information from Web
documents, they have to be able to recognize it
despite the multitude of formats in which it may
appear. In this paper, we take a machine learning
approach to the problem. We explain why existing
grammar inference techniques face difficulties in this
domain, present a new technique, and demonstrate its
success on examples drawn from the Web ranging
from CMU Tech Report codes to bus schedules. Our
algorithm is shown to leamn target languages found
on the Web in significantly fewer examples than
previous methods. In addition, our algorithm is
guaranteed to learn in the limit, and runs in time
O(SI*), where ISl is the size of the sample.

Introduction

A tremendous amount of information is stored in human
readable documents on the World Wide Web. Before a
software agent, such as the BargainFinder (Bargain-
Finder), can satisfy a goal such as "find the best price for
Michael Jackson's recent CD" it has to be able to access
such documents and extract price information. Similady,
the Internet softbot (Etzioni & Weld, 1994) has to extract
phone numbers and email addresses from home pages and
personnel directories. The dynamic nature and sheer size
of the Web make automatic information extraction
appealing, if not vital. However, the lack of formatting
standards for information such as addresses, phone
numbers, schedules, product catalog entries and so on,
makes their automatic extraction from Web documents
difficult. Additionally, it is impractical to expect the
users of software agents to have the technical background
required to maintain the agent’s parsing functions as
formats for catalog entries etc. change with time.
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The problem of learning to recognize nuggets of
structured information on the Web can be decomposed
into the following sub-problems:

¢ Discovery: find Web pages containing examples of
the target information.

e [Extraction: identify the location of an example on
the page and extract it.

e  Grammar inference: given a set of examples, learn a
grammar characterizing such information.

e Incorporation: given a grammar, use it as part of
every day activities and refine it if necessary.

The discovery and extraction problems appear hard, and
may require human assistance. For example, a human
may have to collect and mark up a set of examples as grist
for a grammar inference mill. However, tools can be
written to facilitate this process. In this paper, we focus
exclusively on the grammar inference problem, and leave
the others for future work. To demonstrate that our
approach to grammar inference is viable, we focus on
structured strings commonly found on the Web and test
our algorithm on several data sets drawn directly from
Web pages. It is difficult if not impossible to argue that
our grammar inference algorithm handles the full
diversity of information found on the Web; instead we
demonstrate empirically that the algorithm is a significant
advance in the state of the art of grammar inference,
motivated by and tested on Web data. The performance
of our learning algorithm forms a base line for future
investigations in this domain.

Preliminaries

Grammar inference is defined as the task of learning a
grammar from a set of example strings. Since providing
positive example strings is much easier for users than
providing instructive negative examples (e.g. what is an
instructive negative example of an address?), we will
focus on learning from a positive sample alone. For



tractability we restrict our search to regular grammars (or
equivalently regular expressions or deterministic finite
automata (DFA)), which provide sufficient expressiveness
for our purposes. We can define the input and output of
our algorithm WIL (Web Information Learner) as follows:

Input: A set of positive example strings S* < L(M)
where L(M) is the language generated by some
automata M.

Output: A finite state automata M’ that approximates M.

We further stipulate that the automata M and M' are
stochastic, meaning:

e ecach arc g leaving a node n in M or M has an
associated probability P (a)

e ecach node n in M and M' also has an associated
termination probability P(n)

e P(n) + £ P(a) = 1 for nodes in machine M
(approximately equal to 1 for nodes in M)

o S'is generated stochastically from M

Stochastic grammars are well suited to our task because
many real world examples are best seen as being
generated by a stochastic process. Further, stochastic
grammars provide information as to the likelihood that a
string was generated by a particular machine. This
property may prove useful in determining the most likely
type of a parsed string.

Previous Work

Over the past four decades much work has been done in
the area of regular grammar induction. A number of
theoretical results have shown it to be a challenging task.
For example, Gold (Gold 1978) showed that the
identification of arbitrary regular languages from positive
examples is undecidable. Despite this, research has
continued in a number of directions.

