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Abstract

Purpose:  The purpose of this study was to explore a
possible mechanism of eye irritation by constructing a
corresponding general quantitative structure-activity
relationship (QSAR) model using a genetic algorithm.
The model was derived from a subset of  diverse chemical
structures found in the  Draize eye irritation ECETOC
data set.

Methods: Molecular dynamic simulation (MDS) was
used to generate intermolecular membrane-solute
interaction properties. These intermolecular properties
were combined with intramolecular physicochemical
properties and features of the solute (irritant) to construct
QSAR models using multi-dimensional linear regression
and the Genetic Function Approximation (GFA)
algorithm.

Results: Significant QSAR models for estimating eye
irritation potential were constructed in which solute
aqueous solvation free energy and solute-membrane
interaction energies are the principle correlation
descriptors. These physicochemical descriptors were
selected from a trial set of 95 descriptors.

Conclusion: Combining intermolecular solute-membrane
interaction descriptors with intramolecular solute
descriptors yields statistically significant eye irritation
QSAR models. The resultant QSAR models support an
eye irritation mechanism of the action in which increased
aqueous solubility of the irritant, and its strength of
binding to the membrane, both increase eye irritation.

Keywords: molecular dynamics simulations; molar
adjusted eye scores; partial least-squares regression;
genetic function approximation; quantitative structure-
activity relationship.

INTRODUCTION

Eye irritation potential is an important toxicological
endpoint. It has traditionally being scored using the Draize
rabbit eye test (Draize, Woodard and Calvery 1944).
Exposure of the body’s external tissues to chemicals or

chemical formulations can produce irritation which might
lead to permanent damage of the tissue. Thus, most
commercial chemical products are evaluated for their
ocular irritation potential. This study has explored possible
alternatives to the Draize eye test, and has probed possible
mechanisms of eye irritation by constructing a
corresponding general quantitative structure -activity
relationship (QSAR) model. In the Draize test the test
compounds are placed in a rabbit eye, and the damage to
various eye components evaluated. The mechanisms of eye
irritation are still not understood, but it appears that there
are no “irritation receptors” in the eye. Uptake and
diffusion into the keratocytes of the corneal epithelium of
the eye is a significant event. Molecules which are exposed
to the eye must permeate through the cell membrane of the
keratocytes. We have  hypothesized that interactions of test
organic molecules with a cell membrane are, at least, partly
responsible for eye irritation. Moreover, the lipid regions
of the membrane bilayer of the cell might, in composite,
constitute a  “general receptor” for eye irritation. Thus,
we decided to simulate the uptake and interaction of test
solute molecules with model monolayer membranes as a
part of our QSAR analysis. Molecular dynamic simulation
(MDS) was used to generate intermolecular membrane-
solute interaction descriptors. The estimated membrane-
solute interaction properties from the simulations were
added to the intramolecular physicochemical property
descriptors of the test solute molecules to provide an
extended set of trial descriptors for building an eye
irritation QSAR model. This overall methodology is called
membrane-interaction QSAR analysis, (MI-QSAR
analysis).
QSAR models were constructed using the genetic function
approximation, GFA, which is a method based on the
genetic algorithm paradigm. The GFA algorithm is coded
in the program WOLF (Rogers 1994) . Statistical
significance of a QSAR model is based on Friedman’s lack
of fit (LOF) measure (Friedman 1988) . The LOF measure
is designed to resist overfitting which is a problem often
encountered in constructing statistical models. Since
number of descriptors normally available in MI-QSAR
analysis exceeds the number of observations (test
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compounds), the ability to prevent overfitting using GFA is
critical to the successful construction of a QSAR model.
A smoothing factor of 1.8 and 70000 crossover operations
were used to optimize the QSAR models using WOLF.
Optimization of a QSAR model was considered to be
realized when descriptor usage became constant and
independent of increasing number of GFA crossover
operations. A crossover operation is the “birth” of a child
model from its parent models. Both partial least-squares
regression (PLS) and multi-dimensional linear regression
(MLR) can be used in WOLF to establish functional data
fits. MLR was used in this study.
In order to test and validate the MI-QSAR models, the
dependent variable, MES, was randomly “scrambled” with
respect to the independent variables (descriptor set) to see
if meaningful correlations (QSARs) could be found
(Waterbeemd 1995) for the scrambled data sets. The loss
of any significant correlation for each of the scrambled data
sets is taken as evidence of the significance of the QSAR
for the non-scrambled data set. The covariance among the
descriptors in the optimized MI-QSAR models was
evaluated by constructing the linear cross-correlation
matrix of the descriptors, and by comparing relative
descriptor usage in the crossover plots.

