
Integration of Different Reasoning Modes in a Go Playing and Learning

System

Tristan Cazenave

LIP6, Universit6 Pierre et Marie Curie
4, place Jussieu

75252 PARIS CEDEX 05, FRANCE
Tristan.Cazenave@lip6. fr

Abstract
Integrating multiple reasoning mode is useful in complex
domains like the game of Go. Go players use various forms
of reasoning during a game. Reasoning at the tactical level is
completely different fi’om reasoning at the strategic level.
Choosing a plan requires a different form of reasoning than
knowing how to execute a plan. This paper gives examples
of the integration of these reasoning modes into a single
system. Rule-based reasoning, Constraint-based reasoning
and Case-based reasoning are used in this hierarchical order¯
Constraint-based reasoning uses the results of Rule-based
reasoning, and Case-based reasoning uses the results of
Constraint-based reasoning and Rule-based reasoning.

Introduction

Integrating multiple reasoning modes is useful in complex
domains like the game of Go. Go players use various types
of reasoning during a game. Reasoning at the tactical level
is completely different from reasoning at the strategic level.
Choosing a plan requires a different type of reasoning than
knowing how to execute a plan. This paper gives examples
of the integration of these reasoning modes into a single
system. This work has some similarities with the work by
Epstein and Gelfand [Epstein and Gelfand 1996].

The first section describes computer Go. The second
section shows how rules are used and learned in our system
at the tactical level. The third section describes some
constraints to choose a plan at the strategic level. The
fourth section provide a way to use Case-Based Reasoning
to choose the more appropriate move to follow a plan. The
last section gives the results of our computer Go system.

complex task. Robson [Robson 1983] proved that Go
generalized to NxN boards is exponential in time. More
concretely, Van den Herik [Van den Herik 1991] and Allis
[Allis 1994] use complexity measures of different games to
compare them. They defme the whole game tree complexity
A. Considering the average length of actual ,games L and
average branching factor B, we have A = B~. The state-
space complexity of a game is defmed as the number of
legal game positions reachable from the initial position of
the game. In Go, L~150 and B~250 hence the game tree

¯
~ 360complextty A 10 . Go state space compleyaty, bounded by

3361~e10172, and game tree complexity are far larger than
those of any other perfect-information game. Moreover, a
position is takes time to evaluate, on the contrary of chess
where positions can be evaluated very fast. This makes Go
very difficult to program. Computer Go has been
recognized as a challenge for Artificial Intelligence
[Selman 1996].

Computer Go

The game of Go

Go was developed three to four millennia ago in China; it is
the oldest and one of the most popular board game in the
world. Like chess, it is a deterministic, perfect information,
zero-sum game of strategy between two players. In spite of
the simplicity of its rules, playing the game of Go is a very

Figure 1

The board is made of 19 vertical lines and 19 horizontal
lines which cut themselves into 361 intersections. At the
beginning the board is empty. Each player (Black or White)
moves alternatively in adding one stone on an empty
intersection. Two adjacent stones of the same color are

91

From: AAAI Technical Report SS-98-04. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

connected and they are part of the same string. For
example, the white stones of Figure 1 marked with A are
connected and are part of the same string. Empty adjacent
intersections of a string are the liberties of the string. The
string of four marked white stones of Figure 1 has eight
liberties. When a move fills the last liberty of a string, this
string is removed from the board. The repetitions of
positions are forbidden. According to the possibility of
being captured or not, the strings may be dead or alive. A
player controls an intersection either when he has an alive
stone on it, either when the intersection is empty but
adjacent to alive stones. The aim of the game is to control
more intersections than the opponent. The game ends when
the two players pass.

In spite of the simplicity of the rules, a Go player uses a
lot of concepts to understand a position and to play a move.
This paragraph briefly shows some intuitive definitions of
these concepts. At the lower level, a player looks at the
safety of the strings in performing look-ahead. When a
string has enough liberties, the string is said to be safe. A
player also checks if an intersection is controlled by one
player or not. An eye is a small enclosed area, Figure 2
gives an example of an eye on intersection A. In this figure,
B is one of the four diagonal intersections of A. When
searching to make an eye, it is important to control diagonal
intersections.

