
Using Rules to support Case-Base Reasoning for harmonizing melodies

J. Sabater, J. L. Arcos, R. L6pez de Mdntaras

Artificial Intelligence Research Institute (ILIA)

Spanish National Research Council (CSIC)

Campus UAB, 08193 Bellaterra, Spain

{j sabater,arcos,mantaras } @ iiia.csic.es

Abstract

This paper deals with the problem of harmonizing melodies
based on a muitimodal reasoning approach where general
knowledge about harmonization, represented by rules,
supports concrete knowledge represented by cases. Rules
are applied when the cases cannot provide a solution. The
combination of these two reasoning methods has proven to
be useful and in general can be useful in domains where it is
difficult to find enough cases and is not suitable to work
only with general rules.

Introduction

The problem of harmonizing melodies has been usually
approached using rule-based systems. In fact, this approach
seems to be the most natural way because, traditionally, the
art of harmonizing in music schools has been taught by
means of rules. But if we analyze the phenomenon of
harmony we will see that these rules are only a method
(usually imperfect) to reflect the organization and structure
inside a musical composition. In other words, the rules
don’t make the music, is the music which makes the rules.
Then, why to rely only on a set of imperfect rules when we
can also have the source of this rules, i.e. the
compositions?

This idea sounds very nice and CBR methods seems to
be the best form to implement it but, as we saw in our first
attempts, one needs a large number of cases for the system
to work properly. However it is cumbersome to obtain and
represent as cases a large number of harmonized melodies.
To solve this problem we have opted for a hybrid system
that uses rules and CBR working together.

The input of our system, called GYMEL, is a single
musical phrase and the output is the same musical phrase
with a set of chord sequences. Every chord sequence is an
accompaniment for that musical phrase. We have tested
our system using popular songs but the idea is valid for
other kind of music as long as one has a set of examples
and some general harmony rules for that kind of music.

GYMEL, an overview

Figure 1 shows the general structure of GYMEL (Sabater
1997). There are two main modules: a CBR module and 
rule-based module. CBR module is the first module used
by GYMEL in order to try to solve the problem using CBR
methods. When the CBR module cannot find a solution for
a given point, GYMEL tries to apply some rules using the
rule-based module. The rule system proposes a solution
and the CBR module tries to continue from that point.

GYMEL

CBR module

Case
base

Rules
module

Figure 1. General structure of GYMEL.

GYMEL has been developed using NOOS (Arcos 1997),
a reflective object-centered representation language
designed to support knowledge modeling of problem
solving and learning.

The next section describes the main features of Noos.
Then, the paper describes the CBR module and the Rule-

147

From: AAAI Technical Report SS-98-04. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



based module, and finally we present the results and give between cases.
some conclusions.

GYMEL and the NOOS language

NOOS is based on feature terms (Plaza 1995). Feature
terms are record-like data structures embodying a
collection of features.

Modeling a problem in NOOS requires the specification
of three different types of knowledge: domain knowledge,
problem solving knowledge, and metalevel knowledge.

Domain knowledge specifies a set of concepts, a set of
relations among concepts, and problem data that are
relevant for an application. Concepts and relations define
the domain ontology of an application. For instance, the
domain ontology of GYMEL is composed by concepts
such as notes, chords, tonalities, etc.

Problem data, described using the domain ontology,
define specific situations (specific problems) that have 
be solved. For instance, specific musical phrases to be
harmonized.

Problem solving knowledge specifies the set of tasks to
be solved in an application. For instance, the main task of
GYMEL is to infer a sequence of chords for a given
melody. Methods model the ways to solve tasks. Methods
can be elementary or can be decomposed into subtasks.
These new (sub) tasks may be achieved by other methods.
A method defines an execution order of subtasks and a
specific combination of the results of the subtasks in order
to solve the task it performs. For a given task, there may be
multiple alternative methods that may be capable of
solving the task in different situations. This recursive
decomposition of task into subtasks by means of a method
is called the task/method decomposition.

Metalevel (or reflective) knowledge is knowledge about
domain knowledge and problem solving knowledge.
Intuitively, metalevel knowledge can be used to model
criteria for preferring some methods over other methods
for a task in a specific situation.

Problems to be solved by GYMEL are represented as
complex structured cases. Figure 2 shows an example of a
partially expanded case structure.

The feature Hard-Group is a list of representative notes
in the melody (one note per measure). This list is built
starting from the Melody.

We will say that one note is a representative note using
the next heuristics:

If the note is in the first half of the measure and,
in this measure, there is not a representative note,
we take this note as a representative note.

If the note after a representative note has a longer
duration, this note will be the representative note
for this measure.

