Case-Based Algebraic Constraint System for Engineering Design

From: AAAI Technical Report SS-98-04. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Ruowen Rong', Carlos Saldanha?, David Lowther’

GTE Laboratories Inc., Waltham, MA, USA'!
Centre de Recherche Informatique de Montreal, Montreal, PQ, Canada?
Dept. of Electrical Engineering, McGill University, Montreal, PQ, Canada’

Abstract

In this paper, we present an approach to solve design
problems using different reasoning techniques. First, case-
based reasoning was used in the design problem structuring
phase to get the initial design of the device by retrieving
similar existing designs. Then we adapting the initial design
by using algebraic constraint propagation techniques,
qualitative methods and interval arithmetic to solve the
design problem.

Introduction

Generally, a design process can be divided into two phases,
i.e., the problem structuring phase and the problem solving
phase. The problem structuring phase begins with a
synthesis process to determine the topology of a device and
it results in the construction of an initial design space. In
the domain of device design, the design space contains the
initial specification, the goal and the related parameters and
the knowledge of constraints in the problem. Then, in the
problem solving phase, the value of parameters of the
device are calculated and verified to make sure that all the
constraints are satisfied, some analysis and optimization
are performed, and by using feedback from the analysis,
the parameters of the device are further refined. Such
design process can be illustrate in Figure 1.

Two forms of design knowledge are commonly available

problem structuring phase

preliminary design preliminary component design

start

determine the topology
for the device, the
environment and
functional requirements

select and specify
components

—

v

put components
together into systems
determine all design
parameter values

analyzing and evaluating
the device and applying
optimization procedures

—

analysis and optimization detailed design

problem solving phase

Figure 1 The Process of Design

16

to the designer, ie. the collection of previously designed
devices and the set of physical laws. Often the designer
creates a new device by adapting existing similar designs
according to the appropriate physical laws. The modified
design is then tested and refined until all the requirements are
satisfied. Case-Based Reasoning (CBR) (Kolodner 1993) is a
paradigm that emulates such a process. How an existing
design should be adapted to achieve the desired function is
an important issue in the case-based approach to design.
Such adaptation requires an understanding of how device
parameters behave in accomplishing the target functionality.
This knowledge can often be represented by the parametric
model of a device. Such model is usually described as a set
of mathematical equations relating the structural, functional
and performance parameters of the device. These equations
can be organized into a declarative constraint network which
can then be manipulated symbolically by an Algebraic
Constraint System (ACS). The result is an interactive
approach for design space exploration by propagating
parameter values and constraint solving. As such, the ACS is
a useful tool for use in the adaptation phase of CBR.
Designers can investigate modifications on previous device
specifications in order to meet new requirements. The aim of
this paper is to illustrate the role of the ACS in the CBR
approach to engineering problem-solving. A prototype of
Case-Based Algebraic Constraint System (CBACS)
(Saldanha and Lowther 1987) (Rong and Lowther 1994) has
been developed to demonstrate such ideas. The flowchart of
CBACS is shown in Figure 2.

Knowledge Representation

In general, people use a combination of reasoning methods
in problem-solving (Gick and Holyoak 1980). In the context
of design, past episodes can quickly lead a problem solver
into the neighbourhood of a target solution to a new
requirement. Other reasoning methods can effectively guide
designers in exploring this neighbourhood with the aim of
locating the target solution(s). Device models need to be
integrated with design cases in order to make use of the
adaptation-through-interactive-exploration ~ facilities in
CBACS.

y

Design Specification

Palttern Matching
Design Retrieval

constructing the
initial design parametric models
l (intervai arithmetic,

A 4

qualitative model,
algebraic model)

Interval and algebraic
constraint propagation

Algebraic
L any parameter anslraint
conflict? System
Design Adaptation Qualitative
Reasoning

all parameters
are bouned and all constraints
are satisfied?

assign Indices

design complet ?

Figure 2 The Flowchart of CBACS

Hierarchical Organization of Design Cases
Through Models

A base model of devices can be described as having certain
common properties, i.e. they are all built out of physical
materials, they are all subject to the basic physical laws,
etc. A hierarchy of models can be constructed from this
base model. This way, a solution in an abstract level can be
used as a guide for the search of the solution of a less
abstract one. The abstraction of knowledge divides the
problem space into levels, each level holding a different
view of the problem. Existing design cases can be
classified as physical instantiations of specific device
models, thus associating all model knowledge to design
instances. The case organisation scheme being described
readily lends itself to implementation using object-oriented
programming techniques where the models are depicted as
objects defining a class hierarchy.

