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Abstract

During the last years, new connectionist ap-
proaches for adaptive structure processing called
folding architecture networks or recursive neural
networks have been developed. The main objec-
tive of this paper is to explore the applicability of
these networks in the field of chemistry. Experi-
mental results on a benchmark for the prediction
of quantitative structure activity relationships are
presented and compared to results achieved with
other machine learning techniques. Though the
results achieved with the new networks are slightly
better, it has to be stated that the statistical ev-
idence is rather weak. For future comparisons,
bigger benchmarks are needed.

Introduction

One of the fundamental problems of methods from the
fields of artificial neural networks and from statistical
pattern recognition is that they cannot deal with struc-
tured objects. With structured objects we mean objects
that are composed of ‘smaller’ objects, which may be
structured too. Examples for such objects are chem-
ical structures, algebraic (mathematical) expressions
and formulas, software source code, and conceptual and
taxonomic graphs. Though the objects that are usu-
ally considered are finite, the size of objects within one
domain is often not limited and one normally has ob-
jects of very different size within one domain. This
contrasts with the static kind of data (fized-length real
vectors) usually handled by statistical pattern recogni-
tion or neural network approaches.

During the last years, new methods for adaptive
structure processing, viz. folding architecture networks
(FAs) (Goller & Kiichler 1996; Goller 1997) and the
closely related concept of recursive neural networks
(RNs) (Frasconi, Gori, & Sperduti 1998), have been
developed. These networks are able to solve supervised
learning tasks (such as classification and prediction) for
structured objects. Applications of FAs and RNs in
the fields of automated deduction, and logo recognition
are described e.g. in (Schulz, Kiichler, & Goller 1997;
Goller 1997; Frasconi et al. 1997).

In this paper we give a brief introduction to FAs and

we argue that their ability to process structured objects
strongly suggests their application in chemistry. How-
ever, in order to apply FAs one has to represent chem-
ical structures as labelled trees. Since chemical struc-
tures are usually represented as cyclic undirected graphs
this is a non-trivial problem for which we don’t have a
general solution. We present a special solution in case of
astandard benchmark for quantitative structure activity
relationship (QSAR) prediction (Slipo & Hansch 1975;
Hirst, King, & Sternberg 1994) for which 2-D represen-
tations of chemical structures are transformed into la-
belled trees. Furthermore, experimental results on this
benchmark are presented and compared with results
achieved with linear regression, standard feed-forward
networks and inductive logic programming (Hirst, King,
& Sternberg 1994).

Folding Architecture Networks

FAs (Goller & Kiichler 1996; Goller 1997) have been
developed to solve supervised learning tasks involving
structured objects. The structured objects that can be
handled by FAs are finite labelled ordered trees in the
following simply called labelled trees. The labels are
assumed to be real vectors of fixed uniform length. To
each node a label is attached and there are no labels
for edges. The order concerns the children of a node
and we assume that there is a limit (mazimum out-
degree) for the number of children. Furthermore, each
labelled tree has exactly one root-node. Logical terms
or algebraic expressions over a finite set of symbols (sig-
nature) can e.g. easily be represented as labelled trees
by choosing the maximum arity of all symbols as max-
imum out-degree and introducing a function that maps
the symbols to real vectors.

FAs are a recursive variant of the standard multi-
layer feed-forward network and can be seen as a gen-
eralization of recurrent neural networks. They can be
used to learn approximations to mappings from labelled
trees to IR™ based on samples for these mappings. A FA
is composed of two multi-layer feed-forward networks,
viz. the recursively applied encoder network Nep. and
the transformation network Ni.qens. Usually sigmoid
activation functions are considered. :N,,. is used to
compute a compressed representation (a fixed length
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Figure 1: Example of a FA processing the logical term f(a, g(b)).

vector) for a given labelled tree while Ni;qans takes this
representation as input and computes the final output
of the whole network. Fig. 1 shows an example of a FA
which can process labelled trees with 2 maximum out-
degree of two. In this example both N.nc and Nypqns are
single-layer feed-forward networks. Note that in case of
a maximum out-degree of one and single-layer N, and
Nirans We get a simple recurrent network.

Let Tree represent the domain of labelled trees that
have to be processed with a maximum out-degree of
Outmaz € IN. Furthermore, let i, Srep, Sout € IV de-
note the dimensions of labels, compressed represen-
tations, and the network’s final output, respectively.
Then Nene has siot = $1 + OUtmar X Srep input neu-
rons and syep output neurons. Thus, Nen. computes a
function fepe : R¥FTOUtmasXSrep —y [R9rer, Agsume we
have a labelled tree t = I(¢,...,tn), where [l € R* is
the label of the root-node of t and ¢;,...,t, € Tree is
the ordered list of children of . Let e denote vector
concatenation. Then the function enc : T'ree — IR%rer
which computes the compressed representations is de-
fined by {{t1,...,tn) 1= fenc(l @ enc(ty) e ... eenc(t,) o
NiL(3me==7)) YWe say the network is virtually unfolded
to encode ¢. Leaf-nodes are encoded first and compos-
ite trees are encoded using the representations of their
children. NIL € IR®"» is a fixed representation indicat-
ing the absence of a child. The transformation network
Nirans has s..p input neurons and s,,; output neurons.
Thus, it computes a function firgns @ R57er — IR%vt,
By using the output of the encoder network N, as the
input for N;,.qns, the total network computes a function
ftrans o enc: Tree — IR%e«t. See also Fig. 1.

