
Is Agent-based Online Search Feasible?

Filippo Menczer
Management Sciences Department

University of Iowa
Iowa City, IA 52245, USA

f il ippo-menczer@uiowa, edu

Abstract

The scalability limitations of the current state of
the art in Web search technology lead us to ex-
plore alternative approaches to centralized index-
ing, such as agent-based online search. The possi-
ble advantages of searching online, or agent-based
browsing, are often down-played in the face of the
apparently unquestionable loss of efficiency. This
paper is an attempt to reach a more balanced view
in which both the obvious and hidden costs of
the two approaches are considered. The two ap-
proaches can then be compared more fairly, and
possible complementarities and synergies are ex-
plored.

Model overview

This paper discusses an agent-based approach to build-
ing scalable information searching algorithms. For sys-
tems designed to let users locate relevant information
in highly distributed and decentralized databases, such
as the Web, we argue that scalability is one of the main
limitations of the current state of the art.

The complexities emerging in networked information
environments (decentralization, noise, heterogeneity,
and dynamics) are not unlike those faced by ecologies of
organisms adapting in natural environments. The ca-
pabilities of such natural agents --local adaptation, in-
ternalization of environmental signals, distributed con-
trol, integration of externally driven and endogenous
behaviors, etc. -- represent desirable goals for the next
generation of artificial agents: autonomous, intelligent,
distributed, and adaptive. These considerations, along
the lines of the artificial life approach, inspired us to
base our model upon the metaphor of an ecology of
agents.

In this sense, the multi-agent system is not composed
of a few agents with distinct and clearly defined func-
tions, but rather by a (possibly very) large number
agents collectively trying to satisfy the user request.
The number of agents is determined by the environ-
ment, in turn shaped by the search task. This does not
mean that all agents responding to a specific search are
identical; each will adapt to both the local context set

by the environment and the global context set by the
user.

Cooperation results from the indirect interaction
among agents, mediated by the environment. If there
are sufficient resources to sustain multiple agents in a
given information neighborhood, then new agents will
spawn and collaborate with the existing ones. If re-
sources are scarce, on the contrary, the agents will com-
pete and some of them will be eliminated.

The ecological metaphor thus induces a rational use
of the information resource chain. Computational re-
sources (CPU time) and network resources (bandwidth)
are allocated in proportion to the recently perceived
success of an agent, estimated from the relevance of the
consumed information resources. Ideally, each agent
would browse the Web neighborhood in which it is sit-
uated like its human master would, given her finite re-
sources -- time and attention.

The approach discussed in this paper assumes that, in
exchange for improved bandwidth or payments, server
hosts may allow trusted mobile agents to execute and
possibly even spawn new agents using their CPU, mem-
ory, and disk storage in a controlled operating envi-
ronment. If this assumption holds, agents can take
advantage of the distributed nature of our algorithm.
They can execute in a parallel, asynchronous fashion,
resulting in a great potential speedup. Security and
distributed systems issues are central to the implemen-
tation of such mobile agents. If the assumption fails,
however, the agents can still execute in a client-based
fashion. The algorithm becomes essentially sequential
(although possibly multi-threaded), and thus simpler
implement. The decrease in performance can be par-
tially offset by the use of a central cache.

State of the art

and agent-based alternatives

Search engines

The model behind search engines draws efficiency by
processing the information in some collection of doc-
uments once, producing an index, and then amortiz-
ing the cost of such processing over a large number of
queries which access the same index. The index is basi-

From: AAAI Technical Report SS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

cally an inverted file that maps each word in the collec-
tion to the set of URLs containing that word. It is nor-
mally built and updated incrementally. Additional pro-
cessing is normally involved by performance-improving
steps such as the removal of noise words, the conflation
of words via stemming and/or the use of thesauri, and
the use of word weighting schemes.

