
Adaptive Agent-based Systems for the Web:

An Application to the NECTAR Project

Bruno Errico Igor Jurisica
Etnoteam S.p.A University of Toronto

Via A. Bono Cairoli, 34 Faculty of Information Studies
20127 Milan, Italy Toronto, Ontario M5S 3G6 Canada

berrico@etnoteam.it juris@ai.utoronto.ca

Abstract
The paper presents an overall framework for devising
adaptive Web systems characterised by a smart interface that
exploits personalised anthropoid characters. Part of the
framework is currently investigated for the NECTAR
system, a smart interface for on-line shopping. We propose
an agent architecture and highlight the roles of different
agents that can carry out tasks required for a smart interface.
We define knowledge structures and reasoning abilities that
can be considered by such adaptive systems. In particular,
we point out how adaptive Web applications could benefit
from using case-based reasoning, data mining, and
knowledge discovery techniques.

1. Introduction

Currently, there is an explosion of Web applications,
spanning over different fields: electronic commerce,
electronic publishing, health, education, entertainment, etc.
Researchers and designers working on such applications
often need to take into account new peculiarities and
opportunities that should be carefully analysed.

On the one hand, Web systems must effectively interact
with their users, supporting fast navigation across a site and
easy retrieval of the sought items (Arocena et al., 1997).
This implies, for instance, to avoid the problems of deep
hierarchical structuring of Web pages and long itemisations
of information, which could both lead to a user being lost
and to skip important information.

On the other hand, automatically collecting a large
quantity of information about users (e.g., using log files),
offers the possibility to analyse and anticipate user
behaviour in order to facilitate future interactions and
optimise the application tasks (Choo et al., 1998).

In this work, we apply agent technology to solve these
problems. We address challenging application
environments, which are characterised as follows:

• complexity, coming from the need to include different
and sophisticated processing abilities;

• dynamics and openness, since a system can rapidly
evolve and operate in a way that can not be completely

foreseeable during system design;

• friendliness and appeal, coming from the need to
establish a pleasant and enjoyable interaction with
users;

• diversity, stemming from the existence of different user
types, needs and expectations.

We present a general framework for developing a
personalised agent-based application over the Web. This
work has been partly developed within an ongoing Esprit
Project, NECTAR (Nice Electronic Commerce through
smarT Agents for Retail). The main goal of the NECTAR
project is to design and implement a framework for
electronic commerce applications using agent technology.
We expect to exploit the implemented architecture to get
feedback on the feasibility and usefulness of the
framework. Hence, our main concern is a flexible
architecture that is applicable to Web systems with a need
for a personalised agent-based interface.

Section 2 describes the role of agents within the system,
with particular emphasis on the Personal Agents module,
aimed at devising an adaptive interaction with respect to
the current user. In Section 3, we define the architecture of
the agents, by describing the operations for managing and
supporting the agents and their internal structure. Section 4
introduces the main knowledge structures considered
within the system. We emphasise the main reasoning
abilities, namely case-based reasoning, data mining and
knowledge discovery techniques. Section 5 describes the
ongoing NECTAR project, which applies some of the ideas
presented above to the on-line shopping domain. The last
section presents a discussion and a comparison with other
relevant literature and systems.

2. Agent Roles

Agent technology can play an important role in the
design of advanced applications, such as adaptive systems
that use an anthropoid agents interaction. This approach
offers important features, as described below:

From: AAAI Technical Report SS-99-03. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

ì abstraction and modularity, which helps to deal with a
complex environment;

ì autonomy and learning, which helps to deal with an
open and dynamic environment;

ì life-likeness, which helps to develop an engaging and
appealing interface;

ì distribution and delegation, which helps to effectively
deal with multiple different users.

In our framework, we have defined several basic agents
with different roles, as depicted in Figure 1. The main
distinction is between Personal Agents and Task Agents.

customer

Observer
Agent

Presentation
Agent

Modelling
Agent

Task
Agents

Log
Data

Agent
System

Personal
Agents

Figure 1. Agents Roles

The role of Personal Agents is to observe a user of the
system, define her model by identifying and representing
significant aspects of the user, and establish the modalities
and features of the interaction with the user. More details
about roles of individual personal agents is provided below:
1. The Observer Agent gathers information about the user

and her behaviour. It observes the requests to the
site server that are issued by the user and identifies
the corresponding actions they represent.
Identified actions are thus available for being
processed by the Modelling Agent.