One path can be described broadly as heuristic methods
(c.g. Biermann & Feldman 1972; Fu 1982; Gonzalez &
Thomason 1978; Miclet 1986). Algorithms of this type
guarantee that the output will be a regular grammar, but
do not guarantee that the target grammar will be
converged upon. Another significant group of algorithms
described by Angluin (Angluin & Smith 1983) as
"characterizable” (e.g. Angluin 1982; Garcia & Vidal
1990; Schlimmer & Hermens 1993), can in fact guarantee
convergence in the limit from positive examples alone.
These algorithms focus on special classes of languages
such as Angluin's k-reversible languages (Angluin 1982),
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and guarantee that if the target language is a member of
that particular class of languages, the algorithm will
converge to the target in the limit. Unfortunately, this
approach is also ill suited to our goals, because we simply
do not know what class the target languages will be before
hand. For example, if we choose Angluin's k-reversible
language learning algorithm to learn phone numbers, the
results are quite poor because the phone number language
is not k-reversible (for any constant k that would yield
generalization).

Another significant problem with the above algorithms is
that they do not take into consideration the frequency of
strings in the sample. The significance of this is best
illustrated with an example. Consider the training sample
{aa, aasa, aaa, asaaa}. It would be reasonable to
conclude from the data that the target . prammar would
accepta But,lfﬂzesamplewas {aa'", 22aa'”, 2aa'”,
aaaaa ®} (where aa'® means 100 occurrences of the string
aa), a” would be a far less appealing hypothesis.

Actually, by assuming the data is stochastically generated
we can use observed frequencies to learn SRL’s
(stochastic regular languages) in the limit. These
languages fit our needs well (as mentioned above) and
allow us to work within a larger hypothesis space while
retaining convergence in the limit. Several approaches
have been devised to learn SRL's, some of which proved
too inefficient to be practical (Wartous and Kuhn 1992,
van der Mude 1977), while others based on Bayesian
criteria (Stolcke and Omohundro 1994) require the

specification of prior probabilities of grammars.

Carrasco and Oncina (Carrasco and Oncina 1994) devised
a relatively simple algorithm which provably learns in the
limit, and generates stochastic regular grammars in O(SI*)
time where IS| is the size of the sample. Their algorithm
(Algeria) is based on the state-merging method (used in
Angluin 1982; Stolcke 1994). At a high level, such
algorithms start with a DFA called a prefix tree that
represents the training sample and nothing more. The
state merging method then searches by some heuristic for
equivalence classes of nodes. These classes are then
merged, generalizing the DFA by creating new paths from
the start node to final states.

While Algeria does quite well on signal processing type
data, we have found it to perform poory on the web
domains we are interested in. In this paper we
demonstrate why a different approach is required for
learning the languages of common data types on the Web.
We make use of the following ideas:

1. Often the alphabet of a language is made up of
several different types (e.g. numerals, delimiters). If
known, this information can help guide
generalization decisions.



2. More-data-first  generalization: @ We  order
generalization decisions by the number of examples
supporting the decision. By making better supported
decisions first, we increase the likelihood they are
correct.

Since we share many of the same motivations as Carrasco
and Oncina (Carmrasco and Oncina 1994) and our
algorithm WIL was based in part on their algorithm, we
describe Algeria in the next section. We will then present
our method and contrast the two approaches showing how
the differences yield a substantial improvement in
performance.

Algeria
Briefly stated, the Algeria algorithm starts from a prefix
tree representing the training set, and compares pairs of
nodes (i, j) in a lexicographical order. Nodes i and j are
merged if they are judged to be equivalent by the
following measure:

1. The observed outgoing transition frequencies for
each symbol g € I are equivalent (as measured by
the Hoeffding bound (see definition 1)), and

2. the nodes transitioned to from nodes i and j on a

particular symbol a € Z, (&(i, a), &(j, a) respectively)
are also judged equivalent (recursively) by this

measure.
If
f_flo 1, .2(1, 1
PR >\/2‘°“a(,/;*ﬁ)

then observed frequencies %, % are equivalent.

n,n’: # of strings passing through each node
f,F: # of strings following a given arc
o - 1: confidence

Definition 1. Hoeffding Bound

As we stated in the previous section, Algeria does poorly
on domains of interest to us. These domains include such
things as: phone numbers, addresses, bibliographic
entries, library of congress call numbers, etc. All these
example domains have the common characteristic that
they generate what we call "bushy" prefix trees. For
example, when learning a DFA such as that in Figure 1,
prefix trees can contain hundreds of thousands of nodes,
creating ample opportunity for fanlty generalization.