This model, albeit very successful, has important lim-
itations. In fact it assumes that the collection is static,
as was the case for earlier information retrieval sys-
tems. In the case of the Web the collection is highly
dynamic, with new documents being added, deleted,
changed, and moved all the time. Indices are thus re-
duced to "snapshots" of the Web. They are continu-
ously updated by crawlers, yes at any given time an
index will be somewhat inaccurate and somewhat in-
complete. The problem is one of scalability. As a re-
sult, search engines’ capability to satisfy user queries
is hindered. Users are normally faced with very large
hit lists, low recall (fraction of relevant pages that are
retrieved), even lower precision (fraction of retrieved
pages that are relevant), and stale information. These
factors make it necessary for users to invest significant
time in manually browsing the neighborhoods of (some
subset of) the hit list.

A way to partially address the scalability problems
posed by the size and dynamic nature of the Web is
by decentralizing the index-building process. Dividing
the task into localized indexing, performed by a set of
gatherers, and centralized searching, performed by a set
of brokers, has been suggested since the early days of
the Web by the Harvest project (Bowman et al. 1994).
The success of this approach has been hindered by the
need for cooperation between information providers and
indexing crawlers.

Search agents

Autonomous agents, or semi-intelligent programs mak-
ing automatic decisions on behalf of the user, are viewed
by many as a way of decreasing the amount of human-
computer interaction necessary to manage the increas-
ing amount of information available online (Maes 1994).
Many such information agents, more or less intelligent
and more or less autonomous, have been developed in
the recent years. One important improvement on the
quality of any search engine’s performance was achieved
by agents who submit queries to many different engines
simultaneously and then combine the results. This tech-
nique, originally called metasearch, has indeed proven
to increase recall significantly (Vogt ~ Cottrell 1998).

However, most search agents suffer from a common
limitation: their reliance on search engines. The lim-
ited coverage and recency of search engines cannot be
overcome by agents whose search process consists of
submitting queries to search engines. Typical examples
of such agents are homepage or paper finders that rely
on centralized repositories to find information on be-
half of the users (Bollacker, Lawrence, ~ Giles 1998;
Shakes, Langheinrich, &: Etzioni 1997; Monge & Elkan

1996)
A different class of agents are designed to learn user

interests from browsing for recommendations purposes
(Pazzani, Muramatsu, & Billsus 1996; Armstrong et al.
1995; Lieberman 1997; Chen & Sycara 1998). These
agents learn to predict an objective function online and
can track time-varying user preferences. However, they
need supervision from the user in order to work; no
truly autonomous search is possible.

Other systems, based on multi-agent paradigms,
adapt a matching between a set of discovery agents
(typically search engine parasites) and a set of user
profiles (corresponding to single- or multiple-user in-
terests) (Moukas & Zacharia 1997; Balabanovid 1997).
These systems can learn to divide the problem into sim-
pler subproblems, dealing with the heterogeneous and
dynamic profiles associated with long-standing queries.
However they share the weak points of other agents who
perform no active autonomous search, and therefore
cannot improve on the limitations of the metasearch
engines they exploit.

One last set of agent-based systems, inspired by eco-
logical and artificial life models, actually relies on agents
searching (browsing) online on behalf of the user. The
first of such systems, Fish Search (De Bra & Post
1994), was hindered in effectiveness by the absence of
any adaptability in the agents. One unfortunate conse-
quence of its fixed search strategy was the possibility of
load-unfriendly search behaviors, partially mitigated by
the use of a cache. This factor, coupled with the grow-
ing popularity of search engines and the relatively slow
performance of Fish Search, did not help to focus on
the potential advantages of such models. The remain-
der of this paper illustrates a system that was developed
in part to overcome the limitations of Fish Search and
prove the strengths of this approach (Menczer, Belew,
& Willuhn 1995).

Scalability

The scalability problem, limiting the effectiveness of
search engines, is caused by the large size of the Web, its
rapid growth rate, and its highly dynamic nature. The
problem was quantified in a study that estimated the
size of the Web at over 320 million pages and its growth
rate at 1000% in a few years, attesting to the increasing
complexity of environment (Lawrence & Giles 1998).