It has been shown that FAs are universal approxi-
mators for functions from labelled trees to real vector
spaces (Hammer & Sperschneider 1997). Furthermore,
any bottom-up tree-automaton can be simulated by a
FA (Kichler 1998).

FAs can be trained by back-propagation through
structure (BPTS), a recursive variant of standard back-
propagation. BPTS means that the error at the output

layer of Nirans is propagated back through the entire
unfolded network. In this way the exact gradient with
respect to the weights in Nypqns and Nep. is computed
and the training is completely supervised. Current re-
finements include an efficient representation of all la-
belled trees of a training set as one minimal directed
acyclic graph (DAG) by representing identical subtrees
which occur at different positions only once. Since the
time complexity of gradient computation with BPTS is
linear to the number of nodes and edges in the training
set, the minimal DA G-representation can speed up the
gradient computation considerably.

The central problem for using statistical pattern
recognition or neural approaches in domains of struc-
tured objects is that these approaches can only handle
static data. Thus, fixed-length vector representations
of the structured objects are needed. One way to get
such representations are features-vectors. However, the
definition and selection of features already introduces a
very strong bias and severely limits the class of func-
tions and relations that can be expressed or learned for
the respective domain of structured objects. Another
possibility works by a priori reserving for each possible
possition in a structured object a region of the fixed-
length representation. However, this means that the
size of the structured objects that can be treated has
to be limited a priori. Furthermore, these representa-
tions are very big for non-trivial domains of structures
and they usually contain many void regions caused by
the varying size and structure of the objects. Note
that this approach for getting fixed-length vector rep-
resentations for structures was also applied in the lin-
ear regression- and standard feed-forward network ex-
periments on @QSAR-prediction from (Hirst, King, &
Sternberg 1994) which serve as reference point for our
experimental results.

In case of FAs the size of the labelled trees that can
be handled is not limited. Only the maximum number
of children of a node has to be limited a priori. Further-
more, no definition of features of the structured objects
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Figure 2: Triazine template and example drugs.

is needed. Instead, the compressed representations that
are generated for the labelled trees by a trained FA
are exclusively optimized for the respective supervised
learning task. It can be expected that they contain ex-
actly the kind of information necessary for computing
the desired output. These advantages strongly suggest
the application of FAs in the field of chemistry.

Representing Chemical Structures as
Labelled Trees

For our experiments a standard benchmark for QSAR-
prediction was chosen (Slipo & Hansch 1975; Hirst,
King, & Sternberg 1994). It deals with the inhibition
of E. coli dihydrofolate reductase by triazines. Tri-
azines act as anti-cancer agents by inhibiting the en-
zyme dihydrofolate reductase. In this way they inhibit
the reproduction of cancer cells. In total, the bench-
mark set consists of 186 different drugs and their re-
spective activities. The triazines of the benchmark are
composed of 87 basic chemical groups, i.e. atoms or
small sets of structurally connected atoms. Each group
is described by discrete physicochemical attributes, i.e.
polarity, polarisability, H-bond donor, H-bond accep-
tor, m-donor, w-acceptor, size, flexibility, o-effect, and
branching. These attributes are part of the benchmark
and have been determined by experts.

The 2-D representations of triazines (Fig. 2) are cyclic
undirected graphs. In order to apply F4s, a suitable
representation for triazines as logical terms or labelled
trees is needed. Fortunately, all triazines in the bench-
mark set have a common template (Fig. 2a). This tem-
plate is not explicitly represented. Instead it is used to
define the root node of the tree-representation of a tri-
azine. For most of the triazines, there is a phenyl ring
at position 1 of the basic template (Fig. 2b). Phenyl

rings have varying substituents at positions 3 and 4.
For the tree-representation, the cycle of the phenyl
ring is simply represented as one node with the label
ring leading to ring(R3,R4). The variables R3 and
R, represent the tree-representations for possible sub-
stituents at the respective positions. In order to keep
the tree-representation as simple as possible, the hy-
drogen atoms at positions 2, 5 and 6 of phenyl rings
are not explicitly represented. Each substituent of a
phenyl ring at positions 3 and 4 can consist of a basic
group or a ring structure. In the second case it consist
of a bridge and a further phenyl ring (Fig. 2¢). For the
tree-representation, the symbol bridge is introduced.
It defines a bridge to a second phenyl ring. The first
argument describes the chemical structure of the bridge
and the second one the further phenyl ring and its sub-
structures.