Conceptually, cases and their features form a semantic
network whose nodes represent case classes, cases, device
components and their attributes; while network links depict
the relations amongst them. Figure 3 illustrates a simple
semantic network describing the basic objects of an actuator.
This network provides background domain knowledge
which is not normally available in a case-base of design
episodes. Coupled with inference capabilities, that advantage
provided in CBACS is the ability to perform the “deep-
reasoning” that is normally associated with the adaptation
phase of CBR. Finding similar episodes in the case-base to a
current problem is achieved by matching abstract features

17

has
paramete I Eiectrical parameter Output -
Power Machine Power
has has
Input
Voltage

N Y
has p Winding | [Cylindrical | made of
I Coils tron Shel
(M19]

———

generalization

Figure 3 The Semantic Network of an Actuator

rather than design details. This corresponds to using domain
knowledge to enable matching of episodes that are
semantically similar.

The Algebraic Model of a Device

Generally devices can be represented by the algebraic
models (equations) relating the structural and functional
parameters of the device. An algebraic model of a device
can be represented as a constraint network (Mackworth and
Freuder 1985). In CBACS, nodes in the network are data
structures that represent equations while arcs are data
structures representing parameters. When equations are
entered into the system, parameters are extracted from the
equations and the network is automatically constructed.
Equations are identified by a name given when they are
created. When an equation is entered into to the system, the
algebraic expression is parsed into executable Lisp code by
the Algebraic Symbolic Solver (ASS). The equation
structure contains an expression for each variable in the
equation. These expressions are solved by ASS and are
used by the inference mechanisms to invoke the equation
in either direction. Such kind network is generated and
interpreted by the Algebraic Constraint System (ACS)
module in CBACS.

The equation network is created incrementally as the
expert enters individual equations. For each equation
entered, the program: adds a new node in the equation
network; updates existing links for those parameters
already defined; creates a new structure for any parameters
which do not already exist in the system; and finally, new
links are created to connect the constraint to the newly
constructed parameter objects. We can inform the system
about the analytical model of a device by simply entering
the set of equations defined in the model. For example, to
teach CBACS to understand Ohm's law, the equations: ¥ =
I*R and P =1* V are entered. CBACS will transform the
two equations into a knowledge structure. This process is
illustrated in Figure 4. As shown in the simple example,

has

Moving

i
! part J ‘ : lpart
: Component ¢ ----

}
] Air-Gap Stationary
) Component

has part

Ly

has
parameters

Input equation: E1:V=1*R
E2.P=I'V
The computer returns:

(E1 1S-A: EQUATION HAS-VARIABLES: VIR
HAS-CONSTANTS: nil RULE: (*EQUAL* V (TIMES I R)
CLAUSES: ((V (TIMES | R)

(I (TIMES V (EXPT R -1))
(R (TIMES V (EXPT | 1))}

{E2 IS-A: EQUATION HAS-VARIABLES: P!V
HAS-CONSTANTS: nil RULE: (*EQUAL* P (TIMES I V)
CLAUSES: ((P (TIMES IV)

(I (TIMES P (EXPTV -1))
(V (TIMES P (EXPT 1 -1)))}

Propagating constraints, please wait
Generating new equations ...

{NE1 1S-A: EQUATION HAS-VARIABLES: PR
HAS-CONSTANTS: nil
RULE: (*EQUAL* P (TIMES (EXPT | 2) R))
CLAUSES: ((P (TIMES (EXPT I 2) R))
(| (EXPT (TIMES P (EXPT R -1)) 1/2))
(R (TIMES P (EXPT | -2)))) }
{NE2 1S-A: EQUATION HAS-VARIABLES: PV R
HAS-CONSTANTS: nil
RULE: (*EQUAL* P (TIMES (EXPT V 2) (EXPT R -1)))
CLAUSES: ((P (TIMES (EXPT V 2) (EXPT R -1)))
(V (EXPT (TIMES P R) 1/2))
(R (TIMES (EXPT V 2) (EXPT P -1)))) }

New equations have been added to the system.

