
Searching the Web via Mobile Agents

Corrado Priami, Matteo Lonardi and Stefano Martini
Dipartimento Scientifico Tecnologico, Universit~ di Verona

Ca’ Vignal 2, Strada Le Grazie 1, 1-37134 Verona, Italy
priami@sci .univr. it

Abstract

We describe an approach to information retrieval and
filtering on the Web based on mobile agents technology,
allowing users to be disconnected from the net while
the query is being resolved by some agents. We reduce
the space solution of queries by including some knowl2
edge in the code of the agents, making users save time
in searching ttle Web. These ideas are implemented
in a prototype called MAWS (Mobile Agents for Web
Searching).

Introduction

The amount of information stored in the Web is rapidly
growing and it lacks structure. Many tools (search en-
gines) that search the Web according to keywords have
been implemented (Altavista, Lycos, Magellan, Excite,
HotBot, Arianna). They are essentially indexes of the
Internet. The server sites of these engines scan the net-
work daily or weekly and build a keyword index. When
the user submit a query to them, they return the set of
links available for the keywords specified.

Search engines usually return hundreds or even thou-
sands of links (sometimes with duplications) for a sim-
ple query, and the user cannot check all the links. The
association of a quantity (usually a percentage) to any
link expressing an importance rate (relevance) may help
users. Unfortunately, the relevance of a document is
computed on purely syntactical grounds. For instance,
the number of occurrences of the keyword in the doc-
ument is a typical measure. This measure can be mis-
leading due to the many different meanings that a key-
word may assume according to’the context in which it
occurs. When sentences are used in place of keywords,
the problem is even more evident.

Finally, the different user interfaces of search en-
gines influences their users in the choice of the tool
preferred. Also, once an engine has been adopted
it is difficult to pass to another even if more suit-
able for the query at hand. There exists some inter-
face agents that accomplish similar tasks (Lieberman
1997; Armstrong et al. 1995; Balabanovic & Shoham
1995; Rhodes & Starner 1996; Maes & Kozierok 1993;
Lashkari, Metral, & Maes 1994; Chen & Sycara 1997;

Yan& Garcia-Molina 1995) (see Sect. for further de-
tails). However, none of them relies on mobility of code:
the next feature we describe.

Our main goal is to save user’s time for searching the
Web by improving the query solution and by limiting
the activities that need a stable connection to the net.

We apply here mobile agent technology. We mean
by mobile agent an entity that is made up of a piece
of code, some data and an internal state, and that can
migrate from site to site while computing. Hence, such
an agent can be remotely executed on different systems
at different times possibly interacting with other agents.
More abstractly, an agent is something that acts for its
creator by trying to accomplish its delegated task.

As far as performance is concerned, we show in Sect.
that mobile agents usually generate less network traffic
than classical approaches thus optimizing the usage of
the bandwidth available. Also, the search precision is
not affected by mobile agent technology because it is
simply a different paradigm in which to implement the
same algorithms.

We spawn some agents over the net to look for doc-
uments that satisfy the query of the user. While the
agents are roaming the net, the user performs other
tasks or even disconnects himself. To allow disconnec-
tion each agent sends the results of its search to the
mailbox of the user either as link or as full document
according to the choices of the user. The agents include
an analyser to limit the number of documents satisfying
the query. We implemented these ideas in a prototype
called MAWS (Mobile Agents for Web Searching). Since
we implemented MAWS relying on a Java environment
(AWB by IBM), we limit the need of installing a run-
time support on any machine because almost all of them
already support Java applets.

MAWS logical architecture

We now describe our search prototype that is under im-
plementation at the University of Verona. MAWS inter-
acts with the user helping him in finding the appropri-
ate logical structure of his query, possibly reformulated
for successive refinements. We aim at designing and
implementing

14

From: AAAI Technical Report SS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

¯ an user interface to query heterogeneous data man-
agement systems;

¯ a module that interprets and optimizes the queries of
the users;

¯ the computation of the relevance of documents with
respect to a query.

We encode in the agents the access methods to the
search engines, and the morphological structure of the
user’s natural language to derive synonyms, variants of
the keywords and their context.

