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Abstract

For the past few years, text categorization has
emerged as an application domain to machine learn-
ing techniques. Several approaches have already been
proposed. This paper does not present yet another
technique. It is rather an attempt to unify the ap-
proaches encountered so far. Moreover this state-of-
the-art enables us to stress a shortcoming in earlier
research: the lack of evaluation of inductive learners
in the categorization process. We present a first at-
tempt to remedy this lack. We expose an experimental
framework, that fits in with our unified view of text
categorization methods. This framework allows us to
conduct a set of tentative experiments in order to as-
sess which characteristics allow a learner to perform
well on the text categorization task.

Introduction

Text categorization, which is often defined as the
content-based assignment of one or more predefined
categories to texts, has become important in two as-
pects. On an information retrieval (IR) point of view,
information processing needs have increased with the
rapid growth of textual information sources, such as
Internet. Text categorization can be used to support
IR or to perform information extraction, document fil-
tering and routing to topic-specific processing mech-
anisms (Hayes et al. 1990; Riloff ~ Lehnert 1994).
On a machine learning (ML) point of view, recent re-
search has be concerned with scaling-up (e.g. data
mining (Holsheimer ~ Siebes 1994)). Text categoriza-
tion is a domain where large data sets are available
and which provides an application field to ML (Lewis 
Catlett 1994; Cohen 1995). Indeed, manual categoriza-
tion is known to be an expensive and time-consuming
task. Hand-crafted knowledge engineered systems
such as CONSTRUE (Hayes & Weinstein 1990) also
have such drawbacks. ML approaches to classification
(text categorization is a classification task) suggest the
construction of categorization means using induction
over pre-classified samples. They have been rather

successfully applied in various studies, e.g. (Lewis
& Ringuette 1994; Apt~, Damerau, & Weiss 1994;
Wiener, Pedersen, & Weigend 1995).

In this paper, we are primarily concerned with the
analysis of these earlier studies on text categoriza-
tion. Our presentation is two-folded. We first show
that, even though the nature of the inducer used in
each approach may differ, most approaches have com-
mon characteristics in the whole categorization pro-
cess. Then, we discuss the issue of choosing one
technique rather than another. Actually, many ap-
proaches have been suggested; these include numeri-
cal learning such as Bayesian classification (Lewis 
Ringuette 1994), or symbolic learning like in (Moulin-
ier & Ganascia 1995). However, no assessment has be
conducted on whether a given learning technique was
superior to another on the text categorization task,
even though the sketch of an answer can be found in
(Lewis & Ringuette 1994). We first design an experi-
mental framework which fits in with our unifying view
of text categorization systems. In that framework, we
compare several learners in order to try and extract
major characteristics of both data and learners, that
lead to good performances on the text categorization
task.

In the next section, we present a unifying view of re-
search in text categorization. An experimental frame-
work for comparison is given next, while preliminary
experiments are reported and discussed in the last sec-
tion.

Text Categorization: a Unifying View

Text categorization is at the meeting point between
ML and IR, since it applies ML techniques for IR pur-
poses. In the following, we adopt a ML point of view.
Many existing text categorization systems share cer-
tain characteristics. Namely, they all use induction as
the core of learning classifiers. Moreover, they require
a text representation step that turns textual data into
learning examples. This step involves both IR and ML
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Figure 1: A unified framework for text categorization

techniques. Finally, additional knowledge may be pro-
vided to enhance the whole categorization task. We
present these three aspects in the remainder of this
section. Their relationships are summarized in Fig-
ure 1.

Text Representation

Text representation in categorization differs from its
homologue in IR. It is more specific, as it requires
further processing. In fact, we can distinguish two
steps when representing a text. The first step is the
standard IR representation, for instance a boolean
model aa in (Lewis & Ringuette 1994; Apt~, Dam-
erau, & Weiss 1994; Moulinier & Ganascia 1995) or
a frequency model as in (Fuhr et al. 1991; Wiener,
Pedersen, & Weigend 1995). Nevertheless, this step
may not be sufficient to produce tractable data for
learners. Indeed, the feature set that results from
such a representation can be numbered in hundreds of
thousands. Even though some studies have reported
working with such a number of features (Yang 1994;
Creecy et al. 1992), few inductive learners can han-
dle such a number of features. For instance, typical
experiments in ML hardly ever deal with more than a
hundred of features. Therefore, a second step is un-
avoidable: it consists in the reduction of that original
feature set, commonly known as dimensionality reduc.
tion in pattern recognition.