2. The Modelling Agent relies on information coming
from the Observer Agent to determine a model of
the current user behaviour and attitudes. As we
shall see in the following sections, this task is
carried out by exploiting suitable knowledge
structures and techniques, e.g., stereotypes,
contexts, and knowledge-discovery techniques.
Further information that is stored by this agent can
be derived from data or indications that are
directly provided by the user, through interviews
and forms. Thus, the Modelling Agent can provide
information to other agents that solve specific
tasks, or Task Agents.

3. The Presentation Agent communicates information to
the user and tailors it to the current context, user’s
tastes and preferences. To do so it exploits its own
knowledge, expressed in terms of techniques and
policies that could be used when information
should be presented. The selection of a specific
presentation mode is based on the information
about the current user that is acquired by the
Modelling Agent. This includes user’s attitudes,
preferences and features. In practice, this agent
can customise a piece of information to be
presented by personalising the following features:

a) graphical presentation, by selecting among a
library of anthropoid characters and adding
suitable images and animations, tailored to
the individual user and presentation kind.

b) content, by selecting the most appropriate
information personalised for the individual
user and the request that has been issued;

c) structure, by suitably organising the structure
of the page content, e.g., precedence among
different items, hierarchical representation,
and levels of highlighting;

d) level of detail, i.e., once the nature and the
structure of the information that need be
provided has been determined, the amount of
details could be varied according to the
current user. For instance, a new user would
need a greater amount of explanation; or a
user with a limited bandwidth will be given,
by default, a lower amount of graphical
information.

 Task Agents perform specific tasks in response to direct
or indirect user activation or to activation by the system.
They rely on information collected by the Modelling
Agent. The task results are presented to the user through
the Presentation Agent. Naturally, Task Agents should also
possess additional, domain-specific knowledge and
inference abilities in order to accomplish the associated
tasks.

 Based on the aims and the business logic of the
applications we can define several types of Task Agents.
Some general task Agents and their role in various domains
is described below:

• An Analyser Agent is in charge of processing the data
collected by the system concerning interactions with
users and the interface. It provides significant statistical
information and discovered knowledge, which is useful
for management decisions. Furthermore, it can support
the Modelling Agent by identifying classes of users and
classes of domain items, thus improving the modelling
abilities of the system.

• A Helper Agent represents an approach to on-line help.
It gives technical support to a user by explaining tools
and features of the system. It can become active either
on demand (i.e., upon request of the customer), or
proactively (the agent itself recognises that a customer
has some difficulties).

• A Search Agent executes a search of domain items as
specified by a user. Our Search Agents consider various
levels of matching, including exact and partial.

3. The Agent Architecture

This section analyses the functionality provided by the
proposed agent system. In addition, we give a description
of the internal structure of an agent, thus providing a
functional decomposition of agents along with the main
operations that need to be performed and the data they
operate on.

3.1. The Agent System
The overall agent system is divided into two modules:

1. The Agent Manager (AM), which controls other agents,
by creating, activating, and destroying them. Thus, this
agent supports monitoring of the agent system.

2. The Agent Environment (EA), which supports the
execution of agent operations.

AM

Users Virtual Shop

agent system

AE

Ag1

Ag2

Agn

Figure 2. Agent System

The Agent Manager supervises the activity of the
agents. In particular, the following tasks are performed:

• Create new Personal Agents for a user. This task
corresponds to create an Observer, Modelling and
Presentation agents for a new user and assign them the
identity of the user.

• Retrieve the Personal Agents assigned to a user. This
task associates the user with the Observer, Modelling
and Presentation agents with the same identity as the
user.

• Activate an agent. This task corresponds to directly
requesting the intervention of an agent for executing a
specific task.

• List all agents. This task can be used for testing or
monitoring purposes and shows all agents and their
identity.

• List all active agents. This task can be used for testing
or monitoring purposes and shows all active agents,
their identity and their current task.

