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Abstract

The present work describes some aspects of the di-
agnostic problem solving architecture of ADAPTER,
a multi-modal reasoning system combining Case-
Based Reasoning (CBR) and Model-Based Reason-
ing (MBR). In particular, some issues concerning the
performance of such a combined architecture are dis-
cussed, with particular attention to the problem of
maintaining under control the growth of the case
memory. In fact, an over-sized case memory is the
main responsible for the arising of the utility prob-
lem in ADAPTER. We identified such a responsibility
through a set of experiments concerning the average
behavior of the system with respect to a given domain.
As a consequence, we propose two learning strategies
regarding the addition and replacement of cases in
memory. Experimental results are quite encouraging
and suggest that the adoption of such strategies can
greatly mitigate the over-sizing of the case memory.

Introduction
The idea of using multiple representations for problem
solving has attracted a significant amount of attention
and a number of systems have been developed which
are able to solve complex problems, mainly in the area
of diagnosis, by exploiting some form of integration
and co-ordination among different representations (see
(David, Krivine, & Simmons 1993) for a survey). 
proaches based on multiple representations for problem
solving require the solutions to not easy problems such
as the selection of specific representations which can
be actually useful for the task at hand, the way differ-
ent representations are used (and when) by a problem
solver, in order to gain the maximum of efficacy and
efficiency for a particular task.

Taking into account the above issues, we investi-
gated the potential of the integration of Case-Based
Reasoning (CBR) and Model-Based Reasoning (MBR)
with respect to diagnostic problem solving. In domains
where a precise domain theory is available and ana-
lytical methods exist for solving the problem, the ad-
vantage of using CBR (possibly in conjunction with

other methods) could seem less obvious with respect
to domains where the domain theory is very partial
and weak. However, CBR can still provide advantages
when the computation of a solution from scratch is very
complex; this is often the case when pure model-based
approaches are used, so this kind of integration has
been studied for tasks like design (Goel 1989), plan-
ning (Veloso 1994) and diagnosis (Koton 1989).

In the following, we will discuss some aspects con-
cerning ADAPTER, a diagnostic system based on a
multi-modal reasoning paradigm that we recently de-
veloped. In particular, we will address some issues
concerning the efficiency of an integrated architecture
combining CBR and MBR for diagnostic problem solv-
ing, by pointing out how the arising of some form of
the utility problem makes necessary the definition of
appropriate learning strategies.

The ADAPTER System

The name ADAPTER means Abductive Diagnosis
through Adaptation of Past Episodes for Re-use and
indicates a diagnostic architecture combining Model-
Based Reasoning and Case-Based Reasoning (Porti-
nale& Torasso 1995). Differently from other simi-
lar systems like CASE’,’ (Koton 1989), the architecture
of ADAPTER aims at integrating aspects concerning
case management and abductive reasoning in a uni-
form and flexible framework based on a well-founded
specification of the notion of diagnosis; it involves the
set of components shown in figure 1 (links represent
data flow).

The high-level behavior of ADAPTER can be de-
scribed by the following pseudo-code:

ADAPTER (new-case, Case-Memory, Causal-Model) 

IF NDT RETRIEVE(new-case, Case-Memory,
retrieved-solution)

THEN BEGIN
MBR(nev-case, Causal-Model, mbr-solution) 
return (mbr-solut ion)
END
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Figure 1: ADAPTER Architecture

ELSE
IF 0K-SOLUTION(new-case, retrieved-solution,

Causal-Model,replayed-solution)
THEN return replayed-solution
ELSE

IF ADAPTATION(new-case, replayed-solution,
Causal-Model, adapted-solution)

THEN return adapted-solution
ELSE

BEGIN
MBR(nee-case, Causal-Model, mbr-solution);
rsturn(mbr-solution)
END

When presented with a new case, the SUPERVISOR

first invokes the CASE MEMORY MANAGER (CMM)
in order to retrieve the most promising cases from the
CASE MEMORY (RETRIEVE). Such a step evaluates
the degree of match between the current case to be
solved and the retrieved ones, using a heuristic function
which estimates the adaptation effort rather than just
the similarity between the current and the retrieved
cases. Although ADAPTER has currently the possi-
bility of using two alternative case memory organiza-
tions, namely an E-MOP organization or an associa-
tive fiat memory (Kolodner 1993), in the following 
will discuss a version of the system using the latter
memory structure. In particular, using an associative
flat memory, an efficient kind of adaptation-guided re-
trieval called Pivoting-Based Retrieval (PBR) can 
used to implement RETRIEVE (Portinale, Torasso,
& Magro 1997). The PBR algorithm is based on the
computation of suitable bounds on the adaptation cost
of each solution of a case; such bounds are then used
to restrict the search for the best case to be retrieved.
In the following we will discuss a version of the sys-
tem using this kind of strategy. If RETRIEVE fails
to find a promising case, the control is switched di-
rectly to the MODEL-BASED REASONER (MBR), oth-
erwise a set of cases with solutions having minimal