We can distinguish two axes for dimensionality re-
duction: its scope and its nature. The scope of re-
duction is concerned with the universality of the re-
suiting feature set, whereas its nature describes how

the features are selected. In (Apt~, Damerau, & Weiss
1994), two alternatives to the scope of reduction are
suggested: category-oriented, or local, and overall, or
global, feature set reduction. The so-called global re-
duction (Maron 1961; Apt~, Damerau, & Weiss 1994)
provides an inductive learner with the same feature
set for each category, while local reduction selects
a specific feature set for each category (see for in-
stance (Apt~, Damerau, & Weiss 1994; Lewis 1992;
Wiener, Pedersen, & Weigend 1995)). The nature
of reduction can also be qualified by two different
means: filtering and construction. Filtering aims at
reducing the number of features by selecting the best
ones according to some criterion; such criteria in-
clude mutual information (Lewis ~ Ringuette 1994;
Moulinier & Ganascia 1995), frequency (Apt~, Dam-
erau, ~ Weiss 1994), term ranking (Fuhr et al. 1991;
Wiener, Pedersen, ~ Weigend 1995) or expert’s judg-
ment (Maron 1961). Construction has a lesser impact
in text categorization. Instead of selecting a subset of
the original feature set, new features are constructed
as combinations of original features. Latent Semantic
Indexing (LSI) (Deerwester et al. 1990), as used in
(Wiener, Pedersen, & Weigend 1995), is such a con-
structive approach.

Inductive Construction of Categorizers

Once texts are turned into learning examples, induc-
tive learners are used to induce categorizers. Since the
ideas behind these learners are well known in ML, we
only review those used in text categorization experi-
ments.
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In most categorization systems, induction is per-
formed by a numerical learner. Linear regression
(Biebericher et al. 1988; Fuhr et al. 1991), Bayesian
classifiers (Maron 1961; Lewis 1992), k-nearest neigh-
bors (Masand, Linoff, & Waltz 1992; Yang 1994), neu-
ral nets (Wiener, Pedersen, & Weigend 1995) and
threshold computation (Liddy, Paik, & Yu 1994) are
instances of such learners. Recent studies have in-
troduced symbolic learners in order to build catego-
rizers: decision tree constructors (Fuhr et al. 1991;
Lewis & Ringuette 1994), relational k-DNF learners
(Cohen 1995) and production rule inducers (Apt~,
Damerau, & Weiss 1994; Moulinier & Ganascia 1995).

We now outline a couple of differences between these
learners, that may be significant for the text catego-
rization task. First, numerical and symbolic learn-
ers differ their abilities to handle structured features
and produce understandable classifiers. The instance
language, i.e. the feature set issued from text rep-
resentation, is known to strongly bias the inductive
learner (Michalski 1983). Symbolic learners usually
deal with a structured instance language but perform
rather poorly when they are confronted with numerical
data. On the other hand, numerical learners can not
easily deal with structured features. Moreover, sym-
bolic learners are often said to produce interpretable
classifiers. However, text categorization is a domain
where classifiers are quite verbose: a categorization
system may include several thousands of rules (Moulin-
ier & Ganascia 1995), which can hardly be considered
as interpretable.

Finally, we believe that resistance to noise may be
critical for the text categorization task, since textual
databases are usually rather large and are bound to be
noisy. Some symbolic learners like ID3 (Quinlan 1986)
or CHARADE (Ganascia 1993) are said to construct
consistent descriptions of concepts, i.e. a description is
generated when all examples covered by this descrip-
tion belong to the same concept. Such learners are not
noise-resistant. However, most ML techniques provide
some means to take noise into account.