• List the properties of a specified agent. This task can be
used for testing or monitoring purposes and shows the
properties of an agent, i.e., the identity, the state (active
or not), and the task that it is performing (when active).

The Agent Environment should provide all the
necessary tools for the execution of agents. In particular,
the major tasks that are supported are as follows:

• Multithread management, which ensures that several
agents may be executed autonomously and
simultaneously.

• Distribution management, which makes the agent
architecture scalable by allowing addition of more
servers for executing agent. In addition, the load of any
potential server is balanced by choosing where to
execute a new active agent.

• Message delivery supports communication among
agents, with the environment, and with the users.

• Persistence management stores information needed by
the agent in different situations. In addition, the
manager also supports crash recovery.

• Security management enforces the rules governing
agent behaviour, e.g., protects against unwanted access.

3.2. The Agent Internal Structure
We have defined a general internal structure for an

agent, which we apply to all of the agents considered in the
proposed framework. The structure of an agent that we
have chosen comes from an anthropomorphic metaphor,
which has been already exploited by other authors, and
recalls the one adopted in (Brancaleoni, Cesta, and
D’Aloisi 1997). As shown in Figure 3, an agent is viewed
as decomposed into two functional modules:
1. The Brain controls the agent operations and determines

tasks and actions;
2. The Body executes tasks and actions, and communicates

with the environment.

The brain is devoted to the effective management of the
agent abilities in order to solve the current problem. Thus,
it should include advanced functionality, such as:

• reasoning abilities to determine the goal that is to be
achieved,

• planning abilities to map the available tasks on the
current goal, and

• decision-making abilities to monitor and modify the
action execution according to the actual situation.

Body

KB

Brain

Working
Memory

Controller

ReasonerCommunicator

Sensor

Actuator

Agent

Environment

Other
Components

UsersOther agents

Figure 3. Agent Architecture

Three main components are considered within the
brain:
1. A Controller, which determines when the agent

should act and what should it do as specified by
the following operations:
a) selecting the current goal;
b) selecting the action that should be

executed next;
c) monitoring the execution of the actions;
d) activating the Reasoner to decompose

complex actions (goals) into executable
ones managing incoming messages.

2. A Reasoner, whose task is to determine a suitable
course of action, by performing the following
operations:
a) assessing the current situation;
b) determining the plan that achieves the

current goal.
3. A Memory that contains necessary knowledge for

solving the task, and information about the current
state. This is distinguished into:
a) a knowledge base, containing rules, plan

libraries, representation of relevant
knowledge;

b) a working memory, containing the
current goal and a description of the
current situation.

The body is in charge of interacting with the system. It
perceives the environment in order to collect needed

information and to affect it by performing the scheduled
actions. Thus, the body comprises:
1. A Communicator, which ensures communications with

other agents or other components in general. This is
done by means of a message manager that supplies the
chosen communication protocol, e.g. KQML;

2. A Sensor, which contains a set of available sensing
actions that allow an agent to test the environment;

3. An Actuator that is in charge to execute predefined
actions and tasks that are selected by the controller.

4. Representational Issues

Adaptive systems need to define suitable data structures
in order to handle needed information in an effective and
efficient way.

Domain knowledge can be organised into classes
representing relationships and associations among
individuals. For instance, classes can be organised into
hierarchies representing is-a and part-of relationships.
Likewise, relevant features about users can be structured
around suitable taxonomies that represent classes of users,
called stereotypes. In order to successfully associate
appropriate suggestions, we need to keep track of user
actions and attitudes. States can be used to represent the
context, e.g., the current stage, of the interaction taking
place between the system and user. Finally, suitable data
structures are introduced to represent analyses of the
overall behaviour and utilisation of the system.

The discussion that follows will provide general
definitions concerning representational issues for these
kinds of knowledge. Most definitions will intentionally
range over a formal and abstract level. This allows us to
both state clear and well-founded definitions, and to have a
general framework that can be exploited in different
domains.