As we will see, the feature Hard-Group together with
the feature Harmony are the base for making comparisons

~ Chord_189 ~rd_1

88

iHard-OroupH Node._1901

I ...

Figure 2. A NOOS Browser visualizing a partially
expanded case structure. Features are represented as thin
boxes and dots indicate not expanded terms.

Once a problem is solved, NOOS automatically
memorizes (stores and indexes) that problem. The
collection of problems that a system has solved is called
the Episodic memory of NOOS. The problems solved by
NOOS are accessible and retrievable. This introspection
capability of NOOS is the basic building block for
integrating learning, and specifically case-based reasoning,
into NOOS.

The CBR module

First, GYMEL has to retrieve from the case base all those
cases that could have some useful information to
harmonize the new melody. This task requires making
some kind of comparison between the problem melody and
all the examples in the case base. This comparison
becomes very difficult if we work with all notes in each
melody. Therefore, we must select only the most
representative notes. GYMEL selects one representative
note for each measure. Furthermore, to find a matching
between two melodies in the case base turned out to be a
very difficult problem also. The solution is to work with
melodies not as a global entity but as a set of simple
problems (representative notes in each measure of the
melody). Each representative note is therefore a simple
problem and we must find one chord for that note. Each
chord does not depend only on that representative note but

148



also on the previous chords.
GYMEL focuses the retrieval as a pattern search on the

case base. One pattern shows the situation of the problem
melody in a local area. The objective is to find, in the
melodies of the case base, the same situation and transfer
the corresponding solution. Figure 3a shows such pattern
and Figure 3b its representation in the NOOS language.

Important notes

I

j

Chord sequence

nx ny

chl ch2

Chord we are looking for

Figure 3a. Find a chord for n l taking also into account the
two previous chords chl and ch2.

(define (node)
(note (define (note)

(Distance (>> distance of nl)))

(chords (define (chord)
(Chord-Name any))))

(prey (define (node)

(chords (define (chord)
(Chord-Name (>> Chord-Name of eh2)))

(prey (define (node)
(chords (define (chord)

(Chord-Name (>> Chord-Name of chl))))))

Figure 3b. Pattern representation in NOOS language.

melody (i.e. all notes in the feature Hard-Group). GYMEL
perform backtracking in order to analyze all possibilities.

An example
Let us suppose we have a set of representative notes from a
melody like Figure 4.

~
chords

? ? ? ?

p5 pl p2 pl

Figure 4.

In order to decide the first chord, GYMEL search for all
cases with a P5 in the first representative note. Let us
suppose it finds a I.

Now, it has to find a chord for the second note. The
pattern for this situation is given in Figure 5.

I

\
Chord we are looking for

Figure 5.

A pattern in GYMEL is a linked sequence of node
feature terms. Every node represents a representative note
and the chord associated to it. Once we have defined a
pattern we use it to search in the case base. This operation
will give us different possibilities for that situation.

The next step is to adapt those possibilities to the
problem. This action is straightforward because GYMEL
uses a chord representation, which is independent from
tonality. Chord names denote the distance between the
fundamental note of the chord and the tonic of the tonality.
For example, a IV-Major in the tonality of C is the F-Major
chord but, in the tonality of B, is the E-Major chord. The
name of the notes uses a similar representation. Then, for
example, the p5 note in the tonality of C is the G note but,
in the tonality of B, is the F note. This representation
makes easier the tasks of retrieval and reuse.

We repeat these steps for every representative note in the

That is, we must find a chord for P1, as a representative
note, taking into account that the previous chord is a I. Let
us suppose GYMEL finds two possibilities in the case
base: IV and V7. It selects the IV and later it will analyze
the other possibility. Now, the search pattern is that of
Figure 6.

p5 pl

I IV

Chord we are looking for

Figure 6.

149



The search in the case base results in a V7. The last
pattern is that of Figure 7 and contributes to the solution
with a I.

pl p2

IV V7

Chord we are looking for

Figure 7.

Rules are a set of general conditional sentences. Some
examples of these rules are:

If the chord is the first chord of the sequence and
the note is an important note of I chord then put a
I.

If the previous chord is a I or 17 and the
representative note is an important note of a II7
chord then put a IIm7.

If the previous chord is a IV, IV7, II or 117 and the
representative note is an important note of a V7
chord then put a V7.

At this point, GYMEL has finished a chord sequence (I
- IV - V7 - I). After storing this solution, it will analyze
other possibilities left along the way (for example the V7
for the note PI in pattern showed in Figure 5).

The Rule-based module

We have seen the main procedure in the CBR module
section but, what happens when that module cannot find a
chord for a given situation because the case base is too
small?