 METHODS AND MATERIALS

A. Eye Irritation Potency and the Training set

The eye irritation potency measures (dependent variables in
the QSAR analysis) are the molar adjusted eye scores from
the Draize rabbit eye irritation test.    These scores were
determined as follows:
The molarity of the solution was calculated using molarity
= (density x 1000)/relative molecular mass. Density values
were obtained from a standard source (Aldrich 1988).
Molar adjusted eye scores were then calculated as the raw
eye irritation scores divided by the molarity of the solution.
There is a considerable concern that the MES values lack
sufficient quality and reproducibility to justify usage in
constructing QSAR models. An analysis of  raw MES data,
involving the use of multiple experiments (animals) for a
single test compound, reveals that the MES standard
deviations of fit for the compounds that are “safe” (low eye
irritation) have highly reproducible eye irritation measures
(small standard deviations).  Conversely, strong eye
irritants have large standard deviations in their eye
irritation measures. Thus, highly irritating compounds are
reproducibly measured to be irritants, but the extent of high
irritation varies among animals. This translates into QSAR
models that are reliable except, perhaps, in predicting how
highly irritating a predicted high eye irritant might be

The 18 compounds selected in this study are a subset of the
37 compounds in the ECETOC eye irritation data set for
which MES values can be obtained. The 18 compounds in
our training set were chosen to test the simplifying
assumption that if a model can explain the behavior of any
representative subset of compounds of a data set, the model
can explain the behavior of all compounds of the data set
and “equivalent” compounds outside the data set. The 18
compounds of Table Ia and 5 compounds of Table V were
selected according to the following criteria to achieve a
composite representative subset;
a) Span the entire range in eye irritation potency for the
composite ECETOC data set.
 b) Include representative chemical structures from each of
the analog subsets composing the composite ECETOC set.
 c) Span the range of eye irritation potency within each
analog subset.
“Charged” molecules were not included in the training set
because it is not clear if they are actually charged when at,
or in, the membrane. Both neutral and charged forms of an
ionizable compound could be considered in this approach,
but was not done in this initial application of MI-QSAR
analysis. The goal of this work was to apply and evaluate
the MI-QSAR method on a data set to  permit us to analyze
the potential of the MI-QSAR approach to treat other
toxicological applications.

B. Building Solute Molecules and the DMPC Monolayer:

The solute molecules, see Table Ia, were built using the
Chemlab-II (Pearlstein 1988) molecular modeling package.
A single dimyristoylphosphatidylcholine (DMPC) molecule
was built in HyperChem (Hyperchem 1997) using available
crystal structure data  (Hauser et al. 1981). The aliphatic
chains of DMPC molecule were placed in trans planar
conformations. Partial atomic charges were assigned to
solute molecules, and the DMPC molecule, using semi-
empirical molecular orbital calculations. The AM1
Hamaltonian in Mopac 6.0 (Stewart 1990) was used for the
partial atomic charge estimation.
The DMPC molecule was selected as the model
phospholipid in this study. The structure of a DMPC
molecule is shown in Fig 1.  An assembly of 16 DMPC
molecules (4*4*1) in (x,y,z) directions, respectively, was
used as a model membrane monolayer. The size of the
monolayer simulation system was selected based on the
work done by van der Ploeg and Berendsen (Ploeg and
Berendsen 1982). They performed MDS on decanoate
bilayers having (2x8x2) and (2x16x2) phospholipid
molecules. It was found that the estimated order parameter
values of the two model assemblies agree with each other
suggesting that the smaller assembly is adequate for
modeling. Other researchers have obtained similar
geometric and energetic equilibrium property values with
regard to the size of the simulation system (Stouch 1993)



permitting a minimum effective size (phospholipids) of the
monolayer to be defined. A DPMC molecule is shown
below in Fig.1.

Fig 1.  The chemical structure of a DMPC molecule.