Figure 2

A virtual connection is a spatial configuration that
enables to connect strings whatever the opponent plays.
Figure 3 gives an example of a ’Bamboo join’. If the white
player plays at A, black plays at B and connects its stones.
If white plays at B, then black at A connects. The four
stones are virtually connected.

-A-B-

Figure 3

Using these tactical results, a Go player starts its
strategic reasoning with the use of groups. A group is a
complex concept for human players. It may be either a set
of intersections that are virtually connected, either a set of
intersections that gather the same properties. A group has a
status. A status is dead or alive and it is derived from other
intuitive concepts like influence, fight, circling, life-base.
The reader does not need explanations of these concepts to
understand the following sections.

Different levels In a Go program
As it is impossible to search the entire tree for the game of

Go, the best Go playing programs rely on a knowledge
intensive approach. They are generally divided in two
modules:

¯ A tactical module that develops narrow and deep
search trees. Each tree is related to the achievement
of a goal of the game of Go.

¯ A strategic module that chooses the move to play
according to the results of the tactical module.

Strategic reasoning is concerned with groups of stones. A
group of stones is a set of stones of the same color, each
stone can be connected to each other.

Different types of reasoning are required in these
modules. The tactical module uses rules to decide what
moves to try in the search trees. The strategic module has to
choose a plan and to execute it. A good way to choose a
plan is to use constraints on the groups calculated by the
tactical module. Choosing a move that executes the plan
can be done by comparing the present situation with cases
previously encountered in games.

Rule based reasoning
Rule based reasoning is used in the tactical module of the
system. The rules are used to decide what moves to try in a
search tree. These rules are automatically created by an
Explanation Based Learning system named Introspect
[Cazenave 1996]. Introspect is an introspective learning
system [Cox 1996], such systems have been formalized in
[Mitchell 1986] [Laird 1986] [Dejong 1986] and they have
received attention more recently in [Ram & Leake 1995].
The rules learned by Introspect enable to consider only
between 1 and 5 moves out of the 250 possible moves on a
board. They exponentially decrease the size and time of the
brute force search tree. This enables our Go program to
took 60 moves ahead in some tactical positions. The
formalism used to represent these rules is f’n’st order
predicate logic. The rules are learned by Introspect, only
given the rules of the game in predicate logic.

Example of a (simple) learned rule used to find
connections between strings of stones :

Connect (S1 $2 1 friend) :- Color (S1 friend), Color
friend), Liberty (I S 1), Liberty (I $2), Move (I friend

This rule tells that if an intersection I is a liberty of
strings S1 and S2 that are friend strings, playing a black
stone at I enables to achieve the goal Connect between the
two strings.

The target concepts of the Explanation Based Learning
module are the tactical subgoals of the game of Go :
Remove a string, Make a string alive, Connect two strings,
Disconnect two strings, Make an eye and Remove an eye.
Each of these target concepts is defined using rules in
predicate logic. For example the target concept for the
tactical goal RemoveString is defined using this rule:

92

gemoveString (S I friend) :- Color (S enemy), Move
enemy), NumberOfLibertiesBeforeMove (S 1), Liberty
S), LegalMove (I enemy

Thousands of rules are created by using the rules of the
game to specialize the tactical goals.

Figure 4

The example learned rule is learned by explaining why
the move marked A in the Figure 4 connects the two black
strings. The initial target concept defining the Connect goal
is:

ConnectedAfterMove (S 1 $2) :- Color (S 1 C), Color
C), ElementOfARerMove (I S 1), ElementOfAfterMove
IS2).

The rules used to specialize the target concept in this
example are:

ElementOfAfterMove (I S) :- Liberty (I S), Color (S
Move (I C).

Connect (S1 $2 I friend):- Move (I friend
ConnectedAfterMove (S 1 $2).

Note that there are different predicates to describe the
board after the move and the board before the move. This is
to prevent side effects to happen, and to avoid incomplete
explanations.