estimate of adaptation effort is returned and one solu-
tion is selected for further elaboration. The SOLUTION
RE-PLAYER is then invoked by the SUPERVISOR to re-
play the retrieved solution (OK-SOLUTION). The
retrieved solution is used together with the contextual
data of the case under examination (potentially dif-
ferent from the contextual data of the retrieved case)
and the CAUSAL MODEL (which represent the domain
knowledge) to recompute all the possible consequences.
The OK_SOLUTION step succeeds if some criteria
(namely consistency and covering) between the solu-
tion’s predicted observable parameters and the current
set of observations are met (Portinale & Torasso 1995).
If a failure occurs, the replayed solution is passed on to
the ADAPTATION MODULE for the ADAPTATION
step; this step adapts the retrieved solution to be a
solution of the current case, by using the same do-
main knowledge (that is the Causal Model) used 
the MODEL-BASED REASONER. The goal is to remove
possible inconsistencies in the replayed solutions and to
build missing explanations (covering) for some mani-
festations of the case, in order to obtain a formally cor-
rect solution. Ifadaptation falls, the control switches
to MBR for solving the new problem from scratch.

A basic feature of ADAPTER concerns the fact that
model-based diagnostic problem solving relies on a for-
mal logical theory of diagnosis (Console & Torasso
1991) and that the case-based component also relies
on such a characterization in at least two ways:

¯ the case-based and the model-based components
share the same "logical" representation of domain
knowledge;

¯ the adaptation module and the model-based rea-
soner exploits the same kind of inference steps to
perform their tasks. (see (Portinale & Torasso
1996)).

This tight integration allows the system to work in
a very uniform framework, while taking advantage of
the possibility of avoiding a complete reasoning from
scratch, in case relevant past episodes could be re-used.

Performance Issues
Even if in principle the kind of co-operation among
the modules of ADAPTER described in the previous
section appears to be fruitful, the real advantage of the
architecture has to be verified in practice. In fact, there
is no absolute guarantee that the combined system is
more efficient than the MBR a/one. The main reasons
for that lie in the following problems:

1. from the theoretical point of view, adapting a re-
trieved solution has the same complexity than solv-
ing the new problem from scratch; indeed, we



have proved that both the above problems are NP-
complete, even if adaptation is considered from the
conservative point of view (i.e. by trying to keep as
much as possible of the old solution) or if the cur-
rent case to be solved and the retrieved one are very
similar (Portinale & Torasso 1996);

2. as most of the CBR systems, ADAPTER suffers from
the utility problem, essentially because adding new
cases in memory can greatly increase the overhead
due to the retrieval and evaluation of cases (van
Someren, Surma, & Torasso 1997).

For these reasons, we have performed a number of ex-
periments trying to evaluate the real advantages of
combining CBR and MBR for diagnostic purposes.

To enable meaningful comparison among experi-
ments, we have developed a simulator automatically
generating a case, by taking into consideration a causal
model (the domain knowledge base) and some domain-
dependent parameters. In particular we identified the
following input parameters for the simulator:

Pl the probability of a causal relation to be enabled;

p2 the maximum number of initial causes with abnor-
mal values (i.e. faults) to be included in the case;

P3 the probability that a non-predicted observable pa-
rameter has to be included in the case description
with a normal value;

P4 the probability that an observable parameter that
has been predicted by the simulator has to excluded
from the case description.

These parameters allows us to generate cases with
different structural features; indeed, for some exper-
iments we need to distinguish between two different
classes of cases: cases to be stored in memory (train-
ing sets) and cases representing typical problems to
be solved by the system (test sets). In particular, 
generated training sets having cases which were all dif-
ferent and (almost) "complete". This means that all
relevant observable parameters were been actually ob-
served (included into the case); this has been obtained
by setting parameter p3 to a value very close to 1 and

p4 to 0. Test cases has been generated with smaller
values of P3 and with P4 > 0. Parameter Pl has been
set in all experiments to a value close to 1, meaning
that causal relations that are not certain are assumed
as a kind of default. Parameter P2 has been varied
depending from the experiments. There are two main
issues that has been addressed by the experiments

1. to determine the average best architecture for a given
domain and a given distribution of problems;

2. to determine the best architecture for each single case
submitted to the system.