4.1. Stereotypes
Stereotypes are used to relate a user to a set of

assumptions that capture significant aspects of the user
model, based on a given evidence. This idea has been
widely exploited in the user modelling and user adapted
interaction communities and dates back to the work of Rich
(1979). Evidence can be expressed by means of triggering
and deactivating conditions that are used for ascribing a
stereotype to a user or retracting it. Thus at any moment a
user is assigned to a set of different stereotypes that
contribute to define her user model. Stereotypes can be
organised into hierarchies and multiple inheritance can be
supported. Features can be considered as a set of facet-
value pairs that hold for all users ascribed to the stereotype.
Finally, a context can be expressed as a condition
restricting the set of scenarios which the stereotype can be

applied to. The data structure of a stereotype can be
described as follows:

• Triggering condition that defines a condition in terms of
actions performed by the user and features acquired
from the user that make the stereotype potentially
applicable;

• Deactivating condition that defines a condition in terms
of actions performed by the user and features acquired
from the user that make the stereotype no longer
applicable;

• Features that define a set of facet-value attributes that
could be ascribed to the user when the stereotype is
applicable;

• Context that specifies those scenarios where the
stereotype could actually be exploited once the
stereotype is triggered.

Stereotypes thus enable defining different, possibly
overlapping, classes across the universe of users, along
different dimensions.

We extend this generic approach to stereotypes with
case-based reasoning (Kolodner, 1993). Case-based
reasoning paradigm is founded on solving new problems by
remembering (representing), retrieving and possibly
adapting experience, represented as cases. Informally, a
case comprises an input (the problem), an output (the
solution) and feedback (an evaluation of the solution).
However, the representation of problems, solutions and
feedback varies from domain to domain.

For our purposes, cases represent experience of specific
users. Using knowledge-discovery techniques described
later, specific cases are grouped into clusters of customers
with related needs and tastes. We use hierarchical
clustering, which thus creates a generalization hierarchy of
known user stereotypes. New users can then be assigned to
certain stereotypes, which in turn are defined in terms of
specific cases. Thus, in this representation stereotypes can
be viewed as a composite of several cases. Cases are
described by set of features -- attribute-value pairs,
conditions -- triggering and deactivating, and scenarios. We
use a prototype of a case-based reasoning system TA3
(Jurisica and Glasgow, 1997). The system is flexible -- it
can be used in diverse domains and can support various
tasks, and scalable -- it works with large and complex case
bases. An essential part of TA3 is an incremental, variable-
context, similarity-based, retrieval algorithm (Jurisica and
Glasgow, 1998). Defining context explicitly supports
flexibility - controlling what is considered similar and why.
Incremental implementation of the retrieval algorithm helps
to achieve scalability. TA3 also includes a knowledge-
discovery component, which is used for: (1) TA3
optimization -- locating descriptors relevant for a given
context and task, and organizing case base into context-
based clusters; (2) case base and domain knowledge

evolution -- adding descriptors to assist case discrimination
during prediction and classification, removing redundant
cases and descriptors, creating hierarchies of descriptors
and their values, finding associations; (3) evidence-based
reasoning -- analyzing created clusters, hierarchies and
associations to identify underlying principles in the domain.

Our approach is similar to user modeling systems that
use stereotypes, such as GRUNDY (Rich, 1983) or GUMS
(Finin, 1989) with the following differences:
ì cases are not static structures and can store more

complex information than stereotypes;
ì support for partial matching, constraint satisfaction,

uncertainty and similarity, which give us higher
flexibility than activation by triggers;

ì support for incremental model matching that
diminishes the problem of incomplete information at
certain stages of reasoning;

ì flexible context-based model of relevance assessment,
which reduces the problem of choosing between
stereotypes that are at the same level of generality but
which are unrelated;

ì cases support multiple matches that diminish the
problem of typical and particular user characteristics
that stereotype-based models suffer from;

ì case hierarchies help to distinguish between explicitly
and implicitly acquired knowledge, which can be used
for improved inheritance and reuse of models from one
user to the other;

ì consistency of the defined and acquired models is
maintained by using similarity-based hierarchical
organization of cases.

4.2. Actions and Attitudes
In this section we consider the problem of how to

summarise the actions performed by users and express
some of their relevant attitudes, e.g., preferences. To this
end, we will introduce the concepts of action and attitude
functions, which quantitatively express actions that are
performed more frequently by users and the importance
they (are assumed to) give to some object of the application
domain, with respect to some of their attitudes. In general,
various attitudes can be taken into account, e.g., the
knowledge, the familiarity or the preference with respect to
a given domain object. Thus, we can express that a user has
visited a certain page several times and that she shows
some preference towards a given domain object.