Of course several other tree-representation for tri-
azines (e.g. more detailed representations) are possible.
The benefit of the chosen tree-representation is, that it
allows also an easy integration of the physicochemical
attributes. A constant (leaf) which represents a
chemical group can be extended to a function symbol
(inner node of a tree). The arguments are then used
to introduce the physicochemical attributes of the
chemical groups to the tree- representation. For exam-
ple the chlorine atom’s attribute tree-representation
is:  cl(po(polar3, polarisablel), hy(h.donorQ,
h_acceptor0), pi(pi.donorl, pi_acceptor0),
sizel, flex0Q, sigma3, branch0). Note that related
properties are encapsulated by special function symbols
(po, hy, pi). This reduces the maximum arity of
all employed operators and keeps the FA topology as
small as possible. For a more detailed discussion of the
tree-representations see (Schmitt 1997).

Experimental Results

For the experiments, six-fold cross-validation was used
and the folds that were used are identical to those used
in (Hirst, King, & Sternberg 1994). This allows a di-
rect comparison of the results. Tab. 1 summarizes the
parameters and the results of the different experiments
performed. Column two displays the machine learn-
ing technique used. The results for linear regression,
standard feed-forward networks and Golem are taken
from (Hirst, King, & Sternberg 1994). For FAs, the
employed topology is displayed. The next column de-
scribes the "knowledge” used for training. For linear
regression and feed-forward networks the already de-
scribed fixed-length vector representation with one re-
gion for every possible position was used. Accuracy
of the different approaches is measured by the Spear-
man’s rank correlation coefficient between the actual
and predicted activities on the training and testing sets.
The means (¥zy) and standard deviations (s,,,) were
computed from six-fold cross-validation trials and are
displayed in columns four and five. For the FA ex-
periments, two different kinds of training and testing
sets were used. The first kind contained only tree-
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No. Machine learning technique "Knowledge” Training set Testing set
Stot (8) +outmaz * -'rap)//-‘rep//’out "_z_y- Srey ;:; Sray
1. Linear regression 60 real valued attrib. + squares | 0.540  0.046 | 0.446 0.181
2. Feed-forward network 60 real valued attributes 0.799 0.099 0.481 0.145
3. Golem (inductive logic prog.) see experiments 7 - 9 0.683 0.027 0.431 0.166
4. FA: 14(8 + 2+ 3)//3//1 0.614 0.096 0.435 0.092
S. FA: 18(8+2+358)//5//1 simple tree-representation 0.701 0.100 0.367 0.177
6. FA: 22(8 +2+ 7)//3//1 0.720__ 0.119 | 0.435 0.131
7. FA: 29(8+7+3)//3//1 tree(term)-representation + 0.656  0.094 0.393  0.098
8. FA: 43(8+7+5)//5//1 physicochemical attributes 0.723 0.099 0.477 0.152
9. FA: 5T(B + 7 7)//7//1 0.750 0.124 0.526 0.044

Table 1: Experimental results on the triazine benchmark,

representations of the triazines, i.e. all chemical groups
were represented as constants (rows 4 to 6). The sec-
ond kind consisted of tree-representations with physic-
ochemical attributes. A binary encoding scheme (using
—1 and +1) was used to encode the node-labels (the
symbols ring and bridge, the basic chemical groups,
and the physicochemical attributes) and uniqueness of
the labels was guaranteed. The activities of the tri-
azines were rescaled to the interval (~1,+1]. In con-
trast to the experiments presented in (Schmitt & Goller
1998), the testing sets were not used to decide when
training of the FAs had to stop. The testing sets, which
contained 31 triazines, were split into monitor sets with
30 elements and new testing sets with 1 element. The
Spearman’s ranks on the monitor sets were used to de-
termine when training had to stop. Since we used ev-
ery possible split, 31 different FAs were trained for ev-
ery cross-validation trial of every experiment (row in
Tab. 1). The final generalization was always measured
on the one remaining triazine which was neither in the
training nor in the monitor set.

Conclusion and Outlook

In contrast to preliminary results presented in (Schmitt
& Goller 1998) we are not able to further support our
claim of a clear superiority of our approach. Though
the generalization performance in experiment 9 from
Tab. 1 is better than in all other experiments, the dif-
ference is too small to give statistical evidence. It seems
that the performances of all methods (including ours)
applied so far to this benchmark are more or less com-
parable. A possible reason is that already a lot of effort
has been put into the task of representing the chemical
structures of the benchmark as fixed-length vectors (e.g.
the definition of physicochemical attributes) suitable for
standard neural networks and statistical methods. The
structures of the benchmark are not very complex and
by transforming them to labelled trees (terms) further
complexity is lost. Note that we basically use the same
transformation as the inductive logic programming ap-
proach. Thus the final structures used by our FAs and
by the inductive logic programming approach are very
small, possibly too small to really benefit from the spe-
cial abilities to handle structured objects. Furthermore,
the benchmark is quite small (186 compounds) at least
for statistical or neural network learning approaches.
For future work more general and more elaborate meth-
ods to represent chemical structures as labelled trees

are needed. Methods for representing 3-D information
as labelled trees are of particular interest, Furthermore,
we are looking for new and bigger benchmarks to ex-
periment with.
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