Figure 4 The Ohm's Law in CBACS

the system not only built the structures of the input
equations but also discovered and constructed two new
equations, i.e. P = ¥’ /R and P = * R. This illustrates the
system’s expertise in algebraic manipulation which is
imperative to engineering problem-solving. These new
equations can be used to compute / or V directly given the
value R and P.

The Qualitative Model

Qualitative reasoning forms a substantial part of our
everyday experience. If we consider an equation
connecting two variables, Y = f{X), we can determine that
Y will increase as X increases without knowing the exact
functional form of the relation, much less the numerical
parameter values. Even if we could find out the parameter
values, we might want to reason about the equation
generally, over a range of situations in which Y remains
some monotonically increasing function of X.

Qualitative process theory (Forbus 1984) provides a
formalism for encoding knowledge about the physical
world and some methods for reasoning with that
knowledge. Qualitative reasoning can also determine
dynamic behaviour, i.e., the state changes of a dynamic
system, and this information is very useful in the design
process.

The qualitative model in CBACS is composed of nodes,
which represent parameters, and links, which represent
their relations. As in the qualitative process, we label links
as either M+, M-, I+, I-. The link (X M+ Y) denotes that
Y varies monotonically with X (i.e. if X increases then so

does Y), while the link (X I+ Y) denotes that Y's rate of
change dY/dt varies monotonically with X. Similarly, the
M- and I- links denote inverse monotonic relationships.

The qualitative model used in CBACS is only a
primitive model with respect to the models specified in
qualitative process theory. Currently we have only
implemented the monotonic relation between two
variables, which can show how a change in one attribute
would affect the other attributes. As a result, our model on
its own, cannot be used for simulation or prediction. Its
role in the system is to work with the other models
(algebraic models, in particular) to predict the directional
change of certain parameters. Figure 5 illustrates the
qualitative relations of some parameters of an actuator and
the constraints of these parameters represented by the
equation network.

m+

has

In has
i rameter | Actualor parameter 7| Force

Voltage
J

has Stroke
parameter Length has part

gvg:-}g'"g | IronShall, Plunger

has

parameter
m+

Figure 5 The Qualitative Model of an Actuator

Algebraic Constraint System and Design
Adaptation

As we have discussed earlier, in the case-based approach to
design, when a similar case is retrieved, the new design
will take the associated device model which includes the
generic equations and parameters (some of which have
default values) associated with a model of the specific
device type. The next step in the CBR approach is to adapt
the old design to meet the new requirement specification.
First, the differences between the problem specifications
and those of the retrieved case are analyzed to identify
changes that must be made in an old solution. From the
qualitative model of the device CBACS can determine how
changes in one parameter can result in changes in the other
parameters. This is accomplished as follows:

- Variables can be related to each other through simple
qualitative mathematical relations. For example, in the
domain of electromagnetic design the relation: (winding-
coil-turns m+ mmf) expresses the fact that the number of
turns in the winding coil has a positive monotonic relation
to the magnetomotive force, i.e., the higher the number of
the turns the bigger the magnetomotive force.

- When looking for a feature-to-feature or feature-to-
class explanation, CBACS traverses these qualitative
mathematical relations and propagates a "direction of
change" for each variable if it is supplied as a second

argument. For example, (pressure inc) means that the
pressure is increasing (inc = increasing, dec =
decreasing, and cons = constant).

With the qualitative model shown in Figure 5, CBACS
can “discover” that force monotonically increases with the
magnetomotive force (mmyf). It also finds that mmf is
related to the current, turns and air-gap which, in turn, are
dependent on the input voltage, winding and stroke length
respectively. Thus CBACS will determine from the
qualitative relations that increasing the input voltage and
the number of furns and decreasing the stroke length will
increase the force. This qualitative mathematical reasoning
provides a fast way of determining appropriate changes in
the attributes of a device to meet the design requirements.

When the value of a parameter is changed, CBACS will
propagate such modifications throughout network node
using a constraint propagation algorithm. Various
constraint satisfaction algorithms have been developed
(Davis 1987) (De Kleere and Brown 1986). A variant of
constraint propagation called Jlocal propagation has been
selected in CBACS as the algorithm for constraint
propagation because of its simplicity and resemblance to
manual design methods. Local propagation incrementally
attempts to propagate after each event and only the
constraints associated with the subject of the event are
tested. In the local propagation algorithm used in CBACS,
no linear search is needed in order to locate the relevant
constraints after an event due to the data structures used.
Constraint Propagation places fewer restrictions on the
types of equations that can be used, and is efficient even
when the equations are extremely sparse. The method is
well suited to solve systems of equations that are under
constrained, and to situations where the end-user plays a
role in reducing the solution space by assigning values to
variables or other constraints.