At each node of the proof tree, learned rules are used to
select useful moves to try. Knowledge about the moves to
try in the search trees are represented using predicate logic
rules because these rules represent theorems about the
moves useful or necessary to try and the moves not to try.

Constraint based reasoning

Constraints can be used in games to choose a plan [Nigro &
Cazenave 1996]. They are used in the Go program to
choose plans at the strategic level. For example :

Save (G2):- Neighbor (G2 G1), Territory (G2
Territory (G 1), Territory (G2) + PotentialTerritory (
/ 2 < 9, NumberOfEyes (G2) <

This constraint tells that it is interesting to save group (32
if it has a neighboring group G1, and G2 has less territory
than GI, and if the sum of the territory of G2 and of the
potential territory of G2 divided by two is less than 9, and if
the number of eyes of G2 is less than 2.

Figure 5

The constraints are about groups. Groups are constructed
using the results of the tactical module. For example, each
point of territory is the result of a proof tree. The proof tree
is developed for proving that a string S that belongs to
group G can be connected to the intersection I if Friend
plays fast. If no opponent string can connect to the same
intersection I, then this intersection is a territory of the
group G that contains the string S.

In the Figure 5, we give a board where the example rule
with the consWaints applies. The group G2 is marked with
2, and the groups G1 with 1. The points of territory of the
group G2 are marked with little black points. There are
more than forty points of territory for the white group,
mainly on the upper left side of the board. G2 has five
points of territory and only one eye. The constraints of the
example rule are verified, so the goal Save (G2) is active.

Using constraints is the obvious way to describe that
groups are unsafe under some critical threshold of the
numbers representing their properties. Groups have a lot of
numerical properties that are related to their safety, so
constraints enable to express easily knowledge about the
safety of groups.

Case-based Reasoning

Once a plan has been chosen, the program has to choose
how to apply the plan. This is the next part of the strategic
level. Tactical goals and strategic plans are calculated on a
set of typical positions. It provides a set of cases with
associated moves. The moves can be the moves to play or
the moves not to play.

There are different degrees of similarity between the
predicates describing groups. For example, the conditions
’Territory (G) = 9’ and ’Territory (G) = 10’ are
similar. Whereas the conditions ’NumberOfEyes (G) =
and ’NumberOfEyes (G) = 2’ are very dissimilar.

Each move is associated to the goal it achieves. The
moves that achieve the plans chosen by the constraints are

93

selected. Each plan has a value, a move can achieve
multiple plans. The value of each move is the sum of the
value of the plans the move achieves. The move with the
highest value is played.

participants. It finished 6 out of 40 participants. The five
fLrSt programs are commercial programs that have required
a lot of person*years of work. It has outperformed other
commercial systems that have required more than 10
person*years of work.

Figure 6

In the Figure 6, the situation of the groups marked with 1
is very similar to the situation of the group marked with 2
in Figure 5. Group 1 in Figure 6 has 3 points of territory
and only one eye, whereas the neighboring enemy group
has much more territory. The solution remembered to save
the group 1 in Figure 6 is to play the move that enables to
make two eyes and therefore to live (preventing forever the
opponent to remove the group from the board). According
to the stored move marked A in Figure 6, the system will
choose to play the move marked A in Figure 5.

Case-Based Reasoning enables imprecision in the use of
knowledge. Strategy is naturally imprecise. Allowing to
define similarity with some reference groups enables to
have a concise and general representation of strategic
knowledge.

Results

The Go program plays a move in 10 seconds on a Pentium
133 MHz, for each move it proves about 450 tactical
theorems, each theorem requires between 4 and 600 nodes
in a search tree to be proved, at each node of each tree, the
rules learned by Introspect are called to fred the useful
moves to try. Introspect has learned thousands of tactical
rules. All the learned rules are compiled into a 1 000 000
lines C++ program. The strategic level chooses plans using
constraints on some properties of the groups. The groups
and their properties are built using the results of the tactical
level. When strategic plans are chosen, moves related to the
plans are chosen using information about previously seen
similar situations.