Let us consider a generic problem domain, where
{A1,…,Am} is a predefined set of significant attributes, each
of which takes on values from an underlying set dom(Ak) =
{v k,1,…,vk,n}. We consider a set of action functions,
{Act i,1,…,Acti,n}, where any action function
Acti,k(v):dom(Ak)È[0..n] maps, for each user Ui and an
attribute Ak,, a value of the attribute domain in an integer

number expressing the number of times the action is
performed.

Moreover, we consider a set of attitude functions,
{Atti,1,…, Atti,p}, where any attitude function
Atti,k(v):dom(Ak)È[-m..M] maps, for each user Ui and for
an attribute Ak, a value of the attribute domain in a real
number expressing an attitude value. The two constants, m
and M, represent the lowest and highest storable values. A
value 0 means that there is no evidence with respect to that
attribute value; a negative value shows a negative attitude;
and a positive value shows a positive attitude.

The attitude values can be assigned based on users’
behaviour according to some predefined assumption and
heuristic.

In order to avoid strong influence of actions that
happened a long time ago on the current values stored for
attitudes, the attitude values can be periodically reinitialised
or multiplied by a scaling factor. For instance, on entering a
system for the tenth time, the former attitude values can be
multiplied by a scaling factor of 0.1 or else any time a user
exits the system the attitude values are scaled by a factor
0.9.

4.3. States
States can be considered as variables, with a rather

coarse granularity, that capture the dynamic behaviour of a
user. It is important to associate a user with a state that
defines the applicable context, in terms of an underlying
scenario and a certain goal that is attempted to be achieved.
The state detected by the system can be used for
determining how to interpret the behaviour of the user,
which inferences can be applied (e.g., the context of a
stereotype), and which actions of the system are most
appropriate.

The evolution of states can be expressed by means of
suitable rules for computing the next state that is reached
from a certain state, once a specific action is performed.

4.4. Discovered Knowledge
Knowledge discovery is defined as “a nontrivial

process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data” (Fayyad,
1996). To cope with the complexities of real-world
domains and to take advantage of domain knowledge the
process is usually interactive and iterative (See Chen, Han,
and Yu (1996) for a review on data mining.) In our system,
knowledge-discovery techniques serve several purposes:
1. Discovered regularities, structures and patterns can be

exploited by the site administrator to take strategic
decisions.

2. The analysis on data of real users is crucial to update
and iteratively improve the modeling and inference
mechanisms that are initially built in into the system by

means of elicited knowledge from marketing experts
and heuristic hypotheses and assumptions.

3. Existing stereotypes can be analyzed to find their
generalizations and possible higher-level clusters.

4. Grouping user profiles, in terms of related goals and
actions taken can lead to finding associations that can
be exploited during task-oriented interaction with the
system.

Knowledge-discovery techniques can be used to find:

• Association rules, which we express as:
 Xi=vi,…,Xj=vj È Xk=vk,…,Xl=vl,
 where { Xi,…, Xj} ∩ { X k,…, Xl }= ∅ ;
 Xt belongs to:
 {A1,…,Am} ∪ {Act 1(Ap),…,Actn(Aq)}
 ∪ {Att 1(Ar),…, Attp(As)};

 and, accordingly, vs is a value belonging to the domain
of an attribute, the application of an action function, or
an attitude function to such a value. An association rule
means that when the attributes, actions or attitudes on
the left-hand side of the association rule assume the
defined values, then also the attributes, actions or
attitudes on the right-hand side of the association rule
assume the corresponding values. For instance, it can be
detected that users that are between 30 and 40, buy milk
and visit the biscuit department usually also buy honey
and cereals. A confidence factor c of an association rule
is defined as the percentage of transactions that contain
both the left-hand side and the right-hand side with
respect to all those containing the left-hand side. The
support s of a rule is defined as the percentage of
transactions containing both sides with respect to the
overall number of transactions.