These points will be discussed in the following subsec-
tions.

Average Costs and Utility

Concerning the problem of verifying the behavior of
ADAPTER with respect to a given domain and distri-
bution of problems, we have performed a detailed set of
experiments; in the present work we will present some
of them by taking into consideration two particular do-
mains: a mechanical domain represented by a causal
model of car engine faults and a medical domain rep-
resented by a causal model of the leprosis disease. The
results of such experiments are summarized in figure 2.
Average costs (in terms of CPU time) of ADAPTER are
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Figure 2: Average Costs for Mechanical and Leprosy
Domains

plotted with respect to case memories of different sizes.
The case memory was filled with training sets of

cases of different sizes and the resulting system was run
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on a test set of 100 problems. Such experiments show
the arising of the utility problem: the average cost of
ADAPTER, after having reached a minimum, tends to
linearly increase with growing case memory sizes. An
in-depth analisys shows that this effect is essentially
(but not completely) due to the increased retrieval time
when the number of cases in memory also increase and
points out the importance of having good monitoring
strategies on the case memory. Retrieval is the main
responsible for the utility problem, however also adap-
tation seems to play a role. Indeed, we also measured
some estimate (based on counting) of the probability
of success of the single steps of ADAPTER. In particu-
lar, we measured an estimate of the probability of suc-
cess of the OK-SOLUTION and ADAPTATION
stepsa. Results with respect to the case memory size
parameter are plotted in figure 3 for the two considered
domains. We noticed in both domains a slight increase
in the probability of success of OK-SOLUTION with
growing memory sizes (that however, does not fully
compensate the increase in the cost of RETRIEVE).
On the other hand, a peculiar behavior can be iden-
tified, in the mechanical domain, for the probability
of success of ADAPTATION; it shows a decreasing
patterns with growing memory sizes, meaning that it
is possible that, even if more cases are in memory, less
useful cases can be retrieved. This seems to suggest
that in some situations, when more cases are available,
the probability of getting an estimated promising case
that is actually not so good can increase.

In any case, such results show that a parameter like
the number of cases in memory must be seriously taken
into account in order to tune the architecture and to
test the utility of its components. For this reason we
studied the possibility of defining learning and forget-
ting strategies in order to decide whether to add, re-
place or delete a case from the case memory.

Learning Strategies
The definition of suitable learning strategies control-
ling the growth of the case memory size are of primary
importance in a combined architecture like ADAPTER,
but also in any general CBR systems (see (Smyth 
Keane 1995)). A deep investigation of the problem
is still under examination, but we have some prelim-
inary results concerning two strategies applied to the
mechanical domain.

The first strategy we tested is a strategy of pure ad-
dition of cases into memory. We start with an empty
case memory and we add a case into memory if and

tin the current implementation, the tEETRIEVE step
has a probability of success equal to 1 almost every time
and it is not interesting to consider it.
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Figure 3: Success Probabilities for Mechanical and
Leprosy Domains

only if the case has to be solved by the MBR compo-
nent (i.e. if either no case is retrieved or adaptation
fails). This strategy, called ADD_ONLY, implements
the principle that the only cases worth to be stored into
the case memory are the ones solved by MBR, since
they represent the gaps to be filled in the competence
of the CBR component.

A second strategy we tested concerns the possibility
of adding a new case by replacing an old one. This
strategy, called REPLACE, is activated when an in-
put case Ij has to be solved by the MBR component,
that is the CBR component was unable to retrieve and
successfully adapt a solution of a retrieved case Ci to
be a solution for Ij. Let us denote with:

¯ MBR_TIME(Ij) the cost (in terms of cputime) 
solving Ij by MBR;

¯ h(Ci, Ij) the heuristic function estimating the cost of
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adapting the stored case Ci into the input case Ij 2;
it is worth noting that h(C~,Ij) <_ h(Ck,Ij) for any
Ck stored in the case memory since Ci was chosen
as the most promising case for adaptation;

* h(Ij, Ci) the estimated cost of adapting the solution
of the input case Ij to be a solution for the case C~.