LOCAl. ENVIRONMENT REMOTE ENVIRONMENTS

i MIGRAllON

Figure h MAws logical architecture.

MAWS is made up of four main modules: the user
interface, the query analyzer and optimizer, the query
mobile agent, and the analyzer mobile agent. A scheme
of the logical architecture is in Fig. 1 where we also high-
light the environment in which actions are performed.
The local environment is the user machine, while the
remote environments can be the host of a search engine
or the host containing a relevant document.

The user interface permits to select a list of search
engines to which address the query, to select a max-
imum number of documents to be analysed and their
minimum relevance, to choose some domains and pat-
terns to be excluded in the search. This resembles an
advanced query interface of a search engine. The ad-
vantages of our solution are that the user can select a
list of search engines to be queried simultaneously, and

once the queries have been delivered to the search en-
gines via agents, the user can disconnect himself. The
answers to the queries will be sent back via e_ma£1.

The second module of MAWS is the query analyzer
and optimizer. It gathers as much knowledge as possible
on the interests of the user.

The analyzer tries to disambiguate the context of the
keywords inserted in the query by relying on dictionar-
ies and thesaurus of the language, and on interaction
with the user. This task is performed in the environ-
ment of the user (see Fig. 1). The analyzer suggests
list of contexts or domains for the keywords to help the
user. The list of candidates is built according to a sta-
tistical method called Trigger Pairs Model (hereafter,
TPM for short) (R. 1994). A data structure specifies
the correlation between the words of the natural lan-
guage in which it is expressed the query. The data
structure is dynamically updated according to the so-
lutions of the queries and their effective relevance for
the user. In other words this data structure records
some user’s interest profiles. Finally, since the larger is
the number of words selected to refine a keyword, the
slower can be the solution of the query, the user can set
in the interface a bound to the number of words to be
used. More details are in the section on the implemen-
tation issues.

The third module is the query mobile agent. Once
the query has been formalized in the languages of the
search engines selected, we obtain a set of URLs1: one
for any search engine. The structure of URLs for queries
is quite standard and logically similar for most of the
search engines. We only need to change the format of
parameters and the path of the CGI 2 programs. Due to
this similarity, we have a single module that can interact
with many different search engines and can dynamically
vary the set of engines enabled.

Note that any browser works by interacting with a
CGI program of the server hosting the search engine.
Therefore, we only need to know the format of the pa-
rameters for this CGI program to properly format the
query and directly submit it to the CGI without re-
lying on a browser. Hence we do not need an open
browser window. Some interface agents instead (e.g.,
(Armstrong et al. 1995; Balabanovic & Shoham 1995))
needs to cooperate with a browser to work.

Now as many mobile agents as the number of search
engines selected are spawn to the hosts of the engines,

1The Uniform Resource Location (UFLL) is a standard
to identify resources over the net (Berners-Lee, Mastiner,
McCahiU 1994; Fielding 1995).

2The Common Gateway Interface (CGI) (Felton 1997)
is a standard to interface applications with Information
Servers like Web servers or HTTP servers. The programs
that handle input and output between the applications and
the information servers run on the machine in which they
are located on demand by a remote client. They can re-
ceive input parameters as a single ASCII string, and they
can return results.

15

and the user can disconnect his device from the net-
work, provided that he has a mailbox to which the
agents can send the results of their work. This step
makes our approach very different from a standard
search engine, to which one must be connected for all
the time of the search. These agents wait locally to the
host of the search engine for the result of the search.
Then they erase links duplicated. Finally, they spawn
an analyzer agent towards the site of any link in the
result of the query that will analyse the corresponding
documents. After all the agents are sent, the query
agent kills itself.

The last module is the analyzer mobile agent. It
checks whether a document returned by a search en-
gine is effectively interesting for the user. According
to the TPM approach, this agent includes a profile of
the user and the implementation of the multiple TF-
IDF algorithm that extracts from documents their rep-
resentative sets. Representative sets are then matched
against the profile.

Once the evaluation is completed, the links of the in-
teresting documents (or the documents themselves ac-
cording to the choice of the user in the interface module)
are sent by e~ail to the address of the user.