What Impact Has Knowledge ?

Our third concern is the analysis of the use and impact
of knowledge during the whole categorization process.
As shown in Figure 1, additional knowledge may ap-
pear during any of the two major subtasks of catego-
rization, i.e. text representation and induction.

There is no single definition for knowledge. We
therefore distinguish three facets to the term knowl-
edge. In IR and numerical learning, knowledge is of-
ten extracted from data. For instance, a frequency-
based model can be considered as adding knowledge

to a boolean model. We call the second facet domain
knowledge. Such a kind of knowledge is provided by
an external interaction and refers to a specific applica-
tion. For example, machine-readable dictionaries are
sources of domain knowledge. Lastly, an inductive bias
can be considered as a knowledge source for the learner
or the reduction method.

These three facets of knowledge are mostly evoked
during the text representation step. Local selection,
LSI or even the frequency based model can be con-
sidered as adding knowledge extracted from data to a
global text representation based on a boolean model.
Domain knowledge has been used by (Liddy, Paik, 
Yu 1994), where a machine-readable dictionary was
employed to build the initial representation. We also
consider the assignment of a greater weight to words
appearing in the headlines of a news-story (Apt~, Dam-
erau, & Weiss 1994) as domain knowledge. In (Cohen
1995), the expressive power of a relational formalism,
i.e. language bias, enables the representation to take
into account the positions of words inside a document.

There has been little research conducted on the use
of knowledge during the inductive phase of categoriza-
tion. Nevertheless, a noticeable attempt is presented
in (Wiener, Pedersen, & Weigend 1995), where the au-
thors group categories according to semantic charac-
teristics and induce categorizers of these sub-domains.
In (Fuhr et al. 1991), the authors used knowledge to
guide an indexing system: for instance, knowledge en-
abled the discrimination among candidate keywords is-
sued from the inductive step.

Most experiments reported in text categorization,
which used additional knowledge in the representation
and induction steps, show that an enriched categoriza-
tion system outperforms a naive approach. However,
few studies have reported experiments, where varying
amounts of knowledge were involved. For instance,
(Wiener, Pedersen, & Weigend 1995) reported an en-
hancement of 5% using LSI and a hierarchical net over
boolean features using a flat network. Similarly, (Apt~,
Damerau, & Weiss 1994) reported a increase of 5% be-
tween a locally reduced representation based on fre-
quency and weight assignment, and a global boolean
representation.

Limitations of this Unifying View

There remain some text categorization approaches that
do not fit into the preceding schema. The process-
ing step between the initial representation and the fi-
nal representation does not always imply dimensional-
ity reduction. For instance, in (Creecy et al. 1992),
the authors expand the initial representation and their
learner has to deal with over 4 million features. Reduc-
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tion of the training set, as opposed to dimensionality
reduction, has also been eluded in this schema. Sam-
pling, as described in (Lewis & Catlett 1994) and used
by (Cohen 1995), is one such approach for reducing the
number of training examples.

Finally, for the sake of simplicity, we have not in-
cluded feedback into the whole categorization sys-
tem. Clearly, however, all systems perform hand-
driven feedback, when tuning parameters to optimize
some evaluation criterion. We are not aware of auto-
matic feed-back in the context of text categorization.

A Framework to Compare Learners

Very few studies have conducted a thorough compar-
ison between learners on the text categorization task.
In (Lewis ~: Ringuette 1994), two learning approaches
are compared: Bayesian classification and decision tree
construction; (Wiener, Pedersen, & Weigend 1995) ex-
perimented on several neural net models. However,
most studies report some performance improvements of
a given approach over others. Hence, there has been no
conjecture on the properties a learner ought to possess
so that it performs well on the text categorization task.
Moreover, comparing existing approaches is inconclu-
sive to assess learners inasmuch as no clear distinction
can be made between the exact roles of text represen-
tation and inductive learning. In this section, we pro-
pose an experimental framework in order to compare
individual learners, and not the whole categorization
system.