• Sequential patterns. A sequential pattern is defined as a
sequence of actions that gets executed during a
transaction: Acti(Ai),…,Actm(Am) (unlike association
rules, the relative position is significant here). These
patterns can play a particularly relevant role for
anticipating the actions of users.

• Path traversal patterns. These can be seen as a special
case of sequential patterns where the actions are visits
of web pages. They are particularly relevant for
analysing and optimising site organisations with respect
to the accesses of the users.

• Clusters. Clustering helps to identify classes by trying
to maximise intra-cluster similarity and minimising
inter-cluster similarity. Clusters are discovered based on
some emerging common features. Features that are
taken into account are attributes, association rules,
sequential patterns. Particularly interesting are clusters
that can be generated by special association rules where
the left-hand side contains only actions performed on

some attributes. In this case, new clusters can be
associated with new stereotypes that are dynamically
generated based on the attributes of the left-hand side of
the association rule. For instance, customers of virtual
shop who are between 30 and 40, buy a certain amount
of milk and have visited the biscuit department can be
automatically gathered into a new stereotype. Likewise
a new cluster of products can be discovered gathering
together honey and cereals in a cluster of products, even
if they were not associated to each other before. Note
that these inferences can be drawn automatically by an
agent, which can thus refine and update the domain
knowledge by adding new clusters and stereotypes, e.g.,
a stereotype whose triggering conditions are between 30
and 40, buying milk and visiting the biscuit department
and has as feature a high preference for the new cluster
of products containing honey and cereals.

5. The NECTAR Project

NECTAR (Nice Electronic Commerce through smarT
Agents for Retail) is a European Commission funded
project in the framework of ESPRIT IV. The project started
on March 1st, 1998 and has duration of 18 months. The
NECTAR Consortium comprises three groups of partners:

• End-users: two large retail companies in Italy and
Spain;

• Technology providers: three state-of-the-art companies
in the respective market sectors in France, Italy and
Spain. The Italian partner, Etnoteam, is also the project
co-ordinator;

• A Business analyst: a BPR company in Italy.

Main project results aim at defining a general model of
a virtual shop for retail with Intelligent Agents. Two
instances of the virtual shop, one for each of the retailer
partners, are currently being developed. The system is
composed of several software modules:

• a back-end module to interface the existing Information
System of the Retailer with the Virtual Shop module;

• a virtual shop, which maintains a dynamic product
catalogue and drives the commercial offer;

• a front-end module based on Intelligent Agents: they
will support a personalised interaction between the
customer and the system, taking into account
preferences, habits and trends.

The NECTAR agent system is under development in
Java; KQML is used for communication and co-operation
among agents. Preliminary results are foreseen at spring
1999, while the final system will be available at the project
end (August 1999).

A set of agents resulted from the specific requirements
of the retail market. In addition to the general agents
Personal and Task Agents considered in this framework
and described in Section 2, the following agents have been
taken into account:
ì The Watcher Agent monitors offers and promotions

and notifies customers about them. Notification can
take place either by e-mail (off-line) or on-line. In both
cases, notification occurs only if the customer is
interested in some way, according to the customer
model built by the Modelling agent.

ì The Reminder Agent reminds a customer about special
events and significant dates (e.g., birthdays,
anniversaries, religious holidays) that are relevant. It
proposes possible gifts for these special occasions.
This could be done either by e-mail or on-line.

ì The Chef Agent suggests menus and recipes for special
occasions. According to the provided suggestion, this
agent also proposes the best list of products to prepare
these recipes based on the customer’s preferences.

ì The Shopper Agent helps the customer to manage the
personal shopping list. It notifies the customer about
observations and advises her on the current shopping
basket. For example, the system may notice that the
customer has forgotten an item, because this is
considered strongly related to some other item that has
been selected by the customer.

ì The Pro-Merchant Agent provides sorting criteria to be
applied to lists of products. Criteria are based on
weights and rules designed to improve the profitability
of the shop.

ì The Pro-Customer Agent provides sorting criteria to be
applied to lists of products. Criteria are designed to
improve the shopping advantage from the customer
side and to take into account customer preferences and
tastes.