The strategy REPLACE decides to replace the stored
case Ci with the input case Ij into the case memory
(i.e. to add Ij and to delete 6/) if and only 

. adaptation using Ci has failed;

* h(Ij,Ci) < where a is a suitable thr eshold.

e MBR-TIME(Ij) > MBR-TIME(C/);

Notice that the main reason for the strategy to work
is that the function h is not symmetric; indeed, if Ci
has been retrieved using Ij as input, then h(Ci, Ij) was
not a good estimate because a failure in the adapta-
tion process occurred. However, the lack of precision
for h(Ci, Ij) does not mean that the same problem af-
fects h(Ij, Ci); in particular we can reasonably assume
that if the h(Ij, Ci) is low, there is no necessity of main-
taining Ci because there is evidence than case Ci can
be adapted at inexpensive cost to Ij. Moreover, the re-
placement of C~ by means of Ij should provide larger
saving in computation time, because of the principle
that only the most expensive cases should be retained
into memory.

In order to evaluate the relative merits of the dif-
ferent strategies, we have submitted a test set of 5000
cases to be solved by ADAPTER with ADD_ONLY
and REPLACE strategy respectively. We evaluated
the average cost of solving a case as a function of the
number of cases submitted so far. Figure 4 shows
the two corresponding plots3; in particular, the point
(n, C(n)) of each plot in the graph represents the aver-
age cost C(n) after the examination of n cases, where
n = 100. k (k = 1... 50) (i.e. values are plotted every
100 cases). We can still notice the arising of the utility
problem, since both strategies may produce case mem-
ories with increasing sizes as long as new test cases
are examined and no suitable adaptable cases can be
found (i.e. MBR has to be invoked). However the RE-
PLACE strategy seems to effectively deal with the
utility problem (the average cost increase very slowly),
since it is able to limit the growth of the case memory,

2In fact, the case Ci may have more than one solution
and h(Ci, I1) is considered to be the minimum cost among
all the solutions of Ci.

aNotice that the cost values of figure 4 are quite different
from those reported on figure 2 because different kind of
hardware platform have been used.
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by keeping stored just a few significant cases. This can
be noticed in figure 5 that shows that the number of
cases stored in memory after 5000 test cases is lim-
ited to 43 cases when using REPLACE against 141
cases when using ADD_ONLY. This is a surprisingly
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Figure 5: Learning Performance: Mechanical Domain

small number when we consider that we started from
an empty case memory and the test set is composed of
cases automatically generated with parameter p2 = 5,
that is up to 5 different faults can be simultaneously
present in each test case.

These results are even more interesting from the
computational point of view if we compare them with
the average cost of solving the above 5000 cases by
using the MBR module alone. In fact, average cost
analysis shows that the average cost of pure MBR is
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quite high; in particular the sample mean of the MBR
cost after 5000 cases results to be equal to 855.41 msec.
with a maximum error of :t=158.14 msec. in a con-
fidence interval at 0.05 confidence level (i.e. 95% of
precision).

The relatively bad news is that the REPLACE
learning strategy is quite sensitive to the threshold a
that is used to replace a case. Figure 6 shows a plot-
ting of the number of cases that are stored after 5000
tests, depending on the value of the threshold. Notice
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that results plotted in figure 5 are relative to the best
threshold, however even in the worst case, the num-
ber of cases in memory is relatively small and still less
than the number of cases obtained using ADD_ONLY
(that is producing a small number of cases anyway)

Conclusions
In the present work we have presented the analy-
sis of some performance aspects of a multi-modal
reasoning architecture for diagnostic problem solv-
ing, combining CBR and MBR. We pointed out in
particular, the arising of a form of utility problem
similar to that discussed in (Francis & Ram 1993;
Smyth & Keane 1995). A critical role in the arising
of such a problem is played by the size of the case
memory that must be searched. For this reason we in-
vestigated two different learning strategies able to add
or replace cases to memory. Preliminary results on a
domain concerning car engine faults suggest that these
form of learning can be really effective in taking un-
der control the growth of the case memory and allow
a significant reduction in average computational cost
with respect to a pure MBR approach (about one or-
der of magnitude). Future works will concentrate on
the problem of selecting a good start-up case memory
(instead of starting with an empty one) and on the def-

inition of opportunistic strategies to be adopted by the
system in order to decide whether to try to solve the
case by CBR or directly by MBR.
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