The rule-based module solves this problem proposing a
possible chord to the CBR module using general
knowledge about harmonization (Coker 1987) (Piston
1978) (Zamacois 1978). Broadly speaking, while the 
module uses more specific knowledge about how to
harmonize a melody, the rule-based module uses more
general knowledge to solve situations not reflected in the
case base. With this approach we can work with a small
case base without limiting our capacity to find acceptable
solutions.

Presently, the rule-based module is very simple (it
contains only a few rules and the first rule applicable is the
one that is selected) and as a consequence it may happen
that a solution is neither found by the rules. However it is
relatively easy to extend the rule system in order to
represent better the basic general knowledge existing about
harmonization. However we want to stress the fact that the
rules have to be of a general nature, that is, as much
independent as possible of the particular type of music
(though always within western tonal music). It is precisely
through the cases the way in which we can grasp the
peculiarities of the different types of music (popular,
modern, classic, etc). Since the case base grows by
incorporating the melodies that the system harmonizes, the
whole system improves by experience contrarily to a pure
rule based system.

Although at the beginning if the case base is small the
rule-based module is called often, we anticipate that the
system will resort less and less to the rules as the case base
will contain more and more cases.

Testing GYMEL

For testing GYMEL we have used the "leave one out"
technique with 20 musical phrases. The case base has 29
harmonizations from these musical phrases and the rule
base contains basic general rules about harmonization. All
musical phrases are from popular songs and every musical
phrase has about 4 measures and a conclusive sense.

After the test, only in 2 instances the system did not find
a solution and only one solution can be considered
questionable, whereas using only the cases the system
failed in 7 instances

As an example of the obtained solutions, we show next
the results for two musical phrases.

¯ Musical phrase from "Els putxinel.lis"

GYMEL’s chord sequences: I - IV - V7 - I
(one chord for measure) I - IV - IVm7 - I

¯ Musical phrase from "Virolet Sant Pere"

GYMEL’s chord sequence: I - Vim7 - V7 - I
(One chord for measure)

GYMEL can generate a MIDI file with the melody and
the resultant harmonization using chords or arpeggios.

150



Figure 8 shows the output for the previous example using
chords and Figure 9 another example using arpeggios.

Figure 8.

Figure 9.

Related work
There have been numerous works on rule-based
harmonization but very few on case-based harmonization.
Among them let us cite the work of (Macedo et al. 1997)
and (Ramalho and Ganascia 1994). Macedo et al. uses
analysis of music pieces from a seventeenth century
composer as foundation for a restructuring process,
providing a structured and constrained way of composing
novel pieces, although keeping the essential traits of the
composer’s style. Ramalho and Ganascia address the
problem of simulating creativity in Jazz performance.

To the best of our knowledge, there are not other work
combining rules and cases for harmonization purposes.

Macedo, L., Pereira, F., Grilo, C., and Cardoso, A. 1997.
Experimental Study of a Similarity Metric for Retrieving
Pieces from Structured Plan Cases: Its Role in the
Originality of Plan Case Solutions. In Leake, D., and Plaza,
E. eds., Case-Based Reasoning, ICCBR-97, pages 575-586.
Springer-Verlag.

Piston, W. 1978. Armonfa. LABOR, Barcelona.

Plaza, E. 1996. Cases as terms: A feature term approach to
the structured representation of cases. In Veloso, M., and
Aamodt, A. eds., Case-Based Reasoning, ICCBR-95, pages
265-276. Springer-Verlag.

Ramaiho, G., and Ganascia, J. 1994. Simulating Creativity
in Jazz Performance. In Proceedings of the Twelfth
National Conference on Artificial Intelligence. Volume
One. Pages 108-113. AAAI Press / The MIT Press.

Sabater, J. 1997. GYMEL, sistema d’harmonitzaci6 de
melodies utilitzant raonament basat en casos. Master’s
thesis, Facultat de Ci~ncies, secci6 d’Enginyeria
inform~itica. Universitat Autbnoma de Barcelona.

Zamacois, J. 1978. Tratado de armonla 1-I1. LABOR,
Barcelona.

Conclusions
We have seen that, for achieving the goal of harmonizing
melodies using case base reasoning when the case-base is
small due to the difficulty in obtaining the cases, the CBR
has to be complemented by general knowledge expressed
by means of rules. The combination of this two reasoning
methods has been proven to be useful and in general can be
useful in domains where it is difficult to find enough cases
and is not suitable to work only with general rules.

7 References

Arcos, J.L. 1997. The NOOS representation language. PhD
diss., Universitat Polit~cnica de Catalunya.

Coker, J. 1987. Improvising Jazz. Fireside, Simon &
Schuster, New York.

151