As an example, the following ones are two possible
predefined stereotypes for customers of the NECTAR
project: economical -- related to product cost, and famous
brands -- related to product features:

Economical stereotype:
w triggering condition: the customer ticks the “care

for price” box in the registration questionnaire;
w deactivating condition: the customer rejects at

least ten offers of products of the product cluster
economical.

Famous brands stereotype:
w triggering condition: the customer buys at least

three products of the cluster famous-brands;
w deactivating condition: the customer rejects at

least two offers of products of the product cluster
famous-brands.

Additional project’s contribution will be the
reorganisation of several business processes of the Retailers
(delivery, logistics, marketing, finance, etc.), according to
the new commercial channel. Again, a general model of the
Retailers new Business Processes will be established and
exploited for the implementation of the two specific
systems.

A great challenge of the NECTAR project is the
application of the technology of Intelligent Agents to the
Retail market. A complete system for advanced electronic
commerce in the retail market will be developed and the
relevant business processes will be analysed and
reorganised according to the needs of the new commercial
channel. This involves an innovative integration of existing
software technologies and the exploitation of new business
processes.

From the customer perspective, the innovative aspect is
the chance to have a convenient, interesting and fun
experience in the electronic retail.

6. Conclusions

The possibility of providing users with a more effective
interface is one of the future challenges and has been
investigated in a number of project.

The persona project (Ball et al. 1997) explores a
prototype system for a social user interface, that interacts in
natural language by means of a lifelike character. The
assumption of this project is that future systems should go
beyond current graphical user interface where users
accomplish tasks by a selection from a predefined set of
alternatives. Thus, it allows for a description of tasks,
which can be in part performed autonomously by the
system. Though the emphasis is mainly on conversational
issues of the interface, this project is in many respects
related to the motivations of our work for developing a
(partly) autonomous interface based on lifelike characters.

The idea of detecting user preferences for determining
system behaviour has been exploited in several systems,
particularly in the area of user modelling. At present, there
is a considerable number of projects in this area, with a
great focus on adaptive Web systems.

In the AVANTI project the possibility of providing
individualised information is based on three models for
capturing relevant features of users, system usage, and
domain. This project also strives to satisfy the need of
users, e.g., with particular I/O requirements. See (Finik,
Kobsa and Schreck, 1997) for a description of the project.

WebMate (Chen and Sycara 1998) is a personal agent
that improves a user ability of retrieving document through
the Web, by monitoring a user searching and browsing
activity and exploiting user evaluation on positive results

retrieved by the agents. Preferences are managed by the
technique of multiple TF-IDF vectors, which represent
documents as vectors of words and weights. The searching
task is further refined by means of techniques based on the
generation of keywords and on relevance feedback.

For what concerns the application of intelligent agent to
e-commerce, many works have been focusing on devising
agents that could perform customer tasks, like wondering
on the net, selling and buying goods (see Guttman,
Moukas, and Maes (1998) for a review).

Surprisingly, there seems to be fewer ongoing projects
aimed at devising advanced user interfaces for e-commerce
providers. In this light, the Nectar project assumes a crucial
role, having the aim to provide a reusable framework to be
applied to several applications of the retail domain and,
possibly, to generalise it to other related domains. Nwana
(1998) summarises views of some participants in a panel
session on agent-mediated e-commerce on the research
state-of-the-art and future challenges. Interestingly, one of
the panellist (Tuomas Sandholm) singles out the problem of
interest generation as one of the stages of commerce and e-
commerce, where “a user’s agent keeps a profile of the
user, and selectively chooses which advertisements the user
should read” (p. 192). This idea strongly resembles the
tasks performed by the agents introduced in our framework,
i.e., the Personal Agents and the Watcher Agent.

Among commercially available products, Brightware
(1998) offers a packaged software application aimed at
developing virtual shops with automated customer
interaction on the Net. Brightware is designed as an
application for interacting with customers, organising and
accessing relevant content and guiding customers to
execute the sales or service transactions that best meet their
needs.

However, compared with the agents considered in our
framework, a reduced set of functionality is covered by the
agent system. This amounts to two agents based on fuzzy
matching and machine-learning technology: an Answer and
an Advice Agent. Note that further extensions are under
development.