According to Fig. 1 we partition the operations of
our prototype into the ones performed in the user’s en-
vironment and the ones performed in other (remote)
environments.

First MAws interacts with the user to set up the
query mobile agent, and handles the information on the
profile of the user. Therefore our prototype acts as an
interface agent.

The second phase concerns the analysis of docu-
ments on remote environments. Our agents are now
autonomous, i.e. they act without human intervention.
Since MAws operates both as interface and autonomous
agent, it meets the requirements singled out in (Lieber-
man 1997) for being a useful Web search agent.

Implementation
To make MAWS as portable as possible we implemented
it in Java. We used the visual environment AWB by
IBM built on top of Java to design and implement net-
work applications based on mobile agents. The AWB
provides the user with an Aglet class that includes all
the functionalities of mobile agents. In particular, the
aglet class assigns a unique name to an agent, defines
a migration plan to specify multiple destinations, au-
tomatically deals with agent failures, allows agents to
cooperate in environments with shared resources, allows
agents to exchange messages, and has a class loader to
make Java agents travel. The objects of the Aglet class,
called aglets, are an evolution of the Java applets. Ap-
plets are pieces of code that can be downloaded, instan-
tiated and executed locally by a browser. Thus applets
by no means have the properties of autonomous migrat-
ing agents. Aglets instead provide their users with the
notion of mobility as it appears from the features of the

Aglet class listed above. Migration relies on the Agent
Transport Protocol (hereafter ATP for short) (Lange
Aridor 1997) provided by AWB and proposed for stan-
dardization. It is developed at the application level and
it is platform independent.

To make MAws as flexible as possible we implemented
a module that dynamically updates or builds descrip-
tors of search engines. These descriptors are then used
to format the ASCII string of parameters for the cor-
responding CGI programs. The descriptor of a search
engine is a table whose first two rows store the ATP
and the HTTP address of the search engine including
its CGI, respectively. The other rows describe the for-
mat of the CGI parameters. The last three rows specify
the pair of HTML tags delimiting the URLs which are
the solution of the query and the URLs that must be
excluded from the list of results.

To deal with contexts or information domains, we rely
on statistical language modelling (Brown et al. 1990;
Cerf-Danon & Elbeze 1991). These models encode sta-
tistical properties of languages and are used to pre-
dict some behaviour of documents given their prefix.
Statistical language models are usually built by auto-
matically analyising a large amount of data (the train-
ing set) in a phase called training. Its result is a set
of vectors of words that identify a profile of the user.
We then compute a measure of the correlation among
these words called mutual information (hereafter, MI
for short). The meaning of MI can be given in terms
either of classical probability theory relying on the
Bayes’ rule (as done in (Balabanovic & Shoham 1995;
Gauch & Futrelle ; Chen & Sycara 1997)) or of informa-
tion theory relying on the notion of entropy (Shannon
1948) (as done in (Shannon 1951; R. 1994)). In
of textual documents, we can say that the mutual infor-
mation MI(h, w) represents the amount of information
that the sequence h of words in a document provides
on the next word w.

We instantiate the above framework to MAWS. The
training phase is completely local to the environment of
the user. He needs to provide MAWS with a quite large
set D of documents that he his interested in. Follow-
ing (Salton & McGill 1983) the documents di E D are
represented as vectors of words within a vector space.
The basic idea is that similar vectors denotes documents
with similar semantics. We associate a weight to any
word in a vector and we sort it by decreasing ordering
of weights.

To build the vector V~ representing a document di, we
first filter di by deleting the HTML tags, by deleting
the words with very high frequency such as articles,
prepositions and conjunctions, and by putting words in
their most general forms (verbs in their infinite form,
nouns in their singular form, etc.). Then, we apply the
multiple TF-IDF approach (Salton & McGill 1983)
compute the weight v(i) of a word wi in the vector r~
through the equation

v(i) - TF(wi, d) × IDF(wl)

where TF(wi, d) (term frequency) is the number of
occurrences of the word wi in the document d, and
IDf(w,) = log([DI/DF(w)) (inverse document
quency) with DF(w) (document frequency) being the
number of documents in which the word wi occurs at
least once.