In order to tackle such grammar induction tasks we need
to make better use of the information provided in training
examples. Additionally, the search for compatible nodes
can be done in a more intelligent manner while
maintaining a relatively efficient running time of O(IS[*).
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Figure 1. Auburn, Washington phone number DFA.
(where sp is a space and N represents 10 arcs
labeled 0 to 9)

Getting More Out of Examples

It is often the case that the alphabet of a language being
learned can be broken into groups of similar type. Some
examples include numerals (0-9), Roman alphabet letters
(a-z), and delimiters (such as “,” “;” “-"). Utilizing this
information allows for more informed decisions about the
equality of two states. For example, the root nodes in
Figures 2a and 2b could be deemed equivalent by Algeria
(depending on the confidence level used and the number
of examples). This is because the differences in observed
frequencies of output transition symbols are small (I0-
25l). Although the strings generated are of different
lengths, this is ignored by Algeria because the root nodes
do not share any output symbols. But, if the outputs are
viewed by their structure, (see Figures 3a and 3b) we can
avoid this merging. We define structure as a list of type
names describing a string. For example, the string “754-
1212" has the structure (n n n d n n n n) where n = number
and d = delimiter.



Figure 2. Two prefix trees which can be mistakenly
recogunized as equivalent by Algeria (Assume equal
frequencies for strings).

Number Apha
Abha
Abha

(2) ®)

Figure 3. A structural view of the trees in Figure 2.
Based on this view, the trees appear much less

Structural information can also be used to uncover valid
merges, because strings often look more similar if you
focus on their structure. By viewing strings at two levels
of abstraction (symbol value and symbol type) we can
make better generalization decisions. WIL merges two
nodes if they are close based on one measure and not too
distant, on the other measure.

Another way in which structure can be useful is when all
outputs of a node have the same type description. This is
a common occurrence in a wide variety of domains and
offers the opportunity to base generalization decisions on
the data passing through multiple levels (see Figure 4).
When we find a node with all outgoing types being the
same, we check each level of nodes below it, merging the
nodes if and only if they are all found to be equivalent
(we call this “level checking”). This heuristic proves
helpful in finding valid merges more quickly (reducing
the opportunity for poorly informed merges).

There is yet one more use for type information. It is
common in many languages to have locations where any
value of a certain type will do (“wildcard” values). For
example, the last four digits in a US phone number are
wildcard values (0...9). Therefore, it is useful to scan over
a DFA after learning and see if there are places where the

44

outgoing arcs are approximately evenly distributed over
the range of some type (using the Hoeffding bound again.)
If so, then simply fill in the missing arcs, giving each a
probability equal to the average of the existing arcs.

Figure 4. The groups of nodes compared in “level-
checking”

More-Data-First Search

Central to many grammar induction algorithms, including
Algeria and our algorithm, is the order in which pairs of
nodes are compared. We have already described one way
in which our search method differs from Algeria (level
checking). Another significant difference is our node
ordering method. That is, while Algeria makes use of an
arbitrary lexicographical ordering of nodes, we take steps
to avoid poorly informed merges by focusing our search
first among nodes with a higher number of examples
passing through them. We call this a more-data-first
order:

Order node i before node j if:

1. the number of examples passing through node
i > number of examples passing through j, or

2. depth(i) < depth(j) and number of examples
passing through i and j are equal.

This difference in ordering can have a dramatic effect on
the accuracy of the learned grammar, and maintains the
computational benefits offered by a lexicographical
ordering (see the next section).



WIL (Web Information Learner)
Algorithm WIL (S alpha beta gamma)
; S -> sample set
; alpha -> 1 - confidence level (first)
; beta -> 1 - confidence level (second)
; gamma -> 1 - confidence level (wildcard)
begin

T = stochastic prefix tree ordered by
more-data-first ()

for (k = 0 to last-id)
if (single-type (node k))
level-check (node k)
end-if
end-£for

‘for (j = 1 to last-id)
for (i =0 toj-1)
if (or equivalent ((node i)
(node j) alpha beta)
equivalent ((node i)
(node j) beta alpha))
merge ((node i) (node j))
determinize (node i)
exit (i-loop)
end-if
end-for
end-for

for (x = 0 to last-id)
if (wildcard? ((node x) gamma))
make-wildcard (node x)
end-for

end

The above algorithm can be broken into three simple
steps. First, all nodes are checked to see if the examples
passing through them are all of the same type. If so, then
check each level below that node for equivalence (level
checking). Second, examine pairs of nodes in the more-
data-first order and merge any equivalent states (as
measured by the Hoeffding bound). Third, check the
outputs of each state for the possibility that it is equivalent
(by Hoeffding bound) to the wildcard value for a given
alphabetic type. For this last generalization step to
succeed, all output values of the type being checked must
ghare the same destination node.