Text Representation and Learning Scheme

Text representation is a two-stage process. The first
stage is concerned with the initial text representation.
We are confronted with an alternative: we can either
hold text representation constant or choose the text
representation that is best suited to each learner. We
choose to have a unique representation for all learners
and use a naive boolean model.

In a second stage, this boolean representation is re-
duced using local filtering based on the mutual infor-
mation criterion. For each category, we select the fea-
tures that obtain the n top-most scores using the mu-
tual information criterion between the given category
and a feature.

To end up, we obtain the following learning scheme.
Since learners are typically used for single-class predic-
tion, the assignment of n categories to a document is
transformed into n assignments decisions on each sin-
gle category. The original text database is translated
in terms of locally selected features for each category.

Evaluation Criteria

Evaluation criteria in IR and in ML differ. We choose
to assess our experiments with an IR criterion, since
accuracy, a measure commonly used in ML, is biased
by the high disproportion between the assignment and
the non-assignment of categories. Thus, we consider
recall and precision as evaluation measures. We use
micro-averaging (Lewis 1992, Sec. 6.4) as a means
of cumulating performances over all categories. How-
ever, since recall usually goes up (respectively down)
when precision goes down (respectively up), it is rather
tricky to assess performances on the basis of these two
measures. Among several summarizing measures that
have been proposed, we choose the Ffl-measure (Lewis
1995) as an evaluation criterion:

(/3~ + 1)PR
F/~ - /32p + R,

where R denotes recall, P precision and/3 varies from
0 to infinity.

Experimental Results

The Reuters Corpus

We carried out our experiments on the Reuters dataset
of financial newswire stories from the year 1987, also
identified as Reuters-221731. The original corpus is
composed of 21450 manually indexed stories divided
into a learning set (14704 documents) and a testing
set (6746 documents). Among 689 subjects of interest,
including topics, places or company names, we worked
on a set of 135 categories that were provided together
with the formatted version of the corpus. We decided
to overlook stories without category assignment, since
we could not possibly learn from them2. This left
us with 7789 learning and 3875 testing examples de-
scribed by 22791 words provided by Lewis’ processing
(Lewis 1992, p. 99).

Which Learners ?

Our experiments were conducted on four learners
which illustrate symbolic and numerical learning. Aa
implementation of ID3 (Quinlan 1986) and CHARADE
(Ganascia 1991), a production rule learner, represent
symbolic learners, while a k-nearest neighbors algo-
rithm called IB, and a Bayesian approach, NaiveBayes,
are instances of numerical learners. The ID3, IB and
NaiveBayes are those implemented in the MLC++ li-
brary (Kohavi et al. 1994).

IThe Reuters dataset can be obtained by anonymous
ftp from/pub/reutersl on ciir-ftp.cs.umass.edu.

2Overlooking stories without category assignment was a
misunderstanding of the original corpus labels.
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Learner # features F1 Break-even point
ID3 75 78.1
CHARADE 75 78.2

IB 10 75.1
NaiveBayes 10 70.2
Neural Nets (boolean model) 77.5
Neural Nets (enriched model) 82.5
Swap-1 (local boolean model) 78.5
Swap-1 (enriched model) 80.5

Table 1: Micro-averaged performances of learners on the Reuters testing set.

Results

We ran several series of experiments; for each algo-
rithm, we used varying sizes of feature sets. The eval-
uation was conducted on the set of 3875 testing ex-
amples. Results, reported in Table 1, show the best
performances with regards to the F1 criterion. Results
from earlier experiments on the same corpus complete
this summary. Neural nets refer to the experiments
presented by (Wiener, Pedersen, & Weigend 1995),
while Swap-1 is a production rule learner used in (Aptd,
Damerau, & Weiss 1994). In both cases, the enriched
model takes into account various kinds of knowledge
sources, while the (local) boolean model is very close
to our naive framework.