The vector P~ is called the profile of the document, or
more generally a profile of the user. We impose a fixed
size (say m) to the profile vectors and we allow at most
n profiles per user. The set of profiles t~ is arranged in
a nI x m matrix V called profile matrix with nI < n.

The user decides when a document is particularly
interesting and must be considered for updating the
profile matrix. (We are currently investigating the pos-
sibility of updating the profile matrix with documents
that the user marks as particularly insignificant.) The
profile matrix is dynamically updated in the local envi-
ronment of the user according to the multiple TF-IDF
algorithm proposed in (Chen & Sycara 1997). Let n
an upper bound to the number of storable profiles. Let
t~ be the profile of an interesting document that is not
yet recorded in V. If the rows of V are less than n, we
add a new row P~ to the profile matrix. Otherwise, we
merge the two vectors having the highest cosine simi-
larity computed as

~ . I,~ i,j e [1..n], i C j
Sim(Vi, ~) = IT41 x 151’

where ̄ is the scalar product of vectors. Let Vz and
V~ be the two vectors for which Sim(Vx, V~) is maxi-
mum. We now define a vector of dimension less than
or equal to 2m by joining V, and V~. Note that we
can obtain a vector of dimension strictly smaller than
2m due to multiple occurrences of the same word in the
two vectors multiplied. Then, we sort the new vector
according to the weights of words and we only keep its
first m components to make it fit the matrix size.

To end the training phase, we must compute the MI
between the words of the profile vectors. MAWS only
computes the MI between the words of the same row
because each profile vector represents a cluster of se-
mantically similar documents. The values obtained give
raise to m vectors of dimension m - 1. We add a new
dimension to the profile matrix to store the mutual in-
formation values. Thus V E n:~n×m×(m-1). We define
MI as in (Chen & Sycara 1997), i.e.

, P(w, w’)
MI(w, w’) = P(w, w)log,p(w)P(w,)_

where P(w, ~) i s computed as t he r atio b etween the
number of documents in D that contains both w and
w’ and the total number of documents IDI (D represents
here the space of suitable documents). More precisely,

P(w,w’)- I{deDlwed^w’ ed}l
IDI

and

P(x) = I{d e D Ix ¯ d}lIDI

The profile matrix is used for the query refinement,
in the local environment of the user, and for computing
the relevance of documents, in a remote environment.

We implemented both an automatic and a semi-
automatic strategy to refine queries. The two strate-
gies differ in that the semi-automatic one asks the user
for confirmation or suggestions in presence of critical
choices. We here describe the automatic solution and
we point out where the semi-automatic one requires hu-
man intervention.

Let r be the maximal number of words allowed for
refinements. For any keyword in the query we define a
new profile vector as the intersection of all the ones in
which the keyword occurs, and we sort the new vector
by decreasing values of mutual information. If the in-
tersection contains more than r words, we keep the first
r words of the vector as refinement of the query.

The intersection computed above and taken as the
refinement of the query could be initially empty. In
such a case, we discard a keyword of the query and re-
compute the intersection. We proceed this way until a
non empty intersection is found. Note that the semi-
automatic solution provides the user with a list of words
that could be deleted from the query for refinement and
the user chooses one of them. The automatic solution
decides to discard the word with the smallest value of
total mutual information. The total mutual informa-
tion of a word is the sum of all its mutual information
with respect to the other words in the same profile vec-
tor. A particular situation arises when all the keywords
in the query occur in no profile vector. We handle this
case by resorting to interaction with the user that can
provide directly refinement words.

The agents in charge of computing remotely the rele-
vance of documents need to embody the set of keywords
in the query, the minimal relevance value set by the
user in the query interface, the profile matrix V and
the refinement vector with the corresponding mutual
information values.

To take the context of keywords into account, we only
consider the five words preceding and following the key-
word k in the document (hereafter, we write C[k] for
these words). This number of words is a tradeoff be-
tween accuracy and computation time (R. 1994).
then check whether these context words occur in the set
of keywords or in the refinement vector. If this is the
case, to compute the relevance of the keyword k we use

R(k)]C,o~etk] YR(w~)
{~i}

where the set below the fraction line is made up of the
wi which are keywords or they occur in the refinement
vector. Furthermore, VR(wi) is 0 if the word w~ is
neither a keyword nor it occurs in the refinement vector,
and it is MI(w~, k) otherwise. If a keyword occurs more
than once in a document, we are investigating if it is
better to take an average weighted sum of its relevances
or the maximum of its relevances.