Local propagation is executed by checking the equation
and, if only one variable is unbounded, the program will
find the clause associated with the variable and apply the
equation to solve that variable. The new value will then be
assigned to the value slot of the parameter frame. If all the
variables are bounded in an equation, a test is made to see
if the left-hand side of the equation is numerically equal,
within a predefined threshold, to the right-hand side of the
equation. If this is so, the parameter values are consistent
with the model, otherwise a data inconsistency exists. If
such a conflict occurs, backtracking to a previous design
decision and selecting another propagation path may solve
the problem. However, if a conflict still exists after all the
alternatives have been attempted, there must be some
inconsistency in the input parameters or the actual model is
invalid. Assuming the coherence of the knowledge-base,
the input requirement have to be modified in order to
complete the design. On the other hand, if no new variable
can be solved for, the operation will return a list of
parameters that still need to be determined in other to
achieve a design solution.

Whenever a new parameter value is assigned in the
equation network, the constraint propagation is invoked.

19

Those equations graphically linked to the parameter are
checked and, if the equation is already satisfied or there is
insufficient data to apply the equation, no further
propagation will be done. However, if a data inconsistency
is found, the propagation is aborted and the user is notified
about the conflict. On the other hand, if a value for another
parameter in one of the equations can be obtained, the
value assignment is made and recorded in the history stack.
This triggers a recursive call to local propagation. The
procedure terminates after all the equations have been
checked at each level of recursion and no more deduction
can be made.

The ACS can also work on interval constraint
propagation (Brett, Saldanha and Lowther 1990) (Rong
and Lowther 1995). An interval is a set of numbers of the
form: [a,b]={x | a<x< b}. In engineering design,
many parameters are subject to value bounds. An interval
is a good way of representing such information. The
benefits that interval mathematics provide to the expert are
not restricted to determining the valid ranges of parameter
values. Intervals may be combined with void variables so
that inequalities can be represented. For example, the
inequality X < Y * Z + /00 can be reformulated as X - Y * Z
< 100. A void variable VD] is then assigned to X - ¥ * Z
and the inequality is incorporated into the equation
network by adding VD! = [-infinite, 100]. Note that the
equation structure does not have to be modified to provide
for inequality relations.

When interval values propagate through the equation
network, new intervals are computed for unknown
parameters. There is an extra level of complexity involved
with interval propagation compared to single-valued
propagation. In the latter case, once a value is computed for a
variable, it does not re-compute again (unless an
inconsistency occurs later on, then the value may be
retracted upon backtracking). Interval value propagation, in
contrast, computes an interval in the equation network with
interval values for each of the arguments involved in the
expression (Unknown parameters are assigned the indefinite
interval [-inf , inf] if they are not subject to design
specifications or user inputs when constraint propagation is
initiated). Next, it intersects the result with the previous
value of the variable in question and returns this value as the
new interval value for the parameter. This process continues
until the interval labels for all the parameters in the network
fail to decrease in width. Hence, the process incrementally
reduces the solution space for valid designs, shortening the
search towards the end goal. Such refinement process
described above has been described as Waltz algorithm
(Davis 1987).

The ability to use such general types of intervals greatly
simplifies the description of an analytical model in
CBACS. For example, making sure dimensional
information is strictly non-negative is carried out by
assigning [0, inf] to the necessary variables. In effect, the
interval represents a vast number of parameter values that
could have been assigned during regular (single-valued)
propagation. This means the amount of backtracking the

system must perform when it encounters conflicts is
significantly reduced.

All events during the constraint propagation are recorded
in a history stack. An event is a record of the variable
bindings made as a result of propagation. Each event is
labelled chronologically, and is represented by a list
containing the value assignments that have occurred. Each
event is a triple identifying the source of the assignment, the
variable, and the value. By recording all events in the history
stack of CBACS, a trace of the reasoning process leading to
the current design state is maintained and makes
backtracking possible if needed.