Lawrence and Giles also measured the coverage and
recency of six among the most popular search engines.
The coverage achieved by these search engines varied
approximately between 3% and 34% of the Web’s in-
dexable pages. An estimate of recency was obtained
by counting the fraction of returned hits corresponding
to broken URLs, i.e., pages that had been deleted or
moved3 Among the search engines considered, the one
with highest coverage also had the most broken links
(5%), and vice versa -- the engine with lowest cover-

1This method did not account for URLs with changed
content.

2

0.99

0.98

o.g7i

O.D6:

0,~5’

0.94

0.93

"-t,,... °¯ ...>. .

~"’~......

O.OS 0 1 0.16 0 2 0.25 0 8 0.85 0 0.45
kaction ol ~ paOes cowx~

0.,5

Figure 1: Scatter plot of coverage versus recency in
six popular search engines: Alta Vista, HotBot, North-
ern Lights, Excite, InfoSeek, and Lycos. Data from
(Lawrence & Giles 1998)¯ Linear regression is also
shown. The correlation coefficient is -0.7.

age was the one with highest recency. Such a trade-off
between coverage and recency is illustrated in Fig. 1.
Coverage and recency are indeed anti-correlated, as ex-
pected. Increasing the coverage of an index, given some
limited bandwidth resource, imposes a search engine’s
crawler to "spread itself thin" and update pages less fre-
quently, thus increasing the amount of stale information
in the index.

In order to keep indices as up-to-date as possi-
ble, crawlers have to revisit documents often to see if
they have been changed, moved, or deleted. Further,
crawlers have to try to exhaustively visit every new
document to keep indices as complete as possible. Such
crawler behaviors impose significant loads on the net,
as documents must be examined periodically. Heuris-
tics are used to estimate how frequently a document is
changed and needs to be revisited, but the accuracy of
such statistics is highly volatile.

Agents browsing the Web online search through the
current environment and therefore do not run into stale
information. On the other hand, they are less efficient
than search engines because they cannot amortize the
cost of a search over many queries. Assuming that users
may be willing to cope with the longer wait for certain
queries that search engines cannot answer satisfactorily,
it becomes imperative to determine what is the impact
of online search agents on network load.

We have argued that, because of the scale effect, mak-
ing an index more stale can free up sufficient network
resources to completely absorb the impact of online
searches (Menczer 1998). It turns out, in fact, that
increasing a crawler’s mean time between revisits to a
document by a factor of (1 + e), while maintaining
constant amortized cost per query, we could refine the
results of each query online using an amount of network

resources scaling as
n
qrl+e ’

where n is the number of documents in the Web, q
is the number of queries answered by a search engine
per unit time, and 7- is the mean time between visits
to the same document by the engine’s crawler. Given
the size and the growth rate of n, this is an impressive
amount of resources no matter what e we choose. The
question then becomes one of resource allocation: What
e achieves an appropriate I~alance between the network
resources allocated to the upkeep of centralized search
engines versus those usable by personal online agents?

Model details

The previous section suggests that users could in-
creasingly rely on personalized tools in addition to
global search engines, with the relative load of the net-
work simply shifting from "dumb" crawlers to "smart"
browsing agents. But for this vision to become real-
ity, we must prove that an agent-based solution can
indeed reach beyond search engines and effectively lo-
cate information unknown to them. We have begun
to provide evidence of this possibility through exper-
imentation of the In]oSpiders system, which is de-
scribed in detail elsewhere (Menczer & Belew 1998a;
Menczer 1998). In this section the salient features of
the system are outlined.

Our approach is based on the idea of a multi-agent
system. The problem is decomposed into simpler sub-
problems, each addressed by one of many simple agents
performing simple operations. The divide-and-conquer
philosophy drives this view. Each agent "lives" brows-
ing from document to document online, making au-
tonomous decisions about which links to follow, and
adjusting its strategy to both local context and, possi-
bly, the personal preferences of the user. Population-
wide dynamics bias the search toward more promising
areas.