17

The next step is the computation of the relevance
of a document. Once we have the relevance R(k) for
any keyword in the query, we can again take an average
weighted sum of the relevances or the maximum value of
them. Then, we normalize the value to compare it with
the percentage of minimal relevance set by the user. If
the document is relevant, the corresponding link or the
document itself is sent by e_mail to the user.

Performance considerations
To compare MAWS with a classical search engine with
respect to the network traffic generated, we assume that
both the user and MAWS download all the documents
returned by the search engine. Also, all documents re-
side on different sites. As far as MAws is concerned, we
assume that it sends by e_mail the non relevant docu-
ments as well. Of course, we assume the same network
load in both approaches, and that MAWS interacts with
a single search engine.

Let hereafter i be the bytes of the interface page of
the search engine; l be the bytes of a page of links; t
be the total number of links returned by the engine; b
be the number of links per page; d be the average size
of an html document; and a be the size in bytes of the
mobile agents spawn over the network. Then, the total
amount Qe of bytes transmitted by the engine and the
total amount QM of bytes transmitted by MAWS are

t
QE = i + ~l + td QM = (t + 1)a + tpd.

We take (t + 1) times the size of the agents because
send one of them to the site of the engine, and then one
to any site of the documents. Since it is usually i > a,
we have that MAWS performs better when a < l/b,
which is almost always the ease.

Note that the above evaluation makes sense whenever
MAWS is used as an interface agent to search engines,
and its full capabilities (filtering via users’ profiles, dis-
connection from the network while searching, multiple
engine interaction) are not of interest.

Related work
Many agents are available for assisting the user in fil-
tering information. We briefly survey here these kind of
agents with which MAWS shares the statistical language
modelling for building profiles.

We distinguish two kind of agents usually called in-
terface agent and autonomous agents. The first kind is
based on an interactive interface to dialog with the user
while working. Instead autonomous agents works with-
out human intervention. Our prototype MAws covers
both aspects. It works as an interface agent while refin-
ing queries and as an autonomous agents while scanning
the net to find relevant documents.

Another agent that is both interface and autonomous
is Letizia (Lieberman 1997). It makes real-time sugges-
tions for Web pages that a user might be interested in
browsing. Letizia consider Web searching as a contin-
uous venture between the user and a computer search

agent. Similar agents are Webwatcher (Armstrong et al.
1995), Lira (Balabanovic & Shoham 1995) and Remem-
brance Agent (Pdaodes & Starner 1996). Webwatcher
and Lira differ from Letizia because the last one runs
on the client machine, while the first two run on the
server. Letizia and Remembrance Agent differ because
the former tries to provide new information to the user,
while the latter recall to the user some relevant informa-
tion that he already stored onto his disk. Instead MAWS
runs partly on the user site, partly on the server host-
ing the search engine and partly on the sites that store
the relevant information, thus implementing the mobile
computation paradigm. Furthermore, MAWS provides
the user with new information on demand.

Another work direction is the one of filtering the
incoming information to save user’s time. Notable
work in this direction is in (Maes & Kozierok 1993;
Lashkari, Metral, & Maes 1994) where the agents build
a model of the user to organize his data. To establish
trust with the agent, the user must perfectly know the
model of the agent to recover eventual errors. Another
agent of this kind is Web Mate (Chen & Sycara 1997)
that aims at choosing relevant information on the basis
of a profile describing the user’s interests. The SIFT
system (Yah & Garcia-Molina 1995) tries to continu-
ously informing the user. However this system requires
the user to submit to it a profile describing his interests.
MAws shares with this class of agents the maintenance
of a profile of the user based on the notion of mutual
information.

At the best of our knowledge no agent system for Web
searching is based on the mobile paradigm as MAWS.
This is therefore an original feature of our prototype
that permits to disconnect a portable device running
MAWS after the query has been refined and the agent
has been spawn.