Efficiency

WIL is guaranteed to generate a deterministic stochastic
automata and the computational time for this process can
be bound by O(SI*). The proof of this is straightforward.
First note that the number of nodes which will be

compared is at most 0((':'))=0(|s1’). For each such pair
(n, n’) we will:
1. compare output probabilities of at most O(ZI)

(where [X] is the size of the alphabet) arcs, because
determinism is maintained throughout.
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2. compare output probabilities of at most O(SI)
structure-description outputs)

3. compare O(IZI) pairs of children nodes (of # and n")
for equivalence.

Step 3 is the recursive step. The use of the more-data-first
ordering guarantees that the graph rooted at least one of n
or n' will be acyclical (call this the acyclic node). It
follows that at most O(IS!) pairs of nodes in total will be
examined during the comparison of n and n’, because the
number of paths (of output values) leaving the acyclic
node is bound by the size of the input O(IS|). Therefore,
we have O(IS| + [El) work to do for each of O(SI)
equivalence checks of the descendants of # and n’. Now,
the runtime of steps 1-3 can be bound by O(SI*) * O(IS!) *
O(ISI + IZ1) = O(ISI%.

The remaining significant computation is done in the level
checking step. There are O(ISI) nodes (i.e., each node in
the prefix tree) for which this computation is done. For
each of these nodes there are at most O(IS]) descendant
nodes in total. Since the structure of all nodes on a
particular level is the same, there is no need to do further
structure checking. Therefore, following the above
argument, we can place an upper bound of O(SI’) on the
time needed to compare those O(ISI) nodes. Hence, the
cost of the level checking step is O(ISI) * O(SI*) = O(S[*).
Finally, the total runtime cost of the entire algorithm can
then be bounded by O(ISI*) + O(ISI) = O(ISI*).

Learning in the Limit

As pointed out by (Carmrasco and Oncina 1994) grammar
inference by state merging can be framed as a problem of
finding equivalence classes of nodes in a prefix tree
acceptor. Therefore, we can show WIL learns in the limit
as defined by (Gold 1978) by showing the following:

1. The probability that WIL will mistakenly merge two
non-equivalent nodes of a prefix tree acceptor
vanishes in the limit.

2. The probability that WIL will mistakenly generalize
the output values of a node to a wildcard value
vanishes in the limit.

Carrasco and Oncina proved (1) holds for their algorithm
Algeria. It is sufficient then to show that our algorithm
will never merge two nodes unless Algeria would also.
This statement is in fact true, because our test for node
equivalence is at least as restrictive as Algeria's due to the
addition of structure checks (assuming Algeria's
confidence level is at least as great as WIL's two
confidence levels). Therefore, (1) holds.

The other concemn is the wildcard generalization step.
Clearly, if generalizing to a wildcard value is



inappropriate, the difference between the observed output
frequencies and the uniformly distributed wildcard outputs
will exceed (in the limit) the confidence ranges described
by the Hoeffding bound. Therefore, (2) holds, and WIL
learns in the limit.

Results and Discussion

To evaluate our ideas we tested WIL on a number of
domains and compared the results with those achieved by
Algeria. We were particularly interested in learning
languages encountered on the Web, but we also wanted to
retain the ability to learn pattern recognition domains on
which other grammar inference algorithms were shown to
do well. The tests included:

A. Phone numbers with a variety of formats from
Aubum, Washington (NTC). Figure 5.

B. Library of Congress call numbers for Al books as
defined in (Scott 1993). Figure 6.

C. The Reber grammar, as defined in (Reber 1967), and
used in the testing of Algeria (Carrasco and Oncina
1994). Figure 7.

AT&T's 800 phone numbers (ATT-800). Figure 8.
E. CMU tech report codes (CMU). Figure 9.
F. Bus schedule times (BUS). Figure 10.

The testing procedure commonly utilized by grammar
inference researchers (e.g., Stolcke & Omohundro 1994)
can be described as follows:

1. Generate a set of training examples using the hand-
crafted target automata M.
2. Induce a DFA M’ from the training examples.