In this framework, both individual agents and pop-
ulations must adapt to capture the relevant features
of the environment at the appropriate local scales (in-
formation neighborhoods) while covering heterogeneous
areas at the global scale. To achieve this goal, agents
adapt by both evolutionary and reinforcement learning.

Algorithm
InfoSpiders search online for information relevant to the
user, by making autonomous decisions about what links
to follow. Fig. 2 illustrates the high-level algorithm
driving InfoSpiders. This is an instance of an evolu-
tionary algorithm based on "local selection" (Menczer
& Belew 1998b).

The user initially provides a list of keywords (query)
and a list of starting points, in the form of a bookmark
file. First, the population is initialized by pre-fetching
the starting documents. Each agent is "positioned" at
one of these document and given a random behavior

InfoSpidors(query, starting.urls, KAX.PAGES)

for agent (1..INIT_POP)

initialize(agent, query);

situateCagent, starting.urls);

agent.energy := THET£ / 2;

while (pop.size > 0 and visited < HAX.PAGBS)
foreach agent (

pick_outlink.from_current.document (agent);

agent.dec :s fetch.nee_document(agent);
agent.energy 4= benefit(agent.dec) - cost(agent.dec);

apply_Q.learning(agent, benefit(agent.dec));
if (agent.energy)s THETA)

offspring :- mutate(clone(agent));
offspring.energy :- agent.energy / 2;

agent.energy -= offspring.energy;
birth(offspring);

}

elseif (agent.energy <m O) death(agent);
}

}

Figure 2: Pseudocode of the InfoSpiders algorithm.

(depending on the representation of agents) and an ini-
tial reservoir of energy. The user also provides a maxi-
mum number of pages that the population of agents are
allowed to visit, collectively. This would depend on how
long the user is willing to wait, or how much bandwidth
she is willing to consume.2

In the innermost loop of Fig. 2, an agent "senses" its
local neighborhood by analyzing the text of the docu-
ment where it is currently situated. This way, the rel-
evance of all neighboring documents , those pointed
to by the hyperlinks in the current document -- is es-
timated. Based on these link relevance estimates, the
agent "moves" by choosing and following one of the
links from the current document.

The agent’s energy is then updated. Energy is needed
in order to survive and move, i.e., continue to visit doc-
uments on behalf of the user. Agents are rewarded with
energy if the visited documents appear to be relevant.
The benefit () function is used by an agent to estimate
the relevance of documents, but a documents yields en-
ergy only the first time it is visited. Agents are charged
energy for the network load incurred by transferring
documents. The cost() function should depend
used resources, e.g., transfer latency,

Instantaneous changes of energy are used as reinforce-
ment signals, so that agents can adapt during their life-
time by reinforcement learning. By learning to predict
the best links to follow, an agent can modify its behav-
ior based on its prior experience.

Local selection means that an agent is selected for
reproduction based on a comparison between its current

Slt is also possible for the user to provide the population
with relevance feedback, but this paper does not discuss that
aspect of the system.

Figure 3: Architecture of an InfoSpiders agent.

energy level and a constant THETA that is independent of
the other agents in the population. Similarly, an agent
is killed when it runs out of energy. Offspring are also
mutated, providing the variation necessary for adapting
agents by way of evolution. Energy is conserved at all
reproduction events.

The output of the algorithm is a flux of links to doc-
uments, ranked according to estimated relevance. The
algorithm stops when the population goes extinct for
lack of relevant information resources, visits MAX.~AG~.$
documents, or is terminated by the user.

Representation

Figure 3 illustrates the architecture of each InfoSpiders
agent. The agent interacts with the information en-
vironment, that consists Of the actual networked col-
lection (the Web) plus information kept on local data
structures. The user interacts with the environment by
accessing data on the local client (current status of
search) and on the Web (viewing a document suggested
by agents).

Figure 3 highlights the central dependence of the In-
foSpiders system on agent representation. The adaptive
representation of InfoSpiders consists of the genotype,
that determines the behavior of an agent and is passed
on to offspring at reproduction; and of the actual mech-
anisms by which the genotype is used for implementing
search strategies.