The unit cell parameters used for building the DMPC
monolayer were a = 8 Å , b= 8 Å, c = 32 Å and γ = 96.0 0.
These unit cell parameters yield an average surface area per
phospholipid of 64 Å2.  The experimental reported value
for average surface area per phospholipid is 66 Å2 for a
fully hydrated fluid lamellar (Lα) phase of DMPC (Lewis
and Engelman 1983).
Each of the test solute molecules of the data set was
inserted at three different positions (depths) in the DMPC
monolayer model assembly with the most polar group of
the solute molecule “facing” toward the head group region
of the monolayer. Three corresponding MDS models were
generated for each solute molecule with regard to the trial
positions of the solute molecule in the monolayer. The
three trial positions were,
1. Solute molecule in the head group region.
2. Solute molecule in between the headgroup region and

the aliphatic chains
3. Solute molecule in the tail region of the aliphatic

chains.
The energetically favorable geometry of the solute
molecule in the monolayer was sought using each of these
trial positions. The three different positions of isopropanol
(one of the test solute molecules) are shown in Fig 2 to
illustrate this modeling procedure.

RESULTS

The best QSAR models obtained using the GFA algorithm
are:

1.  MES =    – 0.03 – 0.46 * F(H2O)  – 0.12  * E(chg+vdw)

n = 16; r2 = 0.87; xv - r2 = 0.80; LSE = 0.83; LOF = 2.1

2.  MES =   – 0.81 – 0.07 * E(chg+vdw) – 0.48 * F(H2O)
 + 0.35 * Kappa-3-AM

n = 16 ; r2 = 0.92; xv - r2 = 0.88; LSE = 0.41;LOF = 1.94

Fig 2  A “side” view of an isopropanol molecule inserted at
three different positions in the DMPC model monolayer,
prior to the start of each MDS.

3.  MES  =  – 1.06 – 0.23 * E(chg) – 0.43 * F(H2O)

n = 16 ; r2 = 0.87; xv - r2 = 0.76; LSE = 0.82;LOF = 2.02

Where,
E(chg)          Electrostatic interaction energy between
                     the solute and  the membrane at total system
                     minimum potential energy  (kcal/mole).

E(vdw)        Van der Waals interaction energy between
                     The solute and  the membrane at the total
                     system minimun  potential   energy
                     (kcal/mole).

 E(chg+vdw)  Electrostatic plus van der Waals interaction
                      energy  between the solute and the
                      membrane at the total  system
                      minimum potential energy (kcal/mole).

F(H2O)          The aqueous solvation free energy
                      computed using a  hydration shell model.

Kappa-3-AM  A topological connectivity descriptor.

CONCLUSION

Increasingly negative F(H2O) values correspond to
increasing aqueous solubility of a solute.  In  eqs. (1)-(3) it
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is seen that aqueous solvation free energy is negatively
correlated with MES. This relationship suggests that water
soluble compounds have a greater propensity to be eye
irritants than hydrophobic compounds. The solute-
membrane energy interaction descriptors in eqs. (1)-(3) are
also negatively correlated with the MES. Thus, as the
“binding energy” of a solute molecule to the membrane
increases (a more negative descriptor value), it is going to
be more of an eye irritant than solutes which do not bind as
strongly to the membrane.
Combining the interpretations of the two types of
descriptors in eqs. (1)-(3), leads to the following “picture”.
If a solute molecule is water soluble it possesses some
polar moieties. These polar groups can also have favorable
binding interactions with a membrane, probably involving
the head group region. Polar alcohols are known to disturb
membrane structure (McKarns et al 1997) which is
consistent with this picture. The MES QSAR models given
by eqs. (1-3) suggest that the eye irritation potency of a
solute molecule, as measured by the Draize test, is mainly
due to the  aqueous solubility of the solute. A mechanistic
generalization of eye irritation as scored by the Draize test
can be made from the discussion above and eqs (1)-(3).
The F(H2O) descriptor reflects the availability of a solute
molecule to disrupt membrane structure. That is, F(H2O) is
a solute concentration measure. The membrane-solute
interaction energy descriptors provide measures of the
intrinsic membrane disrupting potencies of each of the
individual solute molecules. MES is thus controlled by an
effective solute concentration coupled to the intrinsic
membrane disruption propensity of the solute.
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