Test for overgeneralization by parsing a set of strings
generated by M’ with grammar M.

4. Test for overspecificity by parsing additional strings
generated by M with grammar M’.

S. The accuracy measurement is taken to be the
average of the accuracy levels found in steps 3 and
4.

This is a very good experimental methodology when the
goal is to test an algorithm’s ability to learn a known
abstract automata. We adopted this procedure in tests A,
B, and C because it provides for a straightforward
comparison of algorithms, and in particular, a clear test
for overgeneral hypotheses.
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To verify that our method would work on real Web data,
we conducted tests D, E, and F using data collected
directly from Web sites. This data was used to induce
automata as well as test for overspecificity. But, using
real data presents a problem with regard to testing for
overgeneral hypotheses. The question that arises is “what
is a negative example of a phone number?” Clearly every
string in £ which is not a phone number could be used as
a negative example, but this approach does not make for a
very informative test. Therefore, for this second set of
tests (D, E, and F) we opted to handcraft automata to
generate negative examples which are somewhat similar
to, but not members of, the target class. For example, in
the case of the AT&T 800 number domain, negative
examples were either missing the “800” prefix or had
some other three digit prefix, and had five to seven digit
suffixes.

Nomber of Examyles
Figure 5. Auburn Phone Numbers
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Figure 7. Reber Grammar

In order to thoroughly compare the two algorithms, we
conducted tests of Algeria with three different confidence
levels in each domain: one with a confidence level equal
to WIL's o value, another with WIL’s P value, and a third
with the average of o and . As Figures 5 and 6
demonstrate, WIL learns the target automata for the phone
number domains and the call number domain in
considerably fewer training examples than Algeria. While
the rate of improvement for both algorithms starts to taper
off at about the same point in each domain, WIL’s level
of accuracy is double or triple the accuracy of Algeria at
that point. Although time did not permit us to carry the
tests out further, the shape of the curves suggests that
Algeria would take a considerable number of additional
examples to catch up. Additionally, test C (Figure 7)
showed that WIL retains the ability to leamn other pattern
recognition domains such as the Reber grammar as well as
Algeria does.

Using our second experimental methodology (using
training data from the Web) we found similar results. As
figures 8, 9, and 10 show, WIL maintains substantially
better accuracy levels in each of the domains.
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Figure 10. Bus schedule times

On the whole we found structural comparisons, level
checking, and wildcard generalization to be quite helpful.
Each of these techniques was found to be beneficial when
used independently of the others. We also found that
these benefits were generally additive. For example, at
sample size 100, WIL had an accuracy of 69% on Aubum
numbers. When we replaced the more-data-first ordering
with a lexicographical ordering, the accuracy fell to 62%.
When we further removed the structural comparisons, the
accuracy fell to 50%. And finally, removing level
checking reduced the accuracy to a mere 26%.

We did however notice that there is a significant danger
of overgeneralizing through the use of wildcard
generalization if the initial state merging goes awry. We
therefore used wildcard generalization in a fairly
conservative manner (i.e., we used a low confidence
level). While this conservative approach offered little
benefit when the number of examples was large, it was
quite helpful eadier in learning. For example, the
accuracy of WIL on 800 numbers with 20 training
examples dropped from 90% to 43% without wildcard.

Future Work

As other experiments demonstrate, WIL appears to be
adequate for learning to recognize many different kinds of
structured strings commonly found on the Web.



However, there is much more work to be done on
improving its performance. One path we are pursuing is
the use of more complex type and structural information.
Using hierarchical type information and more
sophisticated node comparison techniques may yield
much better performance. These structural cues may also
provide a more intelligent search method for equivalent
nodes. It may also help to integrate the goal of finding
wildcard values with the state merging process, thus
allowing better informed decisions.

Concdusion

Through the use of type information and more-data-first
generalization, we have devised a grammar inference
technique that appears to be adequate for data commonly
found on the web; we have shown our algorithm to be a
great improvement over its closest competitor (Algeria).
In addition, we have shown our algorithm to run in
polynomial time in the size of the sample and have shown
that it learns to recognize stochastic regular languages in
the limit. While WIL advances the state of the art in
grammar inference for the Web, it is only a first step
towards the task of learning to recognize information on
the Web; the problems of discovery, extraction and

incorporation remain open.
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