Each agent’s genotype contains a list of keywords,

link I

Figure 4: Estimation of a document’s outlinks by In-
foSpiders.

initialized with the query terms. Since feed-forward
neural nets are a general, versatile model of adaptive
functions, they are used as a standard computation de-
vice. Therefore genotypes also comprise a vector or
real-valued weights. The keywords represent an agent’s
opinion of what terms best discriminate documents rel-
evant to the user from the rest. The weights represent
the interactions of such terms with respect to relevance.
The neural net has a real-valued input for each keyword
in its genotype and a single output unit.

An agent performs action selection by first comput-
ing the relevance estimates for each outgoing link from
the current document. This is done by feeding into the
agent’s neural net activity corresponding to the small
set of (genetically specified) keywords to which it
sensitive. Each input unit of the neural net receives
a weighted count of the frequency with which the key-
word occurs in the vicinity of the link to be traversed.
A distance weighting function is used, which is biased
towards keyword occurrences closest to the link in ques-
tion. The process is illustrated in Fig. 4 and is repeated
for each link in the current document. Then, the agent
uses a stochastic selector to pick the next link.

After a link has been chosen and the corresponding
new document has been visited and evaluated, the agent
compares the (estimated) relevance of the new docu-
ment with the estimate of the link that led to it. By us-
ing the connectionist version of Q-learning (Lin 1992),
the neural net can be trained online to predict values
of links based on local context. The value returned by
the benefit() function is used as an internally gener-
ated reinforcement signal to compute a teaching error.
The neural net’s weights are then updated by back-
propagation of error (Rumelhart, Hinton, & Williams
1986). Learned changes to the weights are inherited
by offspring at reproduction. This learning scheme is
completely unsupervised.

InfoSpiders adapt not only by learning neural net
weights, but also by evolving all of the genotype com-
ponents -- the neural net and the keyword represen-
tation. The neural net is mutated by adding random
noise to a fraction of the weights. The keyword vector
is mutated by replacing the least useful (discriminat-
ing) term with a term that appears better correlated
with relevance. Learning is charged with adjusting the
neural net weights to the new keyword.

The evolution of keyword representations via local
selection and mutation implements a form of selective
query expansion. Based on local context, the query can
adapt over time and across different locations. The pop-
ulation of agents thus embodies a distributed, hetero-
geneous model of relevance that may comprise many
different and possibly inconsistent features. But each
agent focuses on a small set of features, maintaining a
well-defined model that remains manageable in the face
of the huge feature dimensionality of the search space.

Engines vs. agents:
compete or cooperate?

In previous work (Menczer 1998), the InfoSpiders sys-
tem was evaluated on a limited and controlled chunk of
the Web -- a subset of the Encyclopaedia Britannica
(Encyclopaedia Britannica, Inc.). For this dataset,
a large number of test queries and relevant sets were
readily available. Each query had a depth describing
the minimum distance between the starting points and
the relevant set. Depth was roughly inverse to gen-
erality -- deeper queries were more specific and their
smaller relevant sets added to their difficulty.

The collective performance of InfoSpiders was as-
sessed and compared to best-first-search using a vari-
ation of the search length metric (Cooper 1968).
measured the total number of pages visited by InfoS-
piders before some fraction of the relevant set was dis-
covered. We found that for the more general queries,
InfoSpiders had a significant advantage over best-first-
search, while for the deepest queries the situation was
reversed. Furthermore, both algorithms degraded in
performance with increasing depth, i.e., they succeeded
less frequently at locating the required fraction of rele-
vant documents.

These results suggest Using search engines to provide
InfoSpiders with good starting points. If the starting
pages were not too far from the target pages, agents
could quickly locate relevant documents that are un-
known to the search engine. To illustrate this hypoth-
esis, we ran InfoSpiders as a front-end to a traditional
search engine for a query that the search engine could
not satisfy alone (Menczer & Monge 1999).