Example: Designing an Actuator

To illustrate the ideas in the paper, a simple example is
provided in the context of actuator. An actuator is a
fundamental electromagnetic device designed to produce
mechanical motion and force. It consists of a coil to carry
current and generate ampere turns, an iron shell or case to
provide a magnetic circuit, and a movable plunger to
deliver force. The structure of an actuator is shown in
Figure 6. Despite the physical simplicity of the actuator,

[e 2\

Cylindrical Gap
> | |n ‘—’—_:4/

Fixed Plunger

Movable-Plunger

\

NI Ampere Turns

Iron Shell

Figure 6 The Structure of an Actuator

designing these devices is a difficult, timing-consuming
process because there are a lot of interacting details that
must be considered. For example, one of the problems is
the temperature rise which makes the coil less efficient
because it reduces the ampere turns and hence reduces the
flux density and the output force. Another problem is the
saturation of the iron path, which prevents the increase in
flux density, and hence the increase of output forces. The
latter might be solved be changing the iron path area, the
pole shape, or the material of the iron shell and plunger.
The solution to these problems is usually implied in
previous design cases.

The design equations which represent the analytical
model of the actuator are entered into CBACS in the
format shown in Figure 7. The variables &, r1, r2, 3, t1, 12,
13, HR, gc and alpha define the geometry of the plunger
and the iron shell. The variable stroke-len is the stroke
length and F is the required force. The variable N/ stands
for the Ampere turns. Mu0 is the permeability of free space
and copper is the conductivity of the copper. The variables
meff, space_f, t_rise, temp f, leak_f and duty cycle
represent the magnetic circuit efficiency, space factor,
temperature rise, temperature factor, flux leakage

20

(equation 'e1
srule '(force = (pi * B2 * r142 * cos (alpha) #2 / (2.0 * mu0))
:constants ‘(mu0))
(equation 'e2
:rule (NI = (B * Stroke_len * cos (alpha)*2) / (meff*mu0))
:constants ‘(meff mu0))
(equation 'e3
irule '(t_rise = (duty_cycle * NI*2) / (2.0 * temp_f * space_f
* copper_cnd * (r2-r1) * hA2))
:constants '(t_rise duty_cycle temp_f space_f copper_cnd))
(equation ‘e4 :rule'(HR=h/(2-r1)))
(equation 'e5 :rule "(r142 =342 - r22)))
(equation 'e6 :rule ‘(t1 = (r3°2 - r2*2) / (2.0*r1)))
(equation ‘e7 :rule '(t2 = (r32 - r242) / (2.0*r2)))
(equation 'e8 :rule ‘((leak_f*B*r1)/(0.1* NI)=2*t3*mu0/gc)
:constants '(mu0 leak_f))
(equation 'e9 :rule ‘(ieds1=r2-r1))
(equation 'e10 :rule '(ileds2 =r3 - r2))
(ival ‘ieds1 [0+ inf])
(ival ‘ieds2 '[0+ inf])

Figure 7 Actuator Design Equations

coefficient and the duty cycle of the actuator respectively.
The constraint network corresponding to these equations is
illustrated in Figure 8.

@n (&2 A2
‘E
r "?’ﬂ @

v
(9

Figure 8 The Constraint Network of an Actuator

Suppose the user wants to design an actuator with force
of 300.0 Newton and stroke length of 4.0 mm and these are
the only specifications that are given at the beginning of
the design. Obviously, the input specification is
incomplete, the design is under constrained and more input
parameters are needed to start the design process. When
CBACS receives this input specification, it first starts the
constraint propagation to test if there are any more
parameters that can be inferred from the input parameters.
It also checks if there is any conflict in the input
parameters at the same time. If there is any new parameter
that can be inferred from the input parameters, it will be
added in the input specification. In this example, no new
parameter can be inferred and no conflict has been
detected.

Next, CBACS searches the case library to find similar

existing design cases that match the input specifications.
Since, in the case of an actuator, the most important
parameters are force and stroke length. Therefore even
with only two input parameters, it is possible to find the
similar cases. As we have mentioned before, the new
design case will share the same structure of those retrieved
cases but may have different parameter values. Hence, the
constraints of the retrieved case, such as the parameters
and the constants in the corresponding equations are
assigned to the new case.