These earlier experiments were not evaluated using
the same criterion. However, the break-even point and
the F1 measure may be compared since FI(P’, P*) 
P*, where P* is the precision obtained at the break-
even point. Finally, it is worth noticing that the per-
formances of four learners out of six (ID3, CHARADE,
Swap-1 and Neural Nets) are very close, when these
learners are given a similar text representation.

Discussion

The difference between some learner’s microaveraged
performance is not really significant. Let us, for in-
stance, consider CHARADE and ID3. The microaver-
aged F1 is roughly the same; however, these two learn-
ers have distinct behavior: while CHARADE favors re-
call, ID3 favors precision. Moreover, the gap between
the values of recall and precision is wider using the
decision tree technique (cf Table 2).

Furthermore, to get a better insight, we looked at
the behavior of each learner on individual categories.
Results on a subset of 17 categories are reported Fig-
ure 2. This subset groups the most frequently assigned
categories on the training set, as well as some ran-
domly selected ones. The number of positive training
examples is also given. It is worth noticing that no
learner outperforms the others on all categories, even

though in most cases symbolic learners show better
performances.

Table 1 may give rise to a unfortunate association
between rule learners and large feature sets, as op-
posed to statistical learners and small feature sets. In
Table 2, we show that this association does not hold:
ID3 performs well with few feature and IB performs
equally well with 75 features. However, CHARADE per-
formances are greatly deteriorated by a small set of
features.

An alternative hypothesis was that symbolic learn-
ers performed their own selection of features during
the learning phase, whereas numerical ones did not.
In Table 3, we report the number of features that ap-
pear in the descriptions (either tree or rule set) learned
by ID3 and CHARADE for each of the 17 categories. A
striking difference between these two learners can be
seen: while ID3 does have some kind of feature selec-
tion, since it does not use all features (even with only
ten features) in the decision tree. CHARADE, on the
other hand, uses most of the available features; this
characteristics is emphasized by the use of redundancy
during learning.

Another direction would need further investigation.
In our framework, we learn to decide whether a cat-
egory can be assigned to a text or not. Since text
categorization is more concerned with the assignment
than with the non-assignment, it would be interesting
to assess the ability of learners to learn a concept with
few positive examples. At first view, numerical learn-
ers are less sensitive to irregular distributions. For in-
stance, IB and NaiveBayes perform rather well on the
veg-oil and palm-oil categories, whereas CHARADE
does poorly.

Finally, the poor performance of all learners on the
yen category is striking (cf. Figure 2). Our belief
on this particular case is that induction is flawed by
representation. Indeed, documents from category yen
and dlr often use a similar vocabulary. However, there
are less examples labeled with category yen. Thus, it
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Figure 2: Comparison on a subset. The criterion is F1 expressed as a percentage.

is rather hard to distinguish this category from the dlr
category. This can be related to a kind of noisy data.

Conclusion

In this paper, we have presented a review of current
research in text categorization and provided evidence
that the properties of learners should be taken into
account, in order to choose one particular learner to
induce categorizers.

We argued that considering a single evaluation mea-
sure could not properly characterize the abilities of a
given learner to the text categorization task. We also
outlined differences between numerical and symbolic
learners, in the language instance as well as in data
distribution. Considering these two dimensions and
the results reported in the last section, we believe that
it would be interesting to study hybrid approaches to
text categorization: data characteristics could guide
the choice of a learner for each category.

Moreover, as ML algorithms currently have diflicub
ties to deal with both large feature and example sets,
future research should be dedicated to reducing these
sets. One path has been pointed out by (Lewis 
Catlett 1994) and consists in reducing the sample set.
We prefer another path, which includes designing spe-
cific algorithms for dimensionality reduction and en-
hancing the initial text representation, using for in-

stance linguistic knowledge.
Finally, we have not addressed the influence of noisy

data on learning in a categorization context. The ex-
periments we reported in this paper need to be further
analyzed and developped in order to assess wether re-
sistance to noise is important. However, we can clearly
distinguish between two types of noise: noise may be
present in the original textual dataset (i.e. two iden-
tical texts with different categories, as it appeared in
the Reuters dataset), or it may be introduced by text
representation, especially during the reduction step.
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