An ad-hoc query was constructed in such a way that
the small relevant set (a total of four Web pages) was
known a priori Three of these pages had been recently
published on 5 ~. Web, so that none of the major search
engines had ~ indexed any of them. The remaining
page was old and previously indexed by all of the ma-

li ~=;.~,.apl: Inf0Spldirs results [] ~;~

InfoSpiders

Info.~pidm3 by Pflippo Manurer (c) 1996-1998

j~

Figure 5: Report of the InfoSpiders search. The HTML
document created by InfoSpiders is viewed through a
browser.

jor search engines, but it had been recently updated
to include, among its many links, an additional link to
one of the other three relevant pages. The linked new
page included, among others, links to the remaining two
pages, so that all the relevant set was within two links
from the indexed page.

As expected, the search engine returned the only rel-
evant page indexed (a recall of 1/4 and a precision of
about 3 x 10-r). The hit was ranked first. A small pop-
ulation of 10 InfoSpiders was then initialized at the top
10 pages returned by the engine (one agent per page)
and allowed to search online, adapting by evolution and
reinforcement learning. After 9 minutes and 66 new
pages visited, all of the relevant pages had been located
(a recall of 1 and a precision of about 0.05 if we count
the startup pages among those visited). Fig. 5 shows
the output at the end of the InfoSpiders run. The vis-
ited pages are ranked by estimated relevance -- in this
case simply by their similarity to the query; the cosine
matching score is listed next to each visited page. Two
of the three new relevant documents (those containing
query terms) were ranked in the top ten positions (3
and 7) while the third appeared later in the list.

Although this single run does not warrant any quan-
titative conclusions, Fig. 6 visualizes recall as a function
of the network resources allocated to the online search.
The purpose of this case study was merely to illustrate
the potential synergy of combining the starting points
provided by a search engine with the online search capa-
bilities of InfoSpiders. The user could not have located
all of the needed information with the search engines

0.70

0.5

0.25

, , , , , , I

Exdte + " -e~

: * a

Figure 6: Plot of recall versus number of new pages
visited by InfoSpiders browsing online from the results
of a search engine. The recall level achieved by the
search engine alone remains unaffected.

alone. The goal could have been achieved by manually
browsing through the top pages returned by the search
engine, but this is a very time-consuming activity --
one better delegated to intelligent information agents!

Discussion
The issue of topology is now discussed, in support of
the view that the two approaches of centralized search
engines and online search agents are really complemen-
tary to each other, and either one alone is insufficient
to achieve scalable search. We conclude with a look at
the future.

Topological issues

Indexing can be described as the process of building a
word topology over a document space. A search engine
will show similar documents next to each other, effec-
tively creating on the fly a topology based on their word
statistics. This is a very useful model because the user
can immediately make assumptions about the contents
of retrieved documents, for example about the fact that
they contain certain words.

However, hypertext information environments con-
tain additional structure information, which can be
used to provide browsing users (or agents) with helpful
cues. It has been argued that this linkage topology --
much of which is lost in the construction of indices --
is indeed a very precious asset that can be exploited
by browsing users in their navigation from document
to document (Larson 1996; Chakrabarti et al. 1998;
Huberman et al. 1998). Linkage topology is useful
inasmuch as browsers have a better-than-random ex-
pectation that following links can provide them with
guidance -- if this were not the case, browsing would
be a waste of time!

To quantify the notion of value added by linkage
topology, we have conjectured that such value can

be captured by the extent to which linkage topol-
ogy "preserves" relevance (with respect to some query)
(Menczer 1998). Imagine a browsing user or agent fol-
lowing a random walk strategy. 3 First define R as the
conditional probability that following a random link
from the current document will lead to a relevant docu-
ment, given that the current document is relevant. We
call R relevance autocorrelation. Then define G as the
probability that any document is relevant, or equiva-
lently the generality of the query.

For the random browser, the probability of finding a
relevant document is given by

v = 0R+ (1 - r/)G,

where 77 is the probability that the current document
is relevant. If linkage topology has any value for the
random browser, then browsing will lead to relevant
documents with higher than random frequency. In or-
der for this to occur the inequality v > G must hold,
which upon simplifying for r/ is equivalent to R > G.
We can then express the linkage topology value added
by defining the quantity

O = R/G- 1.