At this point, a lot of parameters of the new case are
unbound. CBACS now invokes the interval constraint
propagation process with a constraint on the flux density,
B, in the interval of [0.80, 1.5] trying to narrow the search
space for the new design. After the interval propagation,
we obtain the following results:

Force =[300.0,300] stroke =[4.0,4.0]
Ni=[3638.0,6821.0] r1=[10.33, 19.36]
r2=[19.43, 33.21] r3 =[22.01, 38.44]
h =[54.62, 83.06] t1=1[0.0, 53.26]

t2 =10.0, 28.31) t3 =[1.93, 12.71]
B =[0.8, 1.5] meff = 0.70
space_f=0.5 copper = 5.8e7
temp_f=12.0 leak_f=0.8
gc=0.1 mm duty_cycle = 0.1

t rise =70.0 mu0 = 1.2566e-6

The design is still not complete. CBACS now has to
guess a value of an unbound parameter. From the analysis
of the input specification and the parameters in the
retrieved case, it discovers that the input force is less than
the force of the retrieved case. Tracing the qualitative
relation links, the system knows that r/ is the major
parameter that influences the force, so it assigns the value
of r/ in the new case using interpolation of its the nearest
neighbours. When the new value of r/ is added, it invokes
the algebra constraint propagation process. In this example,
all the parameters are bound after the constraint
propagation. The complete design has the following
parameters:

Force = 300.0 Newton Stroke = 4.0 mm

NI = 4096 AmpTurns rt=17.2mm
r2=27.1mm r3 =32.0 mm
h=59.1 mm t1=8.6 mm
t2=5.5mm t3=6.0mm

The new design is finally stored in the case library with
the same index as its neighbours but with different
parameter values.

Conclusion

Case-based reasoning can be viewed as a paradigm that
emulates the way human designers solve problems.
However, CBR in engineering design usually means case-
based retrieval only. The remaining phases of the paradigm
are left to the designers. CBACS has been developed to
facilitate the adaptation phase of CBR. This has been
achieved by using algebraic constraint propagation
techniques, qualitative methods and interval arithmetic.

21

The additional knowledge required to apply these methods
involves the acquisition of declarative models of
engineering devices which in turn provides the basis for
organising the case library. The paper describes the design
case representation scheme, how generic device knowledge
is modelled in the system, and details the integration and
role of the various reasoning methods from the CBR
perspective. Finally, the paper illustrates the key
component of the design adaptation process - how the
system can propagate changes of design parameter values
in the analytical models of devices.

References

Brett, C.S,, Saldanha, C.M. and Lowther, D.A., 1990.
Interval Mathematics for Knowledge-Based computer
Aided Design in Magnetics. IEEE Transactions on
Magnetics, Vol. 26, No.2 March, pp. 803-806.

Davis, E., 1987. Constraint Propagation with Interval
Labels. Artificial Intelligence, Vol. 32, pp. 281-331.

De Kleere , J., and Brown, J.S., 1986. Theories of Causal
Ordering. Artificial Intelligence, Vol. 29, pp. 33-61.

Forbus, K.D., 1984. Qualitative Process Theory. Artificial
Intelligence, Vol. 24, pp. 85-168.

Gick, M and Holyoak, K.J. 1980. Analogical Problem
Solving. Cognitive Psychology, Vol. 12, pp. 306-355.

Kolodner J. L. 1993. Case-Based Reasoning. Morgan
Kaufmann Publishers, San Mateo, CA.

Kuipers, B. J. 1986. Qualitative Simulation. Artificial
Intelligence, Vol. 29, pp. 289-338.

Mackworth, AK. and Freuder, E.C., 1985. The
Complexity of Some Polynomial Consistency Algorithms
for Constraint Satisfaction Problems. Artificial
Intelligence, Vol. 25, pp. 65-74.

Rong, R. and Lowther, D.A., 1994. Storage and Retrieval
of solutions in the design of electromagnetic devices. /JEEE
Transactions on Magnetics, Vol. 30, No. 5 pp. 3648-3651,
Sept. 1994.

Rong, R., Lowther, D.A., Brett, C.S., 1995. "Determine the
Range of Design Parameters to Support Design
Optimization." International Symposium on Non-Linear
Electromagnetic Systems, Cardiff, Wales, UK, September
1995.

Saldanha, CM. and Lowther, D.A., 1987. Devices
Modelling in An Electromagnetic Design System. /EEE
Transactions on Magnetics, Vol. 23, No. 5, Sept., pp.
2644-2646.