Conclusion and further work
We presented a prototype (MAws) for Web searching
based on mobile agents technology. It permits to search
the Web being disconnected for most of the search time.
The user only need a connection to spawn the agents
and then the answer will be received by e.mail. Some
user’s knowledge is encoded in the agents that prune
the space of the query solution.

We plan to extend the relevance computation with
semantic information encoded in the HTML tags. For
instance, a keyword occurring in a title should be con-
sidered more relevant than one occurring in a footnote.

MAWS is a brick of a larger project that aims at de-
veloping a set of assistants for tasks involving extensive
net accesses. We plan to use MAWS as the basis to edit
domain-oriented electronic newspapers. The profile of
the user drives daily or weekly a search on the Web for
new documents potentially useful. The search is per-
formed via mobile agents thus letting the user free to
perform other tasks concurrently. Once a set of inter-
esting documents has been collected, an editorial agent
put them together in a greater document and submit

it to the attention of the user. Of course, the profile
of the user interests must be updated on the basis of
the effective relevance of the documents collected in the
newspaper.

References
Armstrong, R.; Freitag, D.; Joachims, T.; and Mitchell, T.
1995. Apprentice for the World Wide Web. In Proceedings
of the AAAI Spring Symposium on Information Gathering
from Hetereogeneous, Distributed Environments.
Balabanovic, M., and Shoham, Y. 1995. Learning infor-
mation retrieval agents: Experiments with automated Web
browsing. In Proceedings of the AAAI Syrup. on Informa-
tion Gathering from Hetereogeneous, Distributed Environ-
ments, 13-18.

Berners-Lee, T.; Mastiner, L.; and McCahill, M. 1994.
Uniform resource locators (URL). Technical report, RFC
1738, CERN.

Brown, P.; Cocke, J.; Della Pietra, S.; Della Pietra, V.;
Jelinek, F.; Lalferty, J.; Mercer, R.; and Roosin, P. 1990. A
statistical approach to machine translation. Computational
Linguistics 16:79-85.

Cerf-Danon, H., and Elbeze, M. 1991. Three different
probabilistic language models: Comparison and combina-
tion. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, 297-300.

Chela, L., and Sycara, K. 1997. WebMate: A personal
agent for browsing and searching.
Felton, M. 1997. CG! Internet Programming. Prentice-
Hall.
Fielding, R. 1995. Relative uniform resource locators.
Technical report, RFC 1808, UC Irvine.
Gauch, S., and Futrelle, P. Experiments in automatic
word class and word sense identification for information
retrieval. In Proceedings of the Third Annual Symposium
on Document Analysis and Information Retrieval.
Lange, D., and Aridor, Y. 1997. Agent transfer protocol -
ATP/0.1. Technical report, IBM - TILL.

Lashkari, Y.; Metral, M.; and Maes, P. 1994. Collabora-
tive interface agents. In Proceedings of the 1~’n National
Conference on Artificial Intelligence.
Lieberman, H. 1997. Autonomous interface agents. In
Proceedings of A CM Conference on Human.Computer In-
terface.
Maes, P., and Kozierok, R. 1993. Learning interface agents.
In Proceedings of the 1I’n National Conference on Artifi-
cial Intelligence.

R., R. 1994. Adaptive Statistical Language Modelling: A
Mazimum Entropy Approach. Ph.D. Dissertation, School
of Computer Science, Carnegie Mellon University.

Rhodes, B., and Starner, T. 1996. The remembrance agent.
In Proceedings of AAAI Symposium on Acquisition, Learn-
ing and Demonstrations.

Salton, G., and McGill, M. 1983. Introduction to Modern
Information Retrieval. McGraw-Hill.
Shannon, C. 1948. A mathematical theory of computation.
Bell Systems Technical Journal 27:379-423 (Part I), 623-
656 (Part II).
Shannon, C. 1951. Prediction and entropy of printed Eng-
lish. Bell Systems Technical Journal 30:50-64.

Yan, T., and Garcia-Molina, H. 1995. SIFT-a tool for
wide area information dissemination. In Proceedings of the
USENIX Technical Conference.

19