We measured O for a few queries from a couple of search
engines and found a positive value added by linkage
topology: in Lycos (Lycos), for example, we found
O = (9 ± 3) x 103 >> 0. Thus the confidence that
browsing is a reasonable task for autonomous agents
seems justified.

Linkage topology is not a sufficient condition for an
effective search, however. For a given query q, it seems
plausible that relevance autocorrelation decays rapidly
for distances greater than some correlation distance
An,q. If an agent is farther than AR,q links away from
a relevant document, the search is blind. Since AR,q
is unknown, there is no way to estimate the neces-
sary amount of energy with which to initially endow
agents at any arbitrary starting point. If such amount
is overestimated, resources will be unnecessarily wasted
searching through unlikely neighborhoods. And if it is
underestimated, extinction will ensue before any rele-
vant document is located. This is consistent with the
results outlined in the previous section. It appears
then crucial to launch InfoSpiders from "good" start-
ing points. That is, a starting point should be within a
radius AR,a of a target page.

Search engines can rely on word topology to provide
agents with good starting points. Even if the index does
not contain the target, it may contain pages within a
radius An,q of it. If this hypothesis holds -- some-
thing that must be verified empirically -- then linkage
topology can lead the agents in the right direction. We
believe that the information encoded by word and link-
age topologies are complementary. Search engines and
browsing agents should work together to serve the user
most effectively.

3The conservative assumption of random walk should
yield a lower bound for the value added of linkage topology.

The future

This paper has discussed the scalability limitation of
search engines and suggested a solution based on popu-
lations of adaptive information agents searching online.
The case study in the previous section has illustrated
the potential search scalability achievable through the
synergy between search engines and online browsing
agents.

The viability of adaptive information agents in
achieving scalable Web search, however, cannot be
demonstrated with anecdotal evidence. Quantitative
confirmation of the ideas discussed in this paper must
be sought through extensive testing on the Web. One
experiment would have human browsers and InfoSpi-
ders compete in locating documents not indexed by
search engines. Another approach would be to create
a new page and measure how long it takes, on aver-
age, until it is found by a crawler (provided it is not
directly submitted to it by the author); this time can
be compared to the average time it takes InfoSpiders
to find the page, starting from appropriate queries and
different hit lists derived from search engines.

The InfoSpiders prototype is under continuous devel-
opment to allow for such experiments. Many aspects
of the model also remain to be explored in the "real
world," from the use of relevance feedback under long-
standing queries to the role of recombination and from
the effect of cache size to distributed implementations.

Beyond such explorations we envision that in the
growing and increasingly complex Web of information,
users will need to rely heavily on intelligent agents. If
the feasibility of agent-based online search is proven,
people will be able to delegate more and more of their
tedious tasks to their personal agents.

Acknowledgments

Alvaro Monge was instrumental in the design and exe-
cution of the case study illustrated in this paper. The
InfoSpiders project originated from a collaboration with
Wolfram Willuhn and Richard K. Belew. This work is
partially supported by a CIFRE grant from the Univer-
sity of Iowa.

References

Armstrong, R.; Freitag, D.; Joachims, T.; and
Mitchell, T. 1995. Webwateher: A learning appren-
tice for the world wide web. In Working Notes of the
AAAI Spring Symposium on Information Gathering
from Heterogeneous, Distributed Environments.

Balabanovi6, M. 1997. An adaptive web page recom-
mendation service. In Proc. 1st International Confer-
ence on Autonomous Agents.

Bollacker, K.; Lawrence, S.; and Giles, C. 1998. Cite-
Seer: An autonomous web agent for automatic re-
trieval and identification of interesting publications.
In Proc. 2nd International Conference on Autonomous
Agents.