Gogol competed in the international computer Go
tournament held during IJCAI97 together with 40 other

Conclusion

We have shown how to integrate multiple reasoning modes
in a complex domain that requires different forms of
reasoning. Rule-based reasoning is used at the tactical level
in our Go program to select the useful moves to try when
searching. Constraint-based reasoning is used to select
interesting plans according to constraints. Once the plans
are chosen, Case-based reasoning is used to select the
moves that enable the plans to work. Each move has a
value that is the sum of the values of the plans the move
achieves. The resulting Go program has good results in
international competitions (best non-commercial program).
This approach combining multiple types of reasoning can
also be used in other domains that are complex enough to
require different kind of knowledge to use knowledge
[Pitrat 1990].

A lesson learned from applying multimodal reasoning to
a very complex task like the game of Go, is that in complex
domains, as we need a lot of knowledge, using multiple
reasoning modes is appropriate because there are different
types of knowledge. Each type of knowledge is suited to a
particular reasoning mode. The problem is to split a system
into modules, and to choose a reasoning mode for each
module. In our application, we chose to separate our system
in three modules: A theorem prover that uses rules and
predicate logic for exact computations. A module based on
constraints to choose plans according to predefmed
thresholds. A Case-Based Reasoning module that enables
imprecision in the recognition of how much a move enables
to achieve a strategic goal that cannot be exactly foreseen.

Human Go players also use different reasoning mode
when studying a position. They search very fast when
reading tactical sequences of moves, using complex learned
patterns to choose the moves to try. They have a less
rigorous reasoning mode when they think strategically. As
we have shown with the game of Go, we believe that the
ability to switch between reasoning modes is necessary to
have good performances in many complex cognitive tasks.

References

Allis, L. V. 1994. Searching for Solutions in Games an
Artificial Intelligence. Ph.D. diss., Vrije Universitat
Amsterdam, Maastricht.

Cazenave, T. 1996. Syst6me d’Apprentissage par Auto-
Observation. Application au Jeu de Go. Ph.D. diss.,
Universit6 Paris 6.

Cox, M. T. 1996. Introspective Multistrategy Learning:

Constructive a Learning Strategy Under Reasoning Failure.
Ph.D. diss., Georgia Institute of Technology, College of
Computing, Atlanta.

Dejong, G. and Mooney, R. 1986. Explanation Based
Learning : an alternative view. Machine Learning 1 (2).

Epstein, S. L. and Gelfand J. J. 1996. Pattern-based
learning and spatially-oriented concept formation in a
multi-agent, decision-making expert. Computational
Intelligence 12 (1): 199-221.

Laird, J.; Rosenbloom, P. and Newell A. 1986. Chunking in
SOAR : An Anatomy of a General Learning Mechanism.
Machine Learning 1 (1).

Mitchell, T. M.; Keller, R. M. and Kedar-Kabelli S. T.
1986. Explanation-based Generalization : A unifying view.
Machine Learning 1 (1), 1986.

Nigro, J.-M. and Cazenave, T. 1996. Constraint-based
explanations in games. In Proceedings of IPMU’96,
Granada, Spain.

Pitrat, J. 1990. Mitaconnaissance - Futur de l’Intelligence
Artificielle. Herm6s, Paris.

Ram, A. and Leake, D. 1995. Goal-Driven Learning.
Cambridge, MA, MIT Press/Bradford Books.

Robson, J. M. 1983. The Complexity of Go. In Proceedings
IFIP, 413-417.

Selman, B.; Brooks, R. A.; Dean, T.; Horvitz, E.; Mitchell,
T. M.; Nilsson, N. J. 1996. Challenge Problems for
Artificial Intelligence. In Proceedings AAAI-96, 1340-
1345.

Van den Herik, H. J.; Allis, L. V.; Herschberg, I. S. 1991.
Which Games Will Survive ? Heuristic Programming in
Artificial Intelligence 2, the Second Computer Olympiad
(eds. D. N. L. Levy and D. F. Beal), pp. 232-243. Ellis
Horwood. ISBN 0-13-382615-5. 1991.

95