Similar to our ideas, Tecinno GmbH uses case-based
reasoning to support the user in finding desired information
or products in electronic catalogues (Breen and Wilke,
1998). The main advantage over existing technologies is its
measure of similarity. In comparison, our approach goes
further since we not only measure similarity among
products but also among user preferences and stereotypes.

7. Acknowledgements

We thank Vittorio Patera for valuable comments,
revisions and suggestions on some ideas presented in this

paper. We also thank Graziano Ferrari for helping us
describe the NECTAR project.

8. References

Arocena, G.; Mendelzon, A. O.; and Mihaila, G. 1997.
Applications of a Web Query Language. Computer
Networks and ISDN Systems 29:1305-1316.

Ball, G.; Ling, D.; Kurlander, D.; Miller, J.; Pugh, D.;
Skelly, T.; Stankosky, A.; Thiel, D.; Van Dantzich, M.; and
Wax, T. 1997. Lifelike Computer Characters: The Persona
Project at Microsoft Research. Software Agents. Bradshaw,
J. ed. MIT Press.

Brancaleoni, R.; Cesta, A.; and D’Aloisi, D. 1997.
MASMA:. A Multi Agent System for Scheduling
Meetings. Proc. of the Third International Conference on
Practical Application of Intelligent Agents and Multi-Agent
Technology (PAAM 97).

Breen, S. and Wilke, W. 1998. Fuzzy searching of product
Catalogues. Technical White Paper, Tecinno GmbH.

Brightware. 1998. URL: http://www.brightware.com/
products/index.html

Chen, M.; Han, J.; and Yu, P. S. 1996. Data Mining: An
Overview from Database Perspective. IEEE Transactions
on Knowledge and Data Engineering 8(6):866-883.

Chen, L. and Sycara, K. 1998. WebMate: A Personal Agent
for Browsing and Searching. Proceedings of the Second
International Conference on Autonomous Agents. Sycara
K. and Wooldridge M. eds. 132-139.

Chin, D. N. 1989. Acquiring user models. Artificial
Intelligence Review 7(3-4):185-197.

Choo, C. W.; Derlor, B.; Turnbull, D. 1998. A behavioral
model of information seeking on the web: Preliminary
results of a study how managers and IT specialists use the
web. Proc. of the 61st Meeting of the American Society of
Information Science, 290-302.

Fayyad, U. M.; Piatetsky-Shapiro, G.; and Smyth P. 1996.
From data mining to knowledge discovery in databases. AI
Magazine 17(3): 37-54.

Finik, J.; Kobsa, A.; and Schreck, J. 1997. Personalized
Hypermedia Information Provision through Adaptive and
Adaptable System Features: User Modeling, Privacy and
Security Issues. 4th Int'l. Conf. in Services and Networks.

Finin, T. W. 1989. GUMS - A General User Modeling
Shell. User Models in Dialog Systems. A. Kobsa and W.
Wahlster eds. Springer-Verlag. 411-430.

Guttman, R. H.; Moukas, A. G.; and Maes, P. 1998. Agent-
Mediated Electronic Commerce: A Survey. Knowledge
Engineering Review 6.

Jurisica, I. and Glasgow, J. 1997. Improving performance
of case-based classification using context-based relevance.
International Journal of Artificial Intelligence, Special
Issue of ICTAI’96 Best Papers 6(4):511-536.

Jurisica, I. and Glasgow, J. 1998. An efficient approach to
iterative browsing and retrieval for case-based reasoning.
Angel Pasqual del Pobil, Jose Mira and Moonis Ali eds.,
Lecture Notes in Computer Science (IEA/AIE’98), 535-
546. Springer-Verlag,

Kolodner, J. 1993. Case-Based Reasoning. Morgan
Kaufmann, San Mateo, CA.

NECTAR. 1998. EP26992 Project Programme. Issue 1.01,
28/01/98.

Nwana, H. S. 1998. Agent-Mediated Electronic Commerce
Issues, Challenges and some Viewpoints. Proceedings of
the Second International Conference on Autonomous
Agents. Sycara K. and Wooldridge M. eds. 189-196.

Rich, E. 1979. User Modelling via Stereotypes. Cognitive
Science 3:329-354.

Rich, E. 1983. Users as Individuals: Individualising User
Models. International Journal of Man-Machine Studies
18:199-214.