Bowman, C.; Danzig, P.; Manber, U.; and Schwartz,
M. 1994. Scalable internet resource discovery: Re-
search problems and approaches. Communications of
the ACM 37(8):98-107.
Chakrabarti, S.; Dom, B.; Raghavan, P.; Rajagopalan,
S.; Gibson, D.; and Kleinberg, J. 1998. Automatic
resource compilation by analyzing hyperlink structure
and associated text. In Proc. 7th International World
Wide Web Conference.
Chen, L., and Sycara, K. 1998. WebMate: A per-
sonal agent for browsing and searching. In Proc. 2nd
International Conference on Autonomous Agents.

Cooper, W. 1968. Expected search length: A sin-
gle measure of retrieval effectiveness based on weak
ordering action of retrieval systems. Journal of the
American Society for Information Science 19:30-41.

De Bra, P., and Post, R. 1994. Information retrieval
in the world wide web: Making client-based searching
feasible. In Proc. Ist International World Wide Web
Conference.

Encyclopaedia Britannica, Inc. http://www.eb.com.

Huberman, B.; Pirolli, P.; Pitkow, J.; and Lukose, R.
1998. Strong regularities in world wide web surfing.
Science 280(5360):95-97.
Larson, R. 1996. Bibliometrics of the world wide web:
An exploratory analysis of the intellectual structure of
cyberspace. In Proc. 1996 Annual ASIS Meeting.

Lawrence, S., and Giles, C. 1998. Searching the world
wide web. Science 280:98-100.

Lieberman, H. 1997. Autonomous interface agents.
In Proc. A CM Conference on Computers and Human
Interface.
Lin, L.-J. 1992. Self-improving reactive agents based
on reinforcement learning, planning, and teaching.
Machine Learning 8:293-321.
Lycos. http://www.lycos.com.

Maes, P. 1994. Agents that reduce work and informa-
tion overload. Comm. of the ACM 37(7):31-40.
Menczer, F., and Belew, R. 1998a. Adaptive infor-
mation agents in distributed textual environments. In
Proc. Pnd International Conference on Autonomous
Agents.

Menczer, F., and Belew, R. 1998b. Local selection. In
Evolutionary Programming VII, number 1447 in Lec-
ture Notes in Computer Science. Springer.

Menczer, F., and Monge, A. 1999. Scalable web search
by adaptive online agents: An InfoSpiders case study.
In Klusch, M., ed., Intelligent Information Agents:
Agent-Based Information Discovery and Management
on the Internet. Springer. Forthcoming.

Menczer, F.; Belew, R.; and Willuhn, W. 1995. Ar-
tificial life applied to adaptive information agents. In
Working Notes of the AAA1 Spring Symposium on In-

formation Gathering from Heterogeneous, Distributed
Environments.

Menczer, F. 1998. Life-like agents: Internalizing local
cues for reinforcement learning and evolution. Ph.D.
Dissertation, University of California, San Diego.
Monge, A., and Elkan, C. 1996. The WEBFIND tool
for finding scientific papers over the worldwide web.
In Proceedings of the 3rd International Congress on
Computer Science Research.

Moukas, A., and Zacharia, G. 1997. Evolving a multi-
agent information filtering solution in amalthaea. In
Proc. 1st International Conference on Autonomous
Agents.

Pazzani, M.; Muramatsu, J.; and Billsus, D. 1996.
Syskill & Webert: Identifying interesting web sites.
In Proc. National Conference on Artificial Intelligence
(AAAI96).
Rumelhart, D.; Hinton, G.; and Williams, R. 1986.
Learning internal representations by error propaga-
tion. In Rumelhart, D., and McClelland, J., eds., Par-
allel Distributed Processing: Explorations in the Mi-
crostructure of Cognition, volume 1. Cambridge, MA:
Bradford Books (MIT Press).
Shakes, J.; Langheinrich, M.; and Etzioni, O. 1997.
Dynamic reference sifting: A case study in the home-
page domain. In Proc. 6th International World Wide
Web Conference.
Vogt, C., and Cottrell, G. 1998. Predicting the perfor-
mance of linearly combined ir systems. In Proceedings
of the A CM SIGIR